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ABSTRACT. We describe all exceptional groups of order 243 = 35, with explanations and proofs,
adjusting a table that appears in a 2017 paper by Britnell, Saunders and Skyner. There are ten ex-
ceptional groups of order 243, each of minimal degree 18, with four distinguished quotients, each of
order 81 and minimal degree 27. Using a sieve technique, we identify all preimages of each distin-
guished quotient. The minimal degrees of the preimages become either (a) 18, when the preimage
is exceptional, (b) 27, when the preimage is almost exceptional, (c) 36, or (d) 54. Cases (a), (c) and
(d) occur with an elementary abelian centre of order 9, but with contrasting intersection properties
using subgroups of order 27, leading to minimal representations afforded by two subgroups. Case (b)
occurs with a cyclic centre of order 3 and a transitive minimal representation. We prove that there
are exactly two nonisomorphic exceptional groups of order 243 having more than one (in fact two)
nonisomorphic distinguished quotients.

1. INTRODUCTION

Throughout this paper, all groups will be finite and the main focus will be on groups of order
243, their subgroups and quotients. The minimal (faithful) degree µ(G) of a group G is the least
nonnegative integer such that G embeds in the symmetric group Sym(n) of permutations on a set of
size n. If G is nontrivial then µ(G) is the minimal sum of indexes for any non-empty collection of
subgroups C = {H1, . . . ,Hk} with a trivial core intersection, in which case we say that C affords a
minimal (faithful) representation of G. In this case, the subgroups H1, . . . ,Hk become the stabilisers
of points in the respective orbits for the permutation action of G, and the orbits may be identified
with the sets of cosets of H1, . . . ,Hk in G respectively. When k = 1, there is a single orbit and the
representation is transitive. The following result, due to Karpilovsky [7], calculates minimal degrees
of abelian groups, and will be used implicitly throughout:

Theorem 1.1. [7] If G = C
pi1

1
. . .Cpin

n
is an abelian group where n, i1, . . . , in are positive integers

and p1, . . . , pn are primes, then µ(G) = pi1
1 + . . .+ pin

n .

Johnson [6] proved a number of seminal results, including the following:

Theorem 1.2. [6, Theorem 3] If p is an odd prime and G is a nontrivial p-group whose centre is
minimally generated by d elements, then any minimal faithful representation of G is afforded by a
collection of d subgroups. In particular, if the centre is cyclic then a minimal representation of G
must be transitive.
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Proposition 1.3. [6, Proposition 3] If p is an odd prime and G is a p-group whose centre is cyclic
or elementary abelian then

pµ
(
Z(G)

)
≤ µ(G) ≤ 1

p
|G : Z(G)|µ

(
Z(G)

)
.

Wright [10] proved that taking minimal degrees is additive with respect to taking direct products of
nilpotent groups (for which Theorem 1.1 becomes a special case):

Theorem 1.4. [10, Corollary 2] If G and H are nilpotent, in particular if G and H are p-groups
for some prime p, then µ(G×H) = µ(G)+µ(H).

Clearly if H is a subgroup of G then µ(H) ≤ µ(G). However if N is a normal subgroup then
µ(G/N) may be greater than µ(G). Neumann [9] observed that if G = Dn

8 is a direct product of
n copies of the dihedral group D8 then µ(G) = 4n whilst µ(G/N) = 2n+1 where N is chosen so
that G/N becomes (isomorphic to) the n-fold central product of n copies of D8. This shows that
the minimal degree of the direct product of n groups may grow as a linear function of n, whilst the
minimal degree of at least one of its quotients grows as an exponential function of n. Analogues
of this result for odd primes p are exhibited also in [5] and, with respect to constructions related to
wreath products, in [1].

Easdown and Praeger in [5] refer to a group G as exceptional if G has a normal subgroup N such
that µ(G/N) > µ(G), in which case N is called a distinguished subgroup and (any group isomor-
phic to) G/N is called a distinguished quotient. They prove that the smallest exceptional groups
have order 32 and exhibit several classes of exceptional groups. Other examples and classes of ex-
ceptional groups have been studied, for example, by Lemieux [8], Britnell, Saunders and Skyner [2]
and Chamberlain [4]. In [2], the authors study exceptional groups G of order p5 where p is any
odd prime. In particular they claim to have found all exceptional groups of order 35 = 243, but do
not provide proofs. We give a complete account here, making some corrections to their list. Re-
call from [1] that a group G is almost exceptional if it has a proper normal subgroup N such that
µ(G) = µ(G/N), and we call G/N an almost distinguished quotient.

Section 2 provides preliminary results, used extensively in the sieve process of the later sections.
A summary of the main results appears in Section 3. There are ten exceptional groups of order
243, each of minimal degree 18, with four distinguished quotients, each of order 81 and minimal
degree 27. Theorem 3.1 is adapted from [2, Table 1], whilst Theorems 3.3 and 3.5 provide new
details or information, identifying, in a systematic way, all preimages of the possible distinguished
quotients. Possible minimal degrees of preimages are 18, when the preimage is exceptional, 27,
when the preimage is almost exceptional, 36, or 54. The cases when the degrees are 18, 36 or 54 oc-
cur with an elementary abelian centre of order 9, but with contrasting intersection properties using
subgroups of order 27, leading to minimal representations afforded by two subgroups. These in-
tersection properties rely on delicate interplay between general forms for cubes of typical elements
and commutators, influenced by subtle alterations in the group relations (see Lemmas 2.6 and 2.7
below). By contrast, the almost exceptional preimages (Lemmas 5.1 and 5.3 below) occur when the
centre is cyclic of order 3 and the minimal representation is transitive. We prove that there are ex-
actly two nonisomorphic exceptional groups of order 243 having two nonisomorphic distinguished
quotients, and in both cases these groups are almost exceptional (see Corollary 3.7 and Remark
7.2 below). These are the only groups of order 243 that are simultaneously exceptional and almost
exceptional.
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In Table 3, comprising the final section, we document all 67 groups of order 243, their minimal
degrees and relationships to the 15 quotients of order 81. Calculations were made with the assistance
of GAP and MAGMA computer algebra software, and the group identification numbers are common
to both systems. From Table 3, one can see at a glance the positioning of the ten exceptional
groups, highlighted in red, and ten almost exceptional groups, highlighted in blue, two of which
have both properties simultaneously. Wherever these groups appear in the exposition as preimages
of distinguised quotients, reference is made to this table, either directly or by means of remarks.

2. PRELIMINARIES

Throughout let p be an odd prime. The following observations are well-known:

Lemma 2.1. Let a,b be elements of a group K such that

[a,b] = c

is central in K. Then, for any positive integer λ ,

(ab)λ = aλ bλ c−(
λ

2) , (1)

where, as usual,
(

λ

2

)
= λ (λ−1)

2 . In particular, if c has order p then

(ab)p = apbp . (2)

Lemma 2.2. Let a,b,c be elements of a group K such that the commutators [a,b] and [a,c] are
central in K. Then,

[a,bc] = [a,b][a,c] and [aα ,bβ ] = [a,b]αβ , (3)

for all integers α and β .

Lemma 2.3. If G is a non-abelian p-group of order p3 then µ(G) = p2.

The following result follows by double induction:

Lemma 2.4. Let a, b, c be elements of a group K such that the commutators [a,b] and [b,c] are
central in K. Suppose further that

[a,c] = bε ,

for some integer ε . Then, for all positive integers α and β ,

[aα ,cγ ] = bαγεd (4)

for some central element d in K.

We apply this lemma to prove the following useful technical result for controlling cubes of certain
elements in a 3-group:

Lemma 2.5. Let a, b, c be elements of a 3-group K such that the commutators [a,b] and [b,c] are
central in K. Suppose further that a3 is central in K, b3 = 1 and

[a,c] = bε

for some ε . Then, for all positive integers α β and γ ,

(aαbβ cγ)3 = (aαcγ)3 = a3αc3γ [a,b]α
2γε [b,c]αγ2ε . (5)
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Proof. By (4), we have [aα ,cγ ] = bαγεd, for some central element d. Using centrality of d and the
commutators [a,b] and [b,c], and their powers, making free use of (3), and also using the fact that
(aαbβ )3 = a3α , by (2) when p = 3, we have the following:

(aαbβ cγ)3 = aα
(
bβ cγ

)
aαbβ

(
cγaα

)
bβ cγ = aα

(
cγbβ [bβ ,cγ ]

)
aαbβ

(
aαcγ [cγ ,aα ]

)
bβ cγ

= aαcγbβ aαbβ aαcγ [aα ,cγ ]−1bβ cγ [bβ ,cγ ]

= aαcγbβ aαbβ aαcγ

(
b−αγεd−1

)
bβ cγ [bβ ,cγ ]

=
(
aαcγ

)
bβ aαbβ aα

(
cγbβ [bβ ,cγ ]

)
b−αγεcγd−1

=
(

cγaα [aα ,cγ ]
)

bβ aαbβ aα
(
bβ cγ

)
b−αγεcγd−1

= cγaα

(
bαγεd

)
bβ aαbβ aαbβ

(
cγb−αγε

)
cγd−1

= cγ

(
aαbαγε

)
bβ aαbβ aαbβ

(
b−αγεcγ [cγ ,b−αγε ]

)
cγdd−1

= cγ

(
bαγεaα [aα ,bαγε ]

)
bβ aαbβ aαbβ b−αγεc2γ [b,c]αγ2ε

= cγbαγεaα [a,b]α
2γεbβ aαbβ aαbβ b−αγεc2γ [b,c]αγ2ε

= cγbαγε
(
aαbβ

)3b−αγεc2γ [a,b]α
2γε [b,c]αγ2ε

= cγa3α

(
bαγεb−αγε

)
c2γ [a,b]α

2γε [b,c]αγ2ε = a3αc3γ [a,b]α
2γε [b,c]αγ2ε ,

verifying (5), noting that the outcome is independent of β , completing the proof of the lemma. �

This leads to the following lemma, which is used frequently below in deducing information about
minimal degrees of groups, exploring delicate interplay between cubes and commutators:

Lemma 2.6. Let a,b,c be elements of a 3-group K such that b3 = 1, a3 and c3 are central and

[a,c] = bε , [a,b] = a3σ1c3σ2 , [b,c] = a3τ1c3τ2

for some ε , σ1, σ2, τ1 and τ2. Then

(aαbβ cγ)3 = (aαcγ)3 = a3α

(
1+εγ(σ1α+τ1γ)

)
c3γ

(
1+εα(τ2γ+σ2α)

)
(6)

and
[aαbβ cγ ,b] = a3(ασ1−γτ1)c3(ασ2−γτ2) (7)

for any integers α , β and γ .

Proof. By (5), we have

(aαbβ cγ)3 = a3αc3γ [a,b]α
2γε [b,c]αγ2ε = a3αc3γa3σ1α2γεc3σ2α2γεa3τ1αγ2εc3τ2αγ2ε

= a3α

(
1+εγ(σ1α+τ1γ)

)
c3γ

(
1+εα(τ2γ+σ2α)

)
,

which verifies (6), and, by (3), we have

[aαbβ cγ ,b] = [a,b]α [c,b]γ = [a,b]α [b,c]−γ = a3ασ1c3ασ2a−3γτ1c−3γτ2

= a3(ασ1−γτ1)c3(ασ2−γτ2) ,

which verifies (7), completing the proof of the lemma. �
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The following lemma is used, in Section 5, to analyse preimages of distinguished quotients that
turn out to be neither exceptional nor almost exceptional. Cases (a) and (b) are related to mini-
mal degree 54 (Lemmas 5.10 and 5.12), whilst cases (c) and (d) are related to minimal degree 36
(Lemmas 5.6 and 5.8).

Lemma 2.7. Let G be the group given by the following presentation

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3σ1z3σ2 , [y,z] = x3τ1z3τ2 , [x,z] = y−1〉 (8)

for some σ1,σ2,τ1,τ2 ∈ Z3. Then |G|= 243 and

Z(G) = 〈x3,z3〉 . (9)

Suppose further that, in Z3,(
τ1 +σ1 6= 1 or τ2 +σ2 6= 1

)
and

(
τ1−σ1 6= 1 or σ2− τ2 6= 1

)
, (10)

and let L be the subset of G consisting of all elements of order 1 or 3. Then L is a subgroup of G
and

L = 〈x3,y,z3〉 ∼= C3×C3×C3 . (11)

Let H be a subgroup of G of order 27. Then the following hold:

(a) If σ1 =−1 and σ2 = τ1 = τ2 = 1 then Z(G)⊆ H.
(b) If σ1 = 0, σ2 = τ1 = 1 and τ2 =−1 then Z(G)⊆ H.
(c) If σ1 = τ1 = τ2 = 0 and σ2 =±1 then z3 ∈ H.
(d) If σ1 = 0, σ2 = τ2 = 1 and τ1 =−1 then x3z3 ∈ H.

Remark 2.8. The groups arising from cases (a), (b) and (d) are isomorphic to groups 243.9, 243.8
and 243.5 respectively in Table 3 below (in Section 8). The group arising from case (c) is isomorphic
to group 243.15, when σ2 = 1, and to group 243.14, when σ2 =−1, in Table 3.

Proof of Lemma 2.7. Let K be the group given by the following presentation:

K = 〈x,y,z,n | x9 = y3 = z9 = n3 = 1 , n central , [x,y] = x3σ1nσ2 , [y,z] = x3τ1nτ2 , [x,z] = y−1〉 .
(12)

Then

K =

((
〈x〉×〈n〉

)
o 〈y〉

)
o 〈z〉 ∼=

((
C9×C3

)
oC3

)
oC9 ,

which has order 36. It follows from the relations in (12) that x3 and z3 are also central in G and,
moreover,

Z(K) = 〈n,x3,z3〉 .
Put N = 〈n−1z3〉, which is a central subgroup of K of order 3, so that K/N ∼= G, whence |G|= 243,
and (9) holds, noting also that the relations of (8) imply that x3 is central.

Suppose further that (10) holds and let L be the subset of elements of G of order 1 or 3. Elements
of G have the form

w = xαyβ zγ (13)

for some α,β ,γ such that 0 ≤ α,γ ≤ 8 and 0 ≤ β ≤ 2. By Lemma 2.6 and (6), with x, y and z in
place of a, b and c respectively, and ε =−1,

w3 = x3α(1−σ1αγ−τ1γ2)z3γ(1−τ2αγ−σ2α2) , (14)
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from which it is immediate that w has order 1, 3 or 9. Clearly, if α and γ are multiples of 3 then
x3 = 1. Suppose conversely that w3 = 1. If α is a multiple of 3 then 1 = w3 = z3γ , so that γ also must
be a multiple of 3. Similarly, if γ is a multiple of 3 then α also must be a multiple of 3. Suppose
that α and γ are both not multiples of 3, so that their squares evaluate to 1 in Z3. If α = γ in Z3

then, by (14),

1 = w3 = x3α(1−σ1−τ1)z3α(1−τ2−σ2)

so that τ1 +σ1 = τ2 +σ2 = 1 in Z3, which contradicts the first part of (10). If α = −γ in Z3 then,
by (14),

1 = w3 = x3α(1+σ1−τ1)z3α(1+τ2−σ2)

so that τ1−σ1 = σ2− τ2 = 1 in Z3, which contradicts the second part of (10). This shows that
both α and γ are multiples of 3. Thus we have proved that w has order 1 or 3 if and only if both α

and γ are multiples of 3. Since x3 and z3 are central, it follows that L is a subgroup of G, which is
generated by x3, y and z3, so that (11) holds.

Now let H be a subgroup of G of order 27. Note that each of the hypotheses of (a), (b), (c) and
(d) guarantee that (10) holds, so that (11) holds in each case. If the exponent of H is 3 then H ⊆ L,
so H = L, since both subgroups have the same size, and, in particular, Z(G) ⊆ H, and each of (a),
(b), (c) and (d) holds automatically.

Suppose the exponent of H is not 3, so that H contains an element w of order 9, which we may
take to be of the form (13), where at least one of α or γ is not a multiple of 3. If α is a multiple of
3 then γ is not a multiple of 3, so that, by (14),

z3 ∈ 〈z3γ〉 = 〈w3〉 ⊆ H . (15)

If γ is a multiple of 3 then α is not a multiple of 3, so that, by (14),

x3 ∈ 〈x3α〉 = 〈w3〉 ⊆ H . (16)

It follows from general properties of groups of order 27 of exponent at most 9 that H ∩L has order
at least 9. If H ∩L ⊆ Z(G) then H ∩L = Z(G), by comparing sizes, so that Z(G) ⊆ H and again
each of (a), (b), (c) and (d) holds automatically. Hence we may suppose that H ∩L has an element
v that is not central, so, without loss of generality (replacing v by v2 if necessary), we have

v = x3δ yz3ε

for some δ , ε . But then

[w,v] = [xαyβ zγ ,x3δ yz3ε ] = [xαyβ zγ ,y] = x3(ασ1−γτ1)z3(ασ2−γτ2) ∈ H , (17)

by (7), using x, y, z in place of a, b, c respectively.
Suppose first that α is a multiple of 3, so that γ is not a multiple of 3. Note that (c) holds

automatically by (15). By (17),

x3τ1z3τ2 ∈ 〈x−3γτ1z−3γτ2〉 ⊆ H . (18)

In case (a), (18) becomes x3z3 ∈ H, and in cases (b) and (d), (18) becomes x3z−3 ∈ H, whence,
combining each case with (15), we get Z(G)⊆ H. Thus each of (a), (b), (c) and (d) holds.

Suppose next that γ is a multiple of 3, so that α is not a multiple of 3. By (17),

x3α1z3α2 ∈ 〈x3ασ1z3ασ2〉 ⊆ H . (19)
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In case (a), (19) becomes x−3z3 ∈ H, and in cases (b) and (d), (19) becomes z3 ∈ H, whence,
combined with (16), we get Z(G)⊆H. In case (c), (19) becomes z±3 ∈H. Thus, again, each of (a),
(b), (c) and (d) holds.

Suppose now that neither α nor γ is a multiple of 3, so that α2 = γ2 = 1. Consider first the case
that α = γ . From (14), we have

x3(1−σ1−τ1)z3(1−τ2−σ2) ∈ 〈x3α(1−σ1−τ1)z3α(1−τ2−σ2)〉 ⊆ H , (20)

and, from (17), we have

x3(σ1−τ1)z3(σ2−τ2) ∈ 〈x3α(σ1−τ1)z3α(σ2−τ2)〉 ⊆ H . (21)

In case (a), (20) and (21) yield x3z−3,x3 ∈ H respectively, whence Z(G)⊆ H. In case (b), (20) and
(21) yield z3,x−3z−3 ∈ H respectively, whence Z(G)⊆ H. In case (c), (21) yields z±3 ∈ H. In case
(d), (20) and (21) yield z3,x3 ∈H respectively, whence Z(G)⊆H, so, in particular, x3z3 ∈H. Thus,
again, each of (a), (b), (c) and (d) holds. Consider, secondly, the case that α = −γ . From (14), we
have

x3(1+σ1−τ1)z−3(1+τ2−σ2) ∈ 〈x3α(1+σ1−τ1)z−3α(1−τ2−σ2)〉 ⊆ H , (22)

and, from (17), we have

x3(σ1+τ1)z3(σ2+τ2) ∈ 〈x3α(σ1+τ1)z3α(σ2+τ2)〉 ⊆ H . (23)

In case (a), (22) and (23) yield x−3z−3,z−3 ∈ H respectively, whence Z(G) ⊆ H. In case (b), (22)
and (23) yield z3,x3 ∈ H respectively, whence Z(G) ⊆ H. In case (c), (23) yields z±3 ∈ H. In case
(d), (22) yields x−3z−3 ∈ H. Thus, again, each of (a), (b), (c) and (d) holds, completing the proof of
the lemma. �

The following result is probably well-known, but we give a proof for completeness:

Lemma 2.9. The socle, and hence also the centre, of a finite p-group G is not contained in any
subgroup that appears in a subgroup collection that affords a minimal faithful representation of G.

Proof. Suppose that C = {H1, . . . ,Hk} is a subgroup collection that affords a minimal representa-
tion. Suppose that socle(G), is contained in one of the subgroups, which, by reordering if necessary,
we may take to be H1. If k = 1 then H1 is not core-free, since socle(G) is nontrivial, contradicting
that C is faithful. Hence k > 1. If {H2, . . . ,Hk} has a core-free intersection then C is not minimal,
as we may delete H1, which is a contradiction. Hence N = core(H1∩ . . .∩Hk) is a nontrivial normal
subgroup of G. But N intersects socle(G) nontrivially, so that

core(H1∩H2∩ . . .∩Hk) = core(H1)∩N ⊇ socle(G)∩N 6= {1} ,

contradicting that C affords a faithful representation. Hence socle(G) is not contained in any sub-
group in C. Note that the centre of a p-group always contains the socle. This completes the proof
of the lemma. �

The following result follows from [2, Proposition 2.3] and also from results in [8]:

Lemma 2.10. If G is an exceptional group of order p5 with distinguished quotient G/N for some
distinguished normal subgroup N, then N is a central subgroup of order p, G/N has order p4 and
µ(G/N) = p3. In particular, if G is a group of order p5 and µ(G)≥ p3 then G is not exceptional.
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3. DISTINGUISHED QUOTIENTS AND THEIR EXCEPTIONAL PREIMAGES

Throughout this article, we consider the following groups of order 81, which turn out to be the
distinguished quotients of exceptional groups of order 243:

Q1 = 〈a,b,c | a9 = b3 = c3 = 1 , a central , [b,c] = a3〉 (24)

(which is group 81.14 in Table 3),

Q2 = 〈a,b,c | a9 = b3 = c3 = [a,b] = 1 , [a,c] = b , [b,c] = a−3 〉 (25)

(which is group 81.9 in Table 3),

Q3 = 〈a,b,c | a9 = b3 = [b,c] = 1 , c3 = a3 , [a,b] = a3 , [a,c] = b−1 〉 (26)

(which is group 81.10 in Table 3),

Q4 = 〈a,b,c | a9 = b3 = [b,c] = 1 , c3 = a−3 , [a,b] = a3 , [a,c] = b−1 〉 (27)

(which is group 81.8 in Table 3). The group Q1 is the group Q(p) in [2] and the group labelled
III(vii) on page 100 of Burnsides’ list [3], when p = 3. The group Q2 is the the group Q81 in [2] and
the group labelled III(xv) on page 101 of [3], when p = 3. Both Q1 and Q2 have semidirect product
decompositions corresponding to(

〈a〉×〈b〉
)
o 〈c〉 ∼=

(
C9×C3

)
oC3 .

The groups Q3 and Q4 are the groups III(xii) and III(xiii) respectively on page 101 of [3], when
p = 3. In fact, the group Q3 is isomorphic to the group Q2(3) in [2]. Though this is not obvious,
one can verify the isomorphism using the transformation x = c, y = b−1a−3, z = a−1. Similarly, the
group Q4 is isomorphic to the group Q1(3) in [2], which one can verify using the transformation
x = c, y = b−1c3, z = a−1. We explain briefly why Q3 and Q4 have order 34 = 81. To see this, put

G = 〈a,b,c | a9 = b3 = c9 = [b,c] = 1 , [a,b] = a3 , [a,c] = b−1 〉 (28)

(which is group 243.18 in Table 3). Then G has a semidirect product decomposition

G =
(
〈a〉o 〈b〉

)
o 〈c〉 ∼=

(
C9 oC3

)
oC9 ,

so that |G| = 35. It follows that Z(G) = 〈a3,c3〉, so that N1 = 〈a3c−3〉 and N2 = 〈a3c3〉 are central
subgroups of G of order 3. Clearly, Q3 ∼= G/N1 and Q4 ∼= G/N2, so that |Q3|= |Q4|= 34.

It follows from the relations in (24) that

Z(Q1) ∼= C9 , (29)

generated by the element a, and from the relations in (25), (26) and (27), that

Z(Q2) ∼= Z(Q3) ∼= Z(Q4) ∼= C3 , (30)

generated in each of these cases by the element corresponding to a3. By Theorem 1.3, a minimal
faithful representation of each of Q1, Q2, Q3 and Q4 is transitive. For each of Q1 and Q2, a minimal
representation is afforded by the core-free subgroup corresponding to 〈c〉. For each of Q3 and Q4,
a minimal representation is afforded by the core-free subgroup corresponding to 〈b〉. It follows
quickly from Proposition 1.3, and as noted in [2], that

µ(Q1) = µ(Q2) = µ(Q3) = µ(Q4) = 33 = 27 . (31)
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The following result from [2] characterises exceptional preimages of Q1 of order 243. These groups
appear in [2, Table 1] when p = 3, though listed in a different order. The presentations given here
differ slightly from [2], though easily checked to be equivalent. The form of presentations chosen
here is consistent with the shape and style of presentations given in Theorems 3.3 and 3.5, for which
we provide proofs in later sections.

Theorem 3.1. [2, Table 1] The following groups have order 243 and have Q1 defined by (24) as a
distinguished quotient:

(i) G1 = 〈x,y,z | x9 = y9 = z3 = 1 , x central , [y,z] = x3y3〉 ,
(ii) G2 = 〈x,y,z | x9 = y9 = z3 = [x,y] = 1 , [x,z] = y3 , [y,z] = x3〉 ,

(iii) G3 = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = z3 , [y,z] = x3z3〉 ,
(iv) G4 = 〈x,y,z,n | x9 = y3 = z3 = n3 = 1 , x central , n central , [y,z] = x3n〉,
(v) G5 = 〈x,y,z,n | x9 = y3 = z3 = n3 = [x,y] = 1 , n central , [x,z] = n , [y,z] = x3n〉 .

Suppose that G is an exceptional group of order p5 with distinguished quotient Q1. Then there is a
distinguished normal subgroup N, generated by a central element of G, such that G/N ∼= Q1, and
G is isomorphic to G1, G2, G3, G4 or G5. Moreover, µ(G) = 18.

Remark 3.2. The groups G1, G2, G3, G4 and G5 are groups 243.36, 243.43, 243.41, 243.35 and
243.39 respectively in Table 3.

The following result is proved in Section 6 and classifies exceptional preimages of Q2 of order
243, up to isomorphism. These are the same groups as those listed in [2, Table1], but given without
proof. Again, the presentations are slightly different to those given in [2], but easily seen to be
equivalent.

Theorem 3.3. The following two groups have order 35 = 243 and have Q2 defined by (25) as a
distinguished quotient:

(i) G6 = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z3〉 ,
(ii) G7 = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3〉 .

Suppose that G is an exceptional group of order p5 with distinguished quotient Q2. Then there is a
distinguished normal subgroup N, generated by a central element of G, such that G/N ∼= Q, and G
is isomorphic to G6 or G7. Moreover, µ(G) = 18.

Remark 3.4. The groups G6 and G7 are groups 243.17, 243.3 respectively in Table 3.

The following result is proved in Section 7 and classifies exceptional preimages of Q3 and Q4 of
order 243, up to isomorphism.

Theorem 3.5. The following groups have order 35 = 243:

(i) G̃6 = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x−3z3 , [x,z] = y−1〉 ,
(ii) G8 = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3 , [x,z] = y−1〉 ,

(iii) G9 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z3 〉 ,
(iv) G10 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z−3 〉 .

The groups G8 and G9 are exceptional with distinguished quotient Q3, and the groups G̃6, G8 and
G10 are exceptional with distinguished quotient Q4. Let G be an exceptional group of order 243. If
G has distinguished quotient Q3 then G is isomorphic to G8 or G9. If G has distinguished quotient
Q4 then G is isomorphic to G̃6, G8 or G10. In all cases, µ(G) = 18.
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Remark 3.6. The groups G̃6, G8, G9 and G10 are groups 243.17, 243.18, 243.7 and 243.4 respec-
tively in Table 3. The group G̃6 is isomorphic to the group G6 described in Theorem 3.3, under
the isomorphism induced by the mapping x 7→ z, y 7→ y, z 7→ x. The presentation chosen here for
G̃6 highlights similarities with the other presentations in the statement of Theorem 3.5, and also to
facilitate the flow of the proof in Section 7, which uses a sieve technique.

By inspection, from Theorems 3.1, 3.3 and 3.5, we deduce the following:

Corollary 3.7. There are exactly two nonisomorphic exceptional groups of order 243, namely G6

and G8, with the property that they have two nonisomorphic distinguished quotients, namely Q2 and
Q4 for G6, and Q3 and Q4 for G8.

4. EXCEPTIONAL GROUPS

In this section, we document a sequence of propositions, providing proofs that G6, G7, G8, G9

and G10 are exceptional. These results are then applied in the proofs in Sections 6 and 7 below.

Proposition 4.1. Let G6 be the group defined by the following presentation:

G6 = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z3〉 . (32)

Then |G6|= 243, µ(G6) = 18,

Z(G6) = 〈x3,z3〉 ∼= C3×C3 , (33)

and G6 is exceptional, with distinguished quotient Q2.

Proof. It follows from the relations of (32) that x3 and z3 are central in G6. By Lemma 2.7, inter-
changing the roles of x and z, with corresponding adjustments to the commutator relations, we have
that |G6|= 243 and (33) holds. In particular, µ

(
Z(G6)

)
= 6, so that, by Proposition 1.3,

µ(G6) ≥ 3µ
(
Z(G6)

)
= 18 .

Consider the following subgroups of order 27:

H = 〈x,y〉 and K = 〈y,z,x−3z3〉 .

Then
core(H ∩K) = core(H)∩ core(K) = 〈x3〉∩ 〈x−3z3〉 = {1} ,

so that {H,K} affords a faithful representation of G6 of degree 9+9 = 18. Thus, also, µ(G6)≤ 18,
so that µ(G6) = 18. Let N = 〈z3〉, so that |G6/N| = 34 = 81. By adding the relation z3 = 1, the
presentation (32) quickly reduces to the equivalent presentation (25) of Q2, so that G6/N ∼= Q2. By
(31), we have µ(G6) = 18 < 27 = µ(Q2) = µ(G6/N), so that G6 is exceptional with distinguished
quotient Q2, completing the proof. �

Proposition 4.2. Let G7 be the group defined by the following presentation:

G7 = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3〉 . (34)

Then |G7|= 243, µ(G7) = 18,

Z(G7) = 〈x3,z3〉 ∼= C3×C3 , (35)

and G7 is exceptional, with distinguished quotient Q2.
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Proof. It follows from the relations of (34) that x3 and z3 are central in G7. By Lemma 2.7, inter-
changing the roles of x and z, with corresponding adjustments to the commutator relations, we have
that |G7|= 243 and (35) holds. As in the proof of the previous proposition, µ(G7)≥ 18. Put

H = 〈y,x3z−3,xz〉 =
(
〈y〉×〈x3z−3〉

)
o 〈xz〉 ∼= (C3×C3)oC3 .

Clearly |H|= 27 and core(H) = 〈x3z−3〉. Now put

K = 〈y,x3z3,xz−1〉 .

Observe that, by Lemma 2.2 and the relations of (34),

(xz−1)3 = 1 and [y,xz−1] = [y,x][y,z]−1 = z3x3

so that

K =
(
〈y〉×〈x3z3〉

)
o 〈xz−1〉 ∼= (C3×C3)oC3 .

Clearly |K|= 27 and core(K) = 〈x3z3〉, so that

core(H ∩K) = 〈x3z−3〉∩ 〈x3z3〉 = {1} .

Hence {H,K} affords a faithful representation of G7 of degree 9+9 = 18. Thus, also, µ(G7)≤ 18,
so that µ(G7) = 18. Let N = 〈z3〉, so that |G7/N| = 34 = 81. By adding the relation z3 = 1, the
presentation (34) quickly reduces to the equivalent presentation (25) of Q2, so that G7/N ∼= Q2. By
(31) we have µ(G7) = 18 < 27 = µ(Q2) = µ(G7/N), so that G7 is exceptional with distinguished
quotient Q2, completing the proof. �

Proposition 4.3. Let G8 be the group defined by the following presentation:

G8 = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3 , [x,z] = y−1〉 . (36)

Then |G8|= 243, µ(G8) = 18,

Z(G8) = 〈x3,z3〉 ∼= C3×C3 , (37)

and G8 is exceptional, with distinguished quotients Q3 and Q4.

Proof. Observe that G8 is isomorphic to the group G given by presentation (28), discussed earlier,
identifying x,y,z with a,b,c respectively. From that discussion, |G8|= 243, (37) holds and

G8/N1 ∼= Q3 and G8/N2 ∼= Q4 , (38)

where N1 = 〈x3z−3〉 and N2 = 〈x3z3〉 are central subgroups of G8. As before, µ(G8)≥ 18. Consider
the following subgroups of G8 of order 27:

H = 〈x,y〉 and K = 〈y,z〉 .

Then core(H ∩K) = 〈x3〉 ∩ 〈z3〉 = {1} , so that {H,K} affords a faithful representation of G8 of
degree |G8 : H|+ |G8 : K|= 18. Hence µ(G8)≤ 18 so that µ(G8) = 18. But µ(Q3) = µ(Q4) = 27,
by (31), so that, by (38), G8 is exceptional with respective distinguished quotients Q3 and Q4,
completing the proof. �
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Proposition 4.4. Let G9 be the group defined by the following presentation:

G9 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z3〉 . (39)

Then |G9|= 243, µ(G9) = 18,

Z(G9) = 〈x3,z3〉 ∼= C3×C3 , (40)

and G9 is exceptional, with distinguished quotient Q3.

Proof. It follows from the relations of (39) that x3 and z3 are central in G9. By Lemma 2.7, we have
that |G9|= 243 and (40) holds. As before, µ(G9)≥ 18. Consider the following subgroups of G9:

H = 〈x,y〉 and K = 〈y,xz2〉 .

Clearly,

H = 〈x〉o 〈y〉 ∼= C9 oC3

is a subgroup of G9 of order 27, and core(H) = 〈x3〉. Observe that, in G9,

xz2 = zxy−1z = zxzy−1x3z−3 = z2xyx3z−3 ,

and

z2x = zxzy = xzyzy = xz2y−1x−3z3 ,

so that, by (6) and (7) of Lemma 2.6, with x, y, z in place of a, b and c respectively,

(xz2)3 = z3 and [xz2,y] = z3 = (xz2)3 ,

from which it follows that

K = 〈xz2〉o 〈y〉 ∼= C9 oC3

is also a subgroup of G9 of order 27, and core(K) = 〈z3〉. Hence

core(H ∩K) = 〈x3〉∩ 〈z3〉 = {1} ,

so that {H,K} affords a faithful representation of G9 of degree |G9 : H|+ |G9 : K| = 18. Hence
µ(G9) ≤ 18, so that µ(G9) = 18. Put C = 〈x−3z3〉, which is a central subgroup of G9 of order 3.
Using the mapping x 7→ a, y 7→ b, z 7→ c, and comparing relations, it follows quickly that

G9/C ∼= Q3 .

But µ(Q3) = 27, by (31), so that G9 is exceptional with distinguished subgroup C and distinguished
quotient Q3, completing the proof. �

Remark 4.5. We may examine algebraic properties to demonstrate that the group G9 in Lemma 4.4
is a new group that does not appear in the classification of exceptional groups of order 243 in [2],
or may have been inadvertently excluded. A straightforward analysis shows that G9 of Lemma
4.4 has 13 subgroups of order 3 and commutator subgroup isomorphic to C3×C3×C3. However,
in [2, Table 1], the groups named G3 and G4 have 67 and 40 subgroups of order 3, respectively, the
groups named G5, G6, G7, E3, E4 and E5 have commutator subgroup isomorphic to C3×C3, and
the groups named E1 and E2 have commutator subgroup isomorphic to C3. This shows that G9 of
Lemma 4.4 cannot be isomorphic to any of the groups listed in that table.
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Proposition 4.6. Let G10 be the group defined by the following presentation:

G10 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z−3〉 . (41)

Then |G10|= 243, µ(G10) = 18,

Z(G10) = 〈x3,z3〉 ∼= C3×C3 , (42)

and G10 is exceptional, with distinguished quotient Q4.

Proof. It follows from the relations of (41) that x3 and z3 are central in G10. By Lemma 2.7, we
have that |G10| = 243 and (42) holds. As before, µ(G10) ≥ 18. Consider the following subgroups
of G10:

H = 〈x,y〉 and K = 〈y,xz〉 .

As before, H is a subgroup of order 27, and core(H) = 〈x3〉. Observe that, in G10, by (6) and (7) of
Lemma 2.6, with x, y, z in place of a, b and c respectively,

(xz)3 = x3z−3 and [xz,y] = x−3z3 = (xz)−3 ,

from which it follows that

K = 〈xz〉o 〈y〉 ∼= C9 oC3

is also a subgroup of G10 of order 27, and core(K) = 〈x3z−3〉. Hence

core(H ∩K) = 〈x3〉∩ 〈x3z−3〉 = {1} ,

so that {H,K} affords a faithful representation of G10 of degree |G10 : H|+ |G10 : K| = 18. Hence
µ(G10) ≤ 18 so that µ(G10) = 18. Put C = 〈x3z3〉, which is a central subgroup of G10 of order 3.
Using the mapping x 7→ a, y 7→ b, z 7→ c, and comparing relations, it follows quickly that

G10/C ∼= Q4 .

But µ(Q4) = 27, by (31), so that G10 is exceptional with distinguished subgroup C and distinguished
quotient Q4, completing the proof. �

5. NONEXCEPTIONAL PREIMAGES

In this section, we document a sequence of lemmas, providing proofs that certain groups of order
243 are not exceptional. These results are then applied in the proofs in Sections 6 and 7 below.

Lemma 5.1. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y9 = z3 = 1 , [x,y] = y3k , [x,z] = y , [y,z] = x−3y3m〉 (43)

where 0≤ k,m≤ 2. Then |G|= 243, µ(G) = 27,

Z(G) = 〈y3〉 ∼= C3 , (44)

and G is not exceptional.
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Remark 5.2. The following table documents the correspondence of groups arising in Lemma 5.1 to
groups in Table 3 (in Section 8):

TABLE 1. Correspondence of groups from Lemma 5.1 with groups in Table 3.

Cases (k,m) Group ID in Table 3

(0,0), (0,1) 243.25
(0,2) 243.26

(1,0), (1,1), (2,0), (2,1) 243.28
(1,2), (2,2) 243.30

Proof of Lemma 5.1. It follows quickly from (43) that G has the semidirect product decomposition

G =
(
〈y〉o 〈x〉

)
o 〈z〉 ∼= (C9 oC9)oC3 ,

so that, in particular, |G| = 35 = 243. It follows from the relations, manipulations of commutators
and Lemma 2.2 that y3 generates the centre of G, so that (44) holds. In particular, the centre of G
is cyclic, so, by Theorem 1.2, any minimal faithful representation of G is transitive, so µ(G) is a
power of 3. But G contains the subgroup

〈y,x3〉 = 〈y〉×〈x3〉 ∼= C9×C3 ,

so that µ(G) ≥ µ(C9×C3) = 12. Hence µ(G) ≥ 27. Put H = 〈x〉. Then |H| = 9 and H has trivial
core, so H affords a faithful representation of G of degree 27. Hence also µ(G) ≤ 27, so that
µ(G) = 27. By Lemma 2.10, G is not exceptional, completing the proof of the lemma. �

Lemma 5.3. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y9 = 1 , z3 = y3ε , [x,y] = y3k , [x,z] = y , [y,z] = x−3y3m〉 (45)

where 0≤ k,m≤ 2 and ε ∈ {1,−1}. Then |G|= 243, µ(G) = 27,

Z(G) = 〈y3〉 ∼= C3 , (46)

and G is not exceptional.

Remark 5.4. The following table documents the correspondence of groups arising in Lemma 5.3 to
groups in Table 3 (in Section 8):

TABLE 2. Correspondence of groups from Lemma 5.3 with groups in Table 3.

Cases (k,m)
Group ID in Table 3

when z3 = y3
Group ID in Table 3

when z3 = y−1

(0,0), (0,1) 243.25 243.25
(0,2) 243.27 243.27

(1,0),(1,1) 243.30 243.29
(1,2) 243.29 243.28

(2,0),(2,1) 243.29 243.30
(2,2) 243.28 243.29
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Proof of Lemma 5.3. To see that G has order 243, first consider the group

H = 〈x,y,z | x9 = y9 = z9 = 1 , [x,y] = y3k , [x,z] = y, [y,z] = x−3y3m 〉 .

Clearly,

H = (〈x〉o 〈y〉)o 〈z〉 ∼= (C9 oC9)oC9 ,

which has order 36. Further, it follows from the relations that

Z(H) = 〈y3,z3〉 .

Then K = 〈y3εz−3〉 is a central subgroup of H of order 3. By comparing relations, we see that
H/K ∼= G. It follows that |G| = 35 = 243 and Z(G) = 〈y3〉, so that (46) holds. In particular, the
centre is cyclic, so, by Theorem 1.2, any minimal faithful representation of G is transitive, so µ(G)

is a power of 3. But G contains the subgroup

〈y,x3〉 = 〈y〉×〈x3〉 ∼= C9×C3 ,

so that µ(G)≥ µ(C9×C3) = 12. Hence µ(G)≥ 27. Put L= 〈x〉. Then |L|= 9 and L has trivial core,
so L affords a faithful representation of G of degree 27. Hence also µ(G)≤ 27, so that µ(G) = 27.
By Lemma 2.10, G is not exceptional, completing the proof of the lemma. �

Remark 5.5. Let G be any group of order 243 defined by (43) or (45) of the previous two lemmas,
so that µ(G) = 27. Let N = Z(G), so that N = 〈y3〉, by (44) and (46) respectively, and |G/N|= 81.
By adding the relation y3 = 1, the presentations (43) and (45) quickly reduce to the equivalent
presentation (25) of Q2, so that G/N ∼= Q2. By (31), we have

µ(G) = 27 = µ(Q2) = µ(G/N) ,

so that G is an almost exceptional group with almost distinguished quotient Q2.

Lemma 5.6. Let G be the group defined by either of the following presentations:

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = z3 , [x,z] = y−1〉 (47)

or

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = z−3 , [x,z] = y−1〉 . (48)

Then |G|= 243, µ(G) = 36,

Z(G) = 〈x3,z3〉 ∼= C3×C3 , (49)

and G is not exceptional.

Proof. We will handle both groups simultaneously, using the relation [x,y] = z±3, interpreted as (47)
or (48) alternatively. By Lemma 2.7, |G|= 243 and (49) holds. Further, by part (c) of Lemma 2.7,
any subgroup of G of order 27 contains z3. By Theorem 1.2, a minimal faithful representation of
G is afforded by two subgroups H and K, say. If both H and K have orders at least 27 then their
core intersection contains z3, contradicting faithfulness. Hence, without loss of generality |H| ≤ 9.
If |K|> 27 then K is a subgroup of G of index at most 3, so that K contains both x3 and z3, so that
K contains Z(G), contradicting Lemma 2.9. Hence |K| ≤ 27, and so µ(G) = |G : H|+ |G : K| ≥
9+27 = 36. Put

S = 〈z,y〉 ∼= C9×C3 and T = 〈x〉 ∼= C9 .
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Then |S|= 27, |T |= 9 and

core(S∩T ) = core(S)∩ core(T ) = 〈z3〉∩ 〈x3〉 = {1} ,

so that {S,T} affords a faithful permutation representation of G of degree |G : S|+ |G : T | = 36.
Thus µ(G)≤ 36. Hence, µ(G) = 36, so that G is not exceptional by Lemma 2.10. �

Remark 5.7. The groups defined by (47) and (48) of Lemma 5.6 are groups 243.15, 243.14 respec-
tively in Table 3. Consider the following group:

H = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3〉 . (50)

The group G defined by (47) is isomorphic to H, which can be verified quickly by applying the
transformation x′ = x, y′ = y, z′ = x to (47), followed by dropping dashes. Thus H also is not
exceptional, by Lemma 5.6. However, H appears as the second group labelled as G6 in [2, Table 1],
which is claimed in that paper to be exceptional. It should be noted, however, that the first group
labelled as G6 in [2, Table 1] is indeed exceptional (and of course is not isomorphic to the second
group in that table with the same label).

Lemma 5.8. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y−1 , [y,z] = x−3z3〉 . (51)

Then |G|= 243, µ(G) = 36,

Z(G) = 〈x3,z3〉 ∼= C3×C3 , (52)

and G is not exceptional.

Proof. By Lemma 2.7, |G|= 243 and (52) holds. Further, by part (d) of Lemma 2.7, any subgroup
of G of order 27 contains x3z3. By Theorem 1.2, a minimal faithful representation of G is afforded
by two subgroups H and K, say. If both H and K have orders at least 27 then their core intersection
contains x3z3, contradicting faithfulness. Hence, without loss of generality |H| ≤ 9. If |K|> 27 then
K is a subgroup of G of index at most 3, so that K contains both x3 and z3, so that K contains Z(G),
contradicting Lemma 2.9. Hence |K| ≤ 27, and so µ(G) = |G : H|+ |G : K| ≥ 9+27 = 36. Observe
that, by (6) and (7) of Lemma 2.6, putting α = 1 and γ = 2, we have

(xz2)3 = x−3z−3 = [xz2,y] .

Now put

S = 〈xz2,y〉 = 〈xz2〉o 〈y〉 ∼= C9 oC3 and T = 〈x〉 ∼= C9 .

Then |S|= 27, |T |= 9 and

core(S∩T ) = core(S)∩ core(T ) = 〈x3z3〉∩ 〈x3〉 = {1} ,

so that {S,T} affords a faithful permutation representation of G of degree |G : S|+ |G : T | = 36.
Thus µ(G)≤ 36. Hence, µ(G) = 36, so that G is not exceptional by Lemma 2.10. �

Remark 5.9. The group defined by (51) of Lemma 5.8 is group 243.5 in Table 3.
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Lemma 5.10. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y−1 , [y,z] = x3z−3〉 . (53)

Then |G|= 243, µ(G) = 54,
Z(G) = 〈x3,z3〉 ∼= C3×C3 , (54)

and G is not exceptional.

Proof. By Lemma 2.7, |G|= 243 and (54) holds. Further, by part (b) of Lemma 2.7, any subgroup
of G of order 27 contains Z(G). By Theorem 1.2, a minimal faithful representation of G is afforded
by two subgroups H and K, say. If |H| ≥ 27 then Z(G) ⊆ H, contradicting Lemma 2.9. Hence
|H| ≤ 9. Similarly |K| ≤ 9, and so µ(G) = |G : H|+ |G : K| ≥ 27+27 = 54. Now put

S = 〈x〉 ∼= C9 and T = 〈z〉 ∼= C9 .

Then |S|= |T |= 9 and

core(S∩T ) = core(S)∩ core(T ) = 〈x3〉∩ 〈z3〉 = {1} ,

so that {S,T} affords a faithful permutation representation of G of degree |G : S|+ |G : T | = 54.
Thus µ(G)≤ 54. Hence, µ(G) = 54, so that G is not exceptional by Lemma 2.10. �

Remark 5.11. The group defined by (53) of Lemma 5.10 is group 243.8 in Table 3. Consider the
following group:

H = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3〉 . (55)

The group G defined by (53) is isomorphic to H. To see this, one may apply the following transfor-
mation to (53):

x′ = x , y′ = yx−3z3 , z′ = xz−1 .

Using the relations of (53), we have (x′)9 = (y′)3 = 1. By (6) of Lemma 2.6 when α = 1 and γ =−1,
we have

(z′)3 = (xz−1)3 = z3 ,

so that also (z′)9 = 1. Further, we have

[x′,y′] = [x,y] = z3 = (z′)3 , [x′,z′] = [x,xz−1] = x−1zxz−1 = zyz−1 = yx−3z3 = y′ ,

[y′,z′] = [yx−3z3,xz−1] = [x,y]−1[y,z]−1 = z−3x−3z3 = x−3 = (x′)3 .

Dropping the dashes, we obtain the presentation (55), so that G and H are isomorphic. Thus H
also is not exceptional, by Lemma 5.6. Though the presentation of G is more complicated than the
presentation of H, it is worth comparing (53) with the presentation (51) appearing in Lemma 5.8:
the only difference is that the commutator [y,z] has been inverted, with the consequence that the
minimal degree jumps from 54 (in Lemma 5.10) to 36 (in Lemma 5.8).

Lemma 5.12. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x−3z3 , [x,z] = y−1 , [y,z] = x3z3〉 . (56)

Then |G|= 243, µ(G) = 54,
Z(G) = 〈x3,z3〉 ∼= C3×C3 , (57)

and G is not exceptional.
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Proof. By Lemma 2.7, |G|= 243 and (57) holds. Further, by part (a) of Lemma 2.7, any subgroup
of G of order 27 contains Z(G). By Theorem 1.2, a minimal faithful representation of G is afforded
by two subgroups H and K, say. If |H| ≥ 27 then Z(G) ⊆ H, contradicting Lemma 2.9. Hence
|H| ≤ 9. Similarly |K| ≤ 9, and so µ(G) = |G : H|+ |G : K| ≥ 27+27 = 54. Now put

S = 〈x〉 ∼= C9 and T = 〈z〉 ∼= C9 .

Then |S|= |T |= 9 and

core(S∩T ) = core(S)∩ core(T ) = 〈x3〉∩ 〈z3〉 = {1} ,

so that {S,T} affords a faithful permutation representation of G of degree |G : S|+ |G : T | = 54.
Thus µ(G)≤ 54. Hence, µ(G) = 54, so that G is not exceptional by Lemma 2.10. �

Remark 5.13. The group defined by (56) of Lemma 5.12 is group 243.9 in Table 3.

Lemma 5.14. Let G be the group defined by the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = [z3,x] = 1 , [x,y] = z3 , [x,z] = y , [y,z] = x−3z3〉 . (58)

Then |G|= 243, µ(G) = 36,

Z(G) = 〈x3,z3〉 ∼= C3×C3 , (59)

and G is not exceptional.

Proof. It follows from the relations of (58) that x3 and z3 are central in G7. By Lemma 2.7, inter-
changing the roles of x and z, with corresponding adjustments to the commutator relations, we have
that |G|= 243 and (59) holds. Elements w of G have the form

w = xαyβ zγ (60)

for some α , β , γ such that 0≤ α,γ ≤ 8, and 0≤ β ≤ 2. By (6) of Lemma 2.6, with x, y, z in place
of a, b and c respectively, and taking ε = 1, we have

w3 = x3α(1−γ2)z3γ(1+αγ+α2) . (61)

It follows from (61), by inspection, that w3 = 1 if and only if α and γ are multiples of 3 or α and
γ are not multiples of 3 and α = γ . Let L be the set consisting of elements of G of order 1 or 3. It
follows that L is a subgroup of G and

L = 〈xz,x3,z3〉o 〈y〉 ∼= (C3×C3×C3)oC3 .

Suppose that H is a subgroup of G of order at least 27. We will show that

x3 ∈ H . (62)

If H ⊆ L then, by comparing orders, either H = L or H is a maximal subgroup of L so contains the
commutator

[xz,y] = [x,z][y,z]−1 = z3x3z−1 = x3 ,

and (62) holds. Hence we may suppose that there exists w ∈ H of order 9, given by (60) where α

and γ are not both multiples of 3, and if α and γ are both not multiples of 3 then α =−γ . Note, in
particular, this guarantees that

α− γ 6= 0 mod 3 . (63)
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Observe that

[zγ ,x] = z−γx−1zγx = y−γ and [xα ,z] = x−αz−1xαz = yα ,

so that
[xα ,z]y

β zγ

= (yα)yβ zγ

= (yα)zγ

= yαc ,

for some c ∈ Z(G). Observe also that

[xαyβ ,x] ∈ Z(G) and [yβ zγ ,z] ∈ Z(G) .

Hence
[w,x] = [xαyβ zγ ,x] = [xαyβ ,x]z

γ

[zγ ,x] = c1y−γ ,

for some element c1 ∈ Z(G), and

[w,z] = [xαyβ zγ ,z] = [xα ,z]y
β zγ

[yβ zγ ,z] = yαc[yβ zγ ,z] = c2yα ,

for some c2 ∈ Z(G). Hence

[w,xz] = [w,z][w,x]z = c2yα(c1y−γ)z = c1c2yα(yz)−γ = c1c2yα(yx−3z3)−γ ,

from which it follows that
[w,xz] = c3yα−γ , (64)

for some c3 ∈ Z(G). Note also that

[w,yσ ]xz = [xαyβ zγ ,yσ ]xz = [x,y]ασ [z,y]γσ = c4 , (65)

for some c4 ∈ Z(G). Observe, by properties of groups of order 27, that H∩L must have order at least
9. If H∩L⊆ Z(G) then, comparing sizes, we have H∩L = Z(G), so that, in particular, x3 ∈H, and
(62) holds. Hence we may suppose that H ∩L has an element v that is not central, which therefore
has the form

v = x3δ z3εyσ (xz)τ (66)

for some δ , ε , σ , τ , such that 0 ≤ δ ,ε,σ ,τ ≤ 2 and σ and τ are not both zero. We will show that
we can guarantee the existence of v ∈H∩L described by (66) but such that σ = 1 and τ = 0, so that

v = x3δ z3εy . (67)

Suppose that τ 6= 0, By replacing v by v2 in (66), if necessary, we may suppose that

v = x3δ z3εyσ xz .

But then, by (64) and (65), we have

[w,v] = [w,x3δ z3εyσ xz] = [w,yσ xz] = [w,xz][w,yσ ]xz = c3c4yα−γ .

Thus [w,v] is an element of H ∩L, which can be written in the form of the right-hand side of (66)
where τ = 0 and σ = α− γ , noting that α− γ is nonzero by (63). Taking this element or its square
as v, there is no loss in generality in assuming that σ = 1 and (67) holds. But now, using (67) for v,
we have

[w,v] = [xαyβ zγ ,x3δ z3εy] = [x,y]α [y,z]−γ = x3γz3(α−γ) . (68)

If α is a multiple of 3 then γ is not a multiple of 3 and, by (61) and (68), we have

〈w3, [w,v]〉 = 〈z3γ ,x3γz−3γ〉 = 〈x3,z3〉 = Z(G) ,
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whence x3 ∈ H, and (62) holds. Hence we may suppose that α is not a multiple of 3. If γ is a
multiple of 3 then α is not a multiple of 3 and, by (61) and (68), we have

〈w3, [w,v]〉 = 〈x3α ,z3α〉 = Z(G) ,

whence x3 ∈ H, and (62) holds. Hence we may suppose also that γ is not a multiple of 3 so that
α =−γ . But then, by (61) and(68),

〈w3, [w,v]〉 = 〈z3γ ,x3γz3γ〉 = 〈x3,z3〉 = Z(G) ,

whence x3 ∈ H, and (62) holds. This completes the proof that (62) always holds. By Theorem 1.2,
a minimal faithful representation of G is afforded by two subgroups H and K, say. If both H and K
have orders at least 27 then their core intersection contains x3, by (62), contradicting faithfulness.
Hence, without loss of generality |H| ≤ 9. If |K| > 27 then K is a subgroup of G of index at most
3, so that K contains both x3 and z3, so that K contains Z(G), contradicting Lemma 2.9. Hence
|K| ≤ 27, and so µ(G) = |G : H|+ |G : K| ≥ 9+ 27 = 36. Observe that (xz)y = xzx3 , so we may
consider

S = 〈x3,xz,y〉 =
(
〈x3〉×〈xz〉

)
o 〈y〉 ∼= (C3×C3)oC3 and T = 〈z〉 ∼= C9 .

Then |S|= 27, |T |= 9 and core(S∩T ) = 〈x3〉∩〈z3〉= {1}, so that {S,T} affords a faithful permu-
tation representation of G of degree |G : S|+ |G : T |= 36. Thus µ(G)≤ 36. Hence, µ(G) = 36, so
that G is not exceptional by Lemma 2.10. �

Remark 5.15. The group defined by (58) of Lemma 5.14 is group 243.6 in Table 3.

6. EXCEPTIONAL PREIMAGES OF SECOND DISTINGUISHED QUOTIENT

We now prove the following theorem, stated above as Theorem 3.3, classifying exceptional
preimages of Q2 of order 243, up to isomorphism.

Theorem 6.1. The following two groups have order 35 = 243 and have Q2 defined by (25) as a
distinguished quotient:

(i) G6 = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z3〉,
(ii) G7 = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3〉.

Suppose that G is an exceptional group of order p5 with distinguished quotient Q2. Then there is a
distinguished normal subgroup N, generated by a central element of G, such that G/N ∼= Q, and G
is isomorphic to G6 or G7. Moreover, µ(G) = 18.

Proof. The first claim follows by Propositions 4.1 and 4.2. Let G be a group of order 243, which
is exceptional with distinguished normal subgroup N and distinguished quotient G/N ∼= Q2. Hence
µ(G)< µ(Q2) = 27, by (31). Since |G|= 243 and |Q|= 81, we have |N|= 3, so that N = 〈n〉 must
be generated by a central element n, say, of order 3, since the centre of a 3-group intersects each
nontrivial normal subgroup nontrivially. Let x,y,z be preimages of a,b,c respectively, with respect
to an epimorphism from G onto Q3, which must exist, with kernel N. Certainly |x| ≥ |a| = 9.
If |x| ≥ 27, then µ(G) ≥ µ(〈x〉) ≥ 27, which is a contradiction. Hence |x| = 9. Because of the
respective relations that hold in the presentation (25) of Q2, we have, in G,

y3 , z3 , [x,y] , [x,z]y−1 , [y,z]x3 ∈ N .
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Thus there exist i, j,k, `,m such that 0≤ i, j,k, `,m≤ 2 and the following equations hold in G:

y3 = ni , z3 = n j , [x,y] = nk , [x,z] = yn` , [y,z] = x−3nm .

We then get the following presentation, which we may identify with G:

G = 〈x,y,z,n | x9 = n3 = 1 , n central , y3 = ni , z3 = n j , [x,y] = nk , [x,z] = yn` , [y,z] = x−3nm〉.
(69)

By considering the transformation x′ = x, y′ = yn`, z′ = z, n′ = n, and then dropping the dashes, we
simplify one of the relations, so that `= 0, giving the following presentation of G:

G = 〈x,y,z,n | x9 = n3 = 1 , n central , y3 = ni , z3 = n j , [x,y] = nk , [x,z] = y , [y,z] = x−3nm〉 . (70)

Suppose first that i 6= 0. We will aim for a contradiction by showing that G is not exceptional.
Consider the case that j = 0, and then (70) becomes

G = 〈x,y,z,n | x9 = z3 = n3 = 1 , n central , y3 = ni , [x,y] = nk , [x,z] = y , [y,z] = x−3nm〉 . (71)

Since i is nonzero, we may delete n, add the relation y9 = 1, and express each power of n as a power
of y3, renaming the exponents, to transform (71) into the following:

G = 〈x,y,z | x9 = y9 = z3 = 1 , [x,y] = y3k , [x,z] = y , [y,z] = x−3y3m〉 (72)

for some k,m such that 0≤ k,m≤ 2. Note that (72) and (71) are equivalent, because it follows from
the relations in (72) that y3 commutes with both x and z, so that y3 is central. By Lemma 5.1, the
group defined by (72) is not exceptional. Consider now the case that j is nonzero, so that z3 = y3ε

where ε = ±1. Again, we may delete n, add the relation y9 = 1, and express each power of n as a
power of y3, renaming the exponents, to transform (71) into the following:

G = 〈x,y,z | x9 = y9 = 1 , z3 = y3ε , [x,y] = y3k , [x,z] = y , [y,z] = x−3y3m〉 (73)

for some k,m such that 0≤ k,m≤ 2. Again the presentations are equivalent, because it follows from
the relations in (73) that y3 is central. By Lemma 5.3, the group defined by (73) is not exceptional.
Both cases contradict that G is exceptional.

Hence i = 0 and (70) simplifies to the following:

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = n j , [x,y] = nk , [x,z] = y , [y,z] = x−3nm〉. (74)

Suppose now that j is nonzero. We may delete n, add the relation z9 = 1, express each nonzero
power of n as a power of z3, and rename the exponents, to transform (74) into the following:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3k , [x,z] = y , [y,z] = x−3z3m〉 (75)

for some k,m such that 0≤ k,m≤ 2. Suppose first that k = 0, yielding the following:

G = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z3m〉 , (76)

noting that centrality of z3 follows easily from these relations. If m = 0 then this becomes

G = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3〉 ,

and then G is not exceptional by Remark 5.7, which is a contradiction. Hence m 6= 0, so m = 1 or
m = 2. Suppose first that m = 2, so that (76) is equivalent to

G = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z−3〉 . (77)
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Put x′ = x, y′ = y−1x−3z−3 and z′ = z−1. After removing dashes, (77) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = [x,y] = 1 , [x,z] = y , [y,z] = x−3z3〉 . (78)

But (78) becomes the case m = 1, and also the presentation of G6 in Lemma 4.1, which is excep-
tional. Hence, for both alternatives, m = 1 or m = 2, we have G∼= G6.

Suppose, secondly, with respect to (75), that k is nonzero, so k = 1 or k = 2. First consider the
case that k = 1. If m = 0 then (75) becomes the following

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3〉 ,

which coincides with (55), so that G is not exceptional, by Remark 5.11, which is a contradiction.
Hence m is nonzero, so m = 1 or m = 2. Suppose first that m = 2, so that (75) is equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3z−3〉 . (79)

Put x′ = x, y′ = y−1x−3 and z′ = z−1. After removing dashes, (79) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3z3〉 . (80)

But (80) becomes the case m = 1, and G is not exceptional, by Lemma 5.14. Hence, both alterna-
tives, m = 1 and m = 2, lead to a contradiction.

Thus k = 2 and (75) becomes equivalent to the following:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3z3m〉 (81)

where 0≤ m≤ 2. Suppose first that m = 2, so (81) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3z−3〉 . (82)

By (6) of Lemma 2.6, with x, y, z in place of a, b and c respectively, and α = γ = ε = 1, we have

(xz)3 = z−3 .

Put x′ = x, y′ = y and z′ = xz. After removing dashes, (82) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3〉

which is not exceptional, again by Remark 5.11, which is a contradiction. Suppose, secondly, that
m = 1, so that so that (81) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3z3〉 . (83)

Again, by (6) of Lemma 2.6, with α = γ = ε = 1, we have

(xz)3 = z3 .

Now putting x′ = x, y′ = y and z′ = xz, and dropping dashes, transforms (83) back into (82), which
we saw leads to a contradiction. Hence, in fact, m = 0, so that (81) becomes equivalent to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3〉 ,

which is the presentation (34) of G7 in Lemma 4.2, which is exceptional. Hence G∼= G7.
It remains to consider the case that j = 0 in (74), which then becomes the following:

G = 〈x,y,z,n | x9 = y3 = z3 = n3 = 1 , n central , [x,y] = nk , [x,z] = y , [y,z] = x−3nm〉 . (84)

It follows from these relations that

(xz)3 = x(zx)z(xz) = x(xzy2)z(zxy) = x2y2z3xyx6n−2m = x2y3xx6n−2mnk = nk−2m .
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If k− 2m 6= 0, then the transformation x′ = x,y′ = y,z′ = xz,n′ = n, followed by dropping dashes,
converts (84) back into (74) with j 6= 0, in which case we proved that G∼= G6 or G∼= G7.

Hence we may suppose that k = 2m. If k = 0 then m = 0 and G∼= Q2×C3, so that µ(G)≥ µ(Q2),
so that G is not exceptional, which is a contradiction. Hence k = 1 or k = 2. In the latter case, we
may replace n by n−1 to transform (84), so there is no loss of generality in assuming k = 1, and then
(84) becomes

G = 〈x,y,z,n | x9 = y3 = z3 = n3 = 1 , n central , [x,y] = n , [x,z] = y , [y,z] = x−3n−1〉 . (85)

It follows from these relations that zx2 = x2zyn−2 and x2z = zx2y2n−1. Hence

(x2z)3 = x2(x2zyn−2)z(zx2y2n−1) = x4(yzx3n)z2x2y2 = x4(x2yn−2)y2x3n = n−1

Put x′ = x, y′ = y, z′ = x2z, n′ = n. After dropping dashes, (85) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = n−1 , [x,y] = n , [x,z] = y , [y,z] = x−3〉 .

Deleting n, this simplifies to

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y , [y,z] = x−3〉 ,

which is again the presentation (34) of G7 in Lemma 4.2, which is exceptional. Hence G∼= G7.
This shows that in all cases G ∼= G6 or G ∼= G7. By Lemmas 4.1 and 4.2, µ(G) = 18, and the

proof of Theorem 3.3 is complete. �

7. EXCEPTIONAL PREIMAGES OF THIRD AND FOURTH DISTINGUISHED QUOTIENTS

Theorem 7.1 below (stated above as Theorem 3.5) classifies exceptional preimages of Q3 and Q4

of order 243, up to isomorphism.

Theorem 7.1. The following groups have order 35 = 243:

(i) G̃6 = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x−3z3 , [x,z] = y−1〉 ,
(ii) G8 = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3 , [x,z] = y−1〉 ,

(iii) G9 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z3 〉 ,
(iv) G10 = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z−3 〉 .

The groups G8 and G9 are exceptional with distinguished quotient Q3, and the groups G̃6, G8 and
G10 are exceptional with distinguished quotient Q4. Let G be an exceptional group of order 243. If
G has distinguished quotient Q3 then G is isomorphic to G8 or G9. If G has distinguished quotient
Q4 then G is isomorphic to G̃6, G8 or G10. In all cases, µ(G) = 18.

Proof. By Lemmas 4.3, 4.4 and 4.6, each of the groups G8, G9 and G10 has order 243 and minimal
degree 18. That the groups G8 and G9 are exceptional with distinguished quotient Q3 follows from
Lemmas 4.3 and 4.4. That the groups G8 and G10 are exceptional with distinguished quotient Q4

follows from Lemmas 4.3 and 4.6. By Remark 3.6, the groups G̃6 and G6 are isomorphic, and
therefore, by Lemma 4.1, we have |G̃6| = 243 and µ(G̃6) = 18. It follows from (33) that x3z3 is a
central element of G̃6. Put N = 〈x3z3〉. Then

G̃6/N ∼= 〈x,y,z | x9 = y3 = [y,z] = 1 , z3 = x−3 , [x,y] = x3 , [x,z] = y−1〉 ,

which is isomorphic to Q4, under the isomorphism induced by the map x 7→ a, y 7→ b, z 7→ c. But
µ(Q4) = 27 > 18 = µ(G̃6), so that G̃6 is exceptional with distinguished quotient Q4.
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Suppose now that G is an exceptional group of order 243 with distinguished quotient Q3. Hence
there is a central subgroup N = 〈n〉 of G of order 3 such that G/N ∼= Q3 and µ(G) < µ(Q3) = 27.
Let x,y,z be preimages of a,b,c respectively, with respect to an epimorphism from G onto Q3, which
must exist, with kernel N. As before, |x| = 9. Because of the respective relations that hold in the
presentation (26) of Q3, we have, in G,

y3 , z3x−3 , [y,z] , [x,y]x−3 , [x,z]y ∈ N .

Thus there exist i, j,k, `,m ∈ Z3 such that the following equations hold in G:

y3 = ni , z3 = x3n j , [y,z] = nk , [x,y] = x3n` , [x,z] = y−1nm .

We then get the following presentation, which we may identify with G:

G = 〈x,y,z,n | x9 = n3 = 1 , n central , y3 = ni , z3 = x3n j , [y,z] = nk , [x,y] = x3n` , [x,z] = y−1nm〉.

Using the transformation x′ = x, y′ = yn−m, z′ = z, n′ = n, and then removing the dashes, we may
rewrite the presentation so that it becomes the following, where m = 0:

G = 〈x,y,z,n | x9 = n3 = 1 , n central , y3 = ni , z3 = x3n j , [y,z] = nk [x,y] = x3n` , [x,z] = y−1〉.
(86)

It follows from the relations that z3 and x3 are central in G. In particular,

x = xz3
= (xy−1)z2

= (xy−1)z(y−1n−k)z = xz(y−2)zn−k = xy−1y−2n−2kn−k = xy−3 ,

so that y3 = 1. Hence i = 0, so that (86) simplifies to become

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n j , [y,z] = nk , [x,y] = x3n` , [x,z] = y−1〉. (87)

Note that at least one of j,k, ` is nonzero, for otherwise G∼= Q3×C3 would not be exceptional.

Case (i): Suppose that k = 0. Then y and z commute, and (87) simplifies further to become

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x3n j , [x,y] = x3n` , [x,z] = y−1〉. (88)

Our aim is to show that G∼=G8. Suppose first that j is nonzero. Without loss of generality (replacing
n by n2 if necessary), we may assume that j = 1 and (88) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x3n , [x,y] = x3n` , [x,z] = y−1〉. (89)

We may introduce the relation z9 = 1, which is a consequence of the other relations, and use the
relation z3 = x3n to delete the generator n, and rewrite (89) to become

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3(z3x−3)` , [x,z] = y−1〉 , (90)

noting that these relations imply that z3 and x3 are both central. If `= 1, then (90) becomes

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = z3 , [x,z] = y−1〉 ,

which is not exceptional, by Lemma 5.6 and (47). Hence ` 6= 1. If `= 0 then (90) becomes

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3 , [x,z] = y−1〉 ,

which is (36), so that G∼=G8, and we are done. Suppose then that `= 2. Then (90) may be rewritten
to become

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x−3z−3 , [x,z] = y−1〉 . (91)
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Observe that, by (6) of Lemma 2.6, with α = γ = 1 and ε =−1, we have

(xz)3 = x−3z−3 .

Using the transformation x′ = xz, y′ = y, z′ = z, and then removing the dashes, we have that (91)
becomes (36), so that again G∼= G8, and again we are done.

Suppose now that j = 0, so that ` 6= 0. Without loss of generality (replacing n by n2 if necessary),
we may assume that `= 1 and (88) simplifies to become

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x3 , [x,y] = x3n , [x,z] = y−1〉 . (92)

Since x3 is central we have

(xz2)3 = x(xz2y2)z2(z2xy−2) = x2y2xy−2z6 = x3y2x−6n−2y−2z6 = x3n .

We may then apply the transformation

x′ = xz2 , y′ = y , z′ = z , n′ = n−1 ,

and then remove the dashes, to get the following presentation:

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x3n , [x,y] = x3 , [x,z] = y−1〉 .

But this becomes the case j = 1 and ` = 0 of (89) considered earlier, so that G ∼= G8, and we are
done, completing the analysis of Case (i).

Case (ii): Suppose that k 6= 0. Without loss of generality (replacing n with n2 if necessary), we may
assume k = 1, and then (87) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n j , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉 . (93)

Our aim is to show that G∼= G9. Suppose first that j = 1, so that (93) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉 . (94)

We may introduce the relation z9 = 1, a consequence of the other relations, and use the relation
z3 = x3n to delete the generator n, and rewrite (94) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3(x−3z3)` , [x,z] = y−1 , [y,z] = x−3z3〉 , (95)

noting that these relations imply also that x3 is central. If `= 1, then (95) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y−1 , [y,z] = x−3z3〉 ,

which is (51), so that G is not exceptional, by Lemma 5.8. Hence ` 6= 1. If `= 0 then (95) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z3〉 ,

noting that these relations imply that z3 is central, which is (39), so that G ∼= G9, and we are done.
Suppose then that `= 2. Then (95) may be rewritten to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x−3z−3 , [x,z] = y−1 , [y,z] = x−3z3〉 . (96)

Observe that, by (6) of Lemma 2.6, with α = γ = 1 and ε =−1, we have

(xz)3 = z3 .

Using the transformation x′ = xz, y′ = yx−3z−3, z′ = x−1, and then removing the dashes, noting that
the centrality relations become superfluous, we have that (96) becomes (39), so that again G∼= G9,
and we are done.
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Suppose now that j = 2, so that (93) can be rewritten as

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n−1 , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉. (97)

We may introduce the relation z9 = 1, a consequence of the other relations, and use the relation
z3 = x3n−1 to delete the generator n, and rewrite (97) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3(x3z−3)` , [x,z] = y−1 , [y,z] = x3z−3〉 . (98)

Consider the case that `= 0. Then (98) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3 , [x,z] = y−1 , [y,z] = x3z−3〉 . (99)

Observe that, by (6) of Lemma 2.6, with α = γ = ε =−1, we have

(x−1z−1)3 = x3z3 .

Using the transformation x′ = x−1z−1, y′ = yx−3z−3, z′ = z−1, and then removing dashes, (99) be-
comes (51), so that G is not exceptional, by Lemma 5.8. Hence ` 6= 0. Consider the case that `= 1.
Then (98) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x−3z−3 , [x,z] = y−1 , [y,z] = x3z−3〉 . (100)

Observe that, by (6) of Lemma 2.6, with α = ε =−1 and γ = 1, we have

(x−1z)3 = x3z3 .

Using the transformation x′ = x−1z, y′ = yx−3z−3, z′ = z−1, and then removing dashes, (100) be-
comes (51), so that G is not exceptional, by Lemma 5.8. Hence ` 6= 1, and so ` = 2. We may now
rewrite (98) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y−1 , [y,z] = x3z−3〉 ,

which is (53), so that G is not exceptional, by Lemma 5.10. This shows that j 6= 2.
Suppose finally that j = 0, so that (93) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3 , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉. (101)

Suppose first that `= 0, so that (101) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3 , [y,z] = n , [x,y] = x3 , [x,z] = y−1〉 . (102)

Since x3 = z3 and n are central we have

(xz)3 = x(xzy)z(zxy−1) = x2(yzn−1)z2xy−1 = x2(yxy−1)n−1z3 = x2(xx6)n−1z3 = x3n−1 .

We may then apply the following transformation to (102):

x′ = xz , y′ = yn , z′ = z , n′ = n , (103)

and then remove the dashes, so that (101) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n , [y,z] = n , [x,y] = x3 , [x,z] = y−1〉 .

But this is the case ` = 0 of (94) considered earlier (when j = 1), so that G ∼= G9 is exceptional.
Suppose next that `= 1, so that (101) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3 , [y,z] = n , [x,y] = x3n , [x,z] = y−1〉. (104)
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Now we have
(xz)3 = x2(yxy−1)n−1z3 = x2(xx6n2)n−1z3 = nz3 = x3n ,

and again apply the transformation (103), and then remove the dashes, so that (104) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3n−1 , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉.

But this becomes the case `= 2 of (97) considered earlier (when j = 2), where G is not exceptional,
which is impossible. Finally, suppose that `= 2, so that (101) may be rewritten as

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x3 , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉. (105)

Now we have
(xz)3 = x2(yxy−1)n−1z3 = x2(xx6n−2)n−1z3 = z3 = x3 ,

and again apply the transformation (103), and then remove the dashes, so that (105) becomes (104),
which was seen earlier not be exceptional. Thus ` = 2 also does not arise, completing the analysis
of Case (ii).

Suppose now that G is an exceptional group of order 243 with distinguished quotient Q4. As
before, but making an adjustment to the one relation that differs between Q3 and Q4, we may
assume that there exist j,k, ` ∈ Z3 such that

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n j , [y,z] = nk , [x,y] = x3n` , [x,z] = y−1〉.
(106)

Again, at least one of j,k, ` is nonzero, for otherwise G∼= Q4×C3 would not be exceptional.

Case (iii): Suppose that k = 0. Then (106) simplifies to become

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x−3n j , [x,y] = x3n` , [x,z] = y−1〉. (107)

We show that G is isomorphic to G̃6 or G8. Suppose first that j is nonzero. Without loss of generality
(replacing n by n2 if necessary), we may assume that j = 1 and (107) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x−3n , [x,y] = x3n` , [x,z] = y−1〉. (108)

We may introduce the relation z9 = 1 and use the relation z3 = x−3n to delete n, and rewrite (108)
to become

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3(z3x3)` , [x,z] = y−1〉 , (109)

noting that these relations imply z3 and x3 are central. Suppose first that `= 2. Then (109) may be
rewritten to become

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = z−3 , [x,z] = y−1〉 ,

which is (48), so that G is not exceptional by Lemma 5.6, which is impossible. Hence ` 6= 2. If
`= 1, then (109) becomes

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x−3z3 , [x,z] = y−1〉 ,

which is the presentation for G̃6, which proves that G∼= G̃6. If `= 0 then (109) becomes

G = 〈x,y,z | x9 = y3 = z9 = [y,z] = 1 , [x,y] = x3 , [x,z] = y−1〉 ,

which is (36), so that G∼= G8.
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Suppose now that j = 0, so that ` 6= 0. Without loss of generality (replacing n by n2 if necessary),
we may assume that `= 1 and (107) simplifies to become

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x−3 , [x,y] = x3n , [x,z] = y−1〉. (110)

We have
(xz)3 = x(xzy)z(zxy−1) = x2yxy−1z3 = x3x6n2z3 = x−3n−1 ,

and may apply the transformation x′ = xz , y′ = y−1 , z′ = z−1 , n′ = n−1 , and then remove the
dashes, to get the following presentation:

G = 〈x,y,z,n | x9 = y3 = n3 = [y,z] = 1 , n central , z3 = x−3n , [x,y] = x3 , [x,z] = y−1〉 .

But this becomes the case j = 1 and ` = 0 of (108) considered earlier, so that G ∼= G8, and we are
done, completing the analysis of Case (iii).

Case (iv): Suppose that k 6= 0.

Without loss of generality (replacing n with n2 if necessary), we may assume k = 1, and then (106)
becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n j , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉. (111)

We show that G∼= G10. Suppose first that j = 1, so that (111) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉. (112)

We may introduce the relation z9 = 1 and use the relation z3 = x−3n to delete the generator n, and
rewrite (112) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3(x3z3)` , [x,z] = y−1 , [y,z] = x3z3〉 . (113)

If `= 1 then (113) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x−3z3 , [x,z] = y−1 , [y,z] = x3z3〉 , (114)

which is not exceptional, by Lemma 5.12. If `= 0 then (113) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x3z3〉 , (115)

noting that these relations imply the centrality of z3. By (6) of Lemma 2.6, with α = ε = −1 and
γ = 1, we have (x−1z)3 = x−3z−3 . We may now apply the transformation x′ = z , y′ = yx−3z3 , z′ =
x−1z to (115), drop the dashes, noting that the centrality relations are all equivalent, in the presence
of the other relations, and obtain the following presentation

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y−1 , [y,z] = x−3z3〉 .

But this is (51), so that G is not exceptional, by Lemma 5.8. If `= 2 then (113) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y−1 , [y,z] = x3z3〉 . (116)

Applying the tranformation x′ = x , y′ = yx−3z−3 , z′ = z−1 to (116), and removing dashes, yields
(58), so that G is not exceptional, by Lemma 5.14. This shows that the case j = 1 does not occur.

Suppose now that j = 2, so that (111) can be rewritten as

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n−1 , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉.
(117)
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We may introduce the relation z9 = 1, use the relation z3 = x−3n−1 to delete the generator n, and
rewrite (117) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x3(x−3z−3)` , [x,z] = y−1 , [y,z] = x−3z−3〉 . (118)

If `= 0 then (118) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , [x,y] = x3 , [x,z] = y−1 , [y,z] = x−3z−3〉 ,

noting that these relations imply the centrality of z3, which is (41), so that G ∼= G10. Consider the
case that `= 1. Then (118) becomes

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z−3 , [x,z] = y−1 , [y,z] = x−3z−3〉 . (119)

Applying the transformation x′ = z , y′ = y−1x−3z−3 , z′ = xz−1 to (119), and removing dashes,
yields (51), so that G is not exceptional, by Lemma 5.8. Hence `= 1 does not occur. Now consider
the case `= 2. We may now rewrite (118) to become

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = x−3z3 , [x,z] = y−1 , [y,z] = x−3z−3〉 . (120)

Applying the transformation x′= x−1z , y′= y−1 , z′= x to (120), and removing dashes, yields (51),
so that again G is not exceptional, by Lemma 5.8. Hence `= 2 also does not occur.

Suppose finally then that j = 0, so that (111) can be rewritten as

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3 , [y,z] = n , [x,y] = x3n` , [x,z] = y−1〉. (121)

Suppose first that `= 0, so that (121) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3 , [y,z] = n , [x,y] = x3 , [x,z] = y−1〉. (122)

Since x3 = z−3 and n are central we have

(xz)3 = x(xzy)z(zxy−1) = x2(yzn−1)z2xy−1 = x2(yxy−1)n−1z3 = x2(xx6)n−1z3 = x−3n−1 .

Applying the transformation

x′ = xz , y′ = y−1 , z′ = z−1 , n′ = n , (123)

to (122), and removing dashes, yields

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n−1 , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉.

But this is the case ` = 2 of (117) considered earlier (when j = 2), so that G is not exceptional,
which is impossible. Suppose next that `= 1, so that (121) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3 , [y,z] = n , [x,y] = x3n , [x,z] = y−1〉. (124)

Now we have

(xz)3 = x2(yxy−1)n−1z3 = x2(xx6n2)n−1z3 = nz3 = x−3n ,

and again apply the transformation (123), and then remove the dashes, so that (124) becomes

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3n , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉.

But this becomes the case `= 2 of (112) considered earlier (when j = 1), where G is not exceptional,
which is impossible. Finally, suppose that `= 2, so that (121) may be rewritten as

G = 〈x,y,z,n | x9 = y3 = n3 = 1 , n central , z3 = x−3 , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉 . (125)
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Observe that, using the relations of (125) other that z3 = x−3, we have

(x−1z)3 = x−1(zx−1)z(x−1z) = x−1(x−1zxy−1x−1)z(zyx−1) = x−2zxy−1x−1z2yx−1

= x−2z(xy−1x−1)z2yx−1 = x−2z(y−1x−3n)z2yx−1 = x−2(zy−1)z2yx−1x−3n

= x−2(y−1zn)z2yx−1x−3n = x−2z3x−1x−3n2 = x3z3n−1 .

Thus, in the presence of these relations, it follows that the following two relations are equivalent:

z3 = x−3 and (x−1z)3 = n−1 .

Hence, we may rewrite the presentation (125) for G as follows:

G = 〈x,y,z,n |x9 = y3 = n3 = 1 , n central , (x−1z)3 = n−1 , [y,z] = n , [x,y] = x3n−1 , [x,z] = y−1〉.
(126)

We may now delete n and the relation (x−1z)3 = n−1, add the relation z9 = 1 and rewrite the other
relations to get the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = 1 , (x−1z)3 central , [y,z] = (x−1z)−3 , [x,y] = x3(x−1z)3 , [x,z] = y−1〉.
(127)

We may now apply the transformation x′ = x , y′ = y , z′ = x−1z to (127), drop the dashes, and
obtain the following presentation:

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [y,z] = x3 , [x,y] = x3z3 , [x,z] = y−1〉 . (128)

By (6) of Lemma 2.6, with α = γ = 1 and ε = −1, we have (xz)3 = x−3 . We may now apply
the transformation x′ = z , y′ = yx3 , z′ = xz to (128), drop the dashes, noting that centrality of
(z′)3 = x−3 is equivalent to centrality of z3, in the presence of the other relations, and obtain the
following presentation

G = 〈x,y,z | x9 = y3 = z9 = 1 , z3 central , [x,y] = z3 , [x,z] = y , [y,z] = x−3〉 .

But this is presentation (55), so that G is not exceptional, again by Remark 5.11, which is impossible.
Hence, in fact, j = 0 does not arise, completing the analysis of Case (iv). This completes the proof
of the theorem. �

Remark 7.2. We have observed (Corollary 3.7) that G6 ∼= G̃6 and G8 are the only exceptional groups
of order 243, up to isomorphism, each with two nonisomorphic distinguished quotients. Each of
these has a further unique property of being the only groups of order 243 that are simultaneously
exceptional and almost exceptional. To see the latter claim, it follows from the presentations (32)
and (36) for G6 and G8 respectively that they both have the following group of order 81 as a homo-
morphic image:

H = 〈a,b,c | a9 = b3 = c3 = 1 , b central , [a,c] = b〉 ∼= (C9×C3)oC3 .

The centre of H is elementary abelian of order 9, and it follows (using, say, Proposition 1.3) that

µ(H) = µ(G6) = µ(G8) = 18 ,

whence G6 and G8 are almost exceptional with almost distinguished quotient H. The group H arises
in Table 3 below as group 81.3, which is an image of groups 243.13, 243.17 and 243.18.
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Remark 7.3. Hitherto, the almost exceptional groups mentioned in Remarks 5.5 and 7.2 above have
all had minimal degree 18. There is one more almost exceptional group of order 243, namely the
group

W = C3× (C3 oC3) ,

which is group 243.51 in Table 3, with minimal degree 12. That W is almost exceptional follows
because W is the direct product of C3, of degree 3, with a wreath product, of degree 9, which is well-
known to be almost exceptional, and a special case of a large class of examples of almost exceptional
groups, studied in [1], arising as sections of wreath products. The almost distinguished quotient of
W is isomorphic to C3×

(
(C3×C3)oC3

)
, which arises as group 81.12 in Table 3, highlighted in

blue, where it occurs as an image of group 243.51.

8. TABLE 3: GROUPS OF ORDER 243 AND QUOTIENTS OF ORDER 81

A : G is abelian

E : G is exceptional, i.e. ∃ N /G such that µ(G)< µ(G/N)

A E : G is almost exceptional, i.e. ∃ nontrivial N /G such that µ(G) = µ(G/N)

Structural Description ID µ(G) Quotients of Order 81 µ(Q) E A E

C243 243. 1 243 A 81 × ×

(C9×C3)o1 C9 243. 2 27 81.2∼=C9×C9

81.3∼= (C3×C3)oC9

81.4∼=C9 oC9

18
18
18

× ×

(C3× ((C3×C3)oC3))o1 C3 243. 3 18 81.7∼= (C3×C3×C3)o1 C3

81.9∼= (C9×C3)o3 C3

9
27

X ×

(C3× (C9 oC3))o1 C3 243. 4 18 81.7∼= (C3×C3×C3)o1 C3

81.8∼= (C9×C3)o2 C3

9
27

X ×

(C3 ×C3).((C3 ×C3) o1 C3) =

(C3×C3×C3).3(C3×C3)

243. 5 36 81.7∼= (C3×C3×C3)o1 C3

81.8∼= (C9×C3)o2 C3

81.10 ∼= C3.5((C3×C3)oC3) = (C3×
C3).4(C3×C3)

9
27
27

× ×

((C3×C3)oC9)o3 C3 243. 6 36 81.7∼= (C3×C3×C3)o1 C3

81.8∼= (C9×C3)o2 C3

81.9∼= (C9×C3)o3 C3

9
27
27

× ×

(C3 ×C3).28((C3 ×C3)oC3) =

(C3×C3×C3).5(C3×C3)

243. 7 18 81.7∼= (C3×C3×C3)o1 C3

81.10 ∼= C3.5((C3×C3)oC3) = (C3×
C3).4(C3×C3)

9
27

X ×

(C3 ×C3).29((C3 ×C3)oC3) =

(C3×C3×C3).6(C3×C3)

243. 8 54 81.8∼= (C9×C3)o2 C3

81.9∼= (C9×C3)o3 C3

81.10 ∼= C3.5((C3×C3)oC3) = (C3×
C3).4(C3×C3)

27
27
27

× ×

Continued on next page
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Table 3 – continued from previous page

Structural Description ID µ(G) Quotients of Order 81 µ(Q) E A E

(C3 ×C3).30((C3 ×C3)oC3) =

(C3×C3×C3).7(C3×C3)

243. 9 54 81.8∼= (C9×C3)o2 C3 27 × ×

C27×C9 243.10 36 A 30
18

× ×

C27 o2 C9 243.11 36 81.2∼=C9×C9

81.6∼=C27 oC3

18
27

× ×

(C27×C3)o1 C3 243.12 36 81.3∼= (C3×C3)oC9

81.5∼=C27×C3

81.6∼=C27 oC3

18
30
27

× ×

(C3×C3×C3)o1 C9 243.13 18 81.3∼= (C3×C3)oC9

81.7∼= (C3×C3×C3)o1 C3

18
9

× X

(C9×C3)o2 C9 243.14 36 81.3∼= (C3×C3)oC9

81.8∼= (C9×C3)o2 C3

18
27

× ×

(C9×C3)o3 C9 243.15 36 81.3∼= (C3×C3)oC9

81.9∼= (C9×C3)o3 C3

81.10 ∼= C3.5((C3×C3)oC3) = (C3×
C3).4(C3×C3)

18
27
27

× ×

(C27 oC3)o1 C3 243.16 27 81.3∼= (C3×C3)oC9 18 × ×

((C3×C3)oC3)oC9 243.17 18 81.3∼= (C3×C3)oC9

81.7∼= (C3×C3×C3)o1 C3

81.8∼= (C9×C3)o2 C3

81.9∼= (C9×C3)o3 C3

18
9
27
27

X X

(C9 oC3)oC9 243.18 18 81.3∼= (C3×C3)oC9

81.7∼= (C3×C3×C3)o1 C3

81.8∼= (C9×C3)o2 C3

81.10 ∼= C3.5((C3×C3)oC3) = (C3×
C3).4(C3×C3)

18
9
27
27

X X

(C27 oC3)o2 C3 243.19 81 81.3∼= (C3×C3)oC9 18 × ×

(C27 oC3)o3 C3 243.20 81 81.3∼= (C3×C3)oC9 18 × ×

C9 oC27 243.21 36 81.4∼=C9 oC9

81.5∼=C27×C3

81.6∼=C27 oC3

18
30
27

× ×

C27 oC9 243.22 27 81.4∼=C9 oC9 18 × ×

C81×C3 243.23 84 A 30
81

× ×

Continued on next page
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Table 3 – continued from previous page

Structural Description ID µ(G) Quotients of Order 81 µ(Q) E A E

C81 oC3 243.24 81 81.5∼=C27×C3 30 × ×

(C9×C9)o1 C3 243.25 27 81.9∼= (C9×C3)o3 C3 27 × X

(C9×C9)o2 C3 243.26 27 81.9∼= (C9×C3)o3 C3 27 × X

(C9×C9).2C3 243.27 27 81.9∼= (C9×C3)o3 C3 27 × X

(C9 oC9)o1 C3 243.28 27 81.9∼= (C9×C3)o3 C3 27 × X

(C9×C3).3(C3×C3) 243.29 27 81.9∼= (C9×C3)o3 C3 27 × X

(C9 oC9)o2 C3 243.30 27 81.9∼= (C9×C3)o3 C3 27 × X

C9×C9×C3 243.31 21 A 15
18

× ×

C3× ((C3×C3)oC9) 243.32 21 81.3∼= (C3×C3)oC9

81.11∼=C9×C3×C3

81.12∼=C3× ((C3×C3)oC3)

81.13∼=C3× (C9 oC3)

18
15
12
12

× ×

C3× (C9 oC9) 243.33 21 81.4∼=C9 oC9

81.11∼=C9×C3×C3

81.13∼=C3× (C9 oC3)

18
15
12

× ×

(C9×C9)o3 C3 243.34 36 81.11∼=C9×C3×C3

81.14∼= (C9×C3)o5 C3

15
27

× ×

C9× ((C3×C3)oC3) 243.35 18 81.11∼=C9×C3×C3

81.12∼=C3× ((C3×C3)oC3)

81.14∼= (C9×C3)o5 C3

15
12
27

X ×

C9× (C9 oC3) 243.36 18 81.11∼=C9×C3×C3

81.13∼=C3× (C9 oC3)

81.14∼= (C9×C3)o5 C3

15
12
27

X ×

(C3× ((C3×C3)oC3))o2 C3 243.37 18 81.12∼=C3× ((C3×C3)oC3) 12 × ×

(C9×C3)o1 (C3×C3) 243.38 18 81.12∼=C3× ((C3×C3)oC3)

81.13∼=C3× (C9 oC3)

12
12

× ×

C9 o ((C3×C3)oC3) 243.39 18 81.12∼=C3× ((C3×C3)oC3)

81.13∼=C3× (C9 oC3)

81.14∼= (C9×C3)o5 C3

12
12
27

X ×

(C3× (C9 oC3))o4 C3 243.40 36 81.12∼=C3× ((C3×C3)oC3)

81.14∼= (C9×C3)o5 C3

12
27

× ×

(C9 oC9)o3 C3 243.41 18 81.13∼=C3× (C9 oC3)

81.14∼= (C9×C3)o5 C3

12
27

X ×

Continued on next page
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Table 3 – continued from previous page

Structural Description ID µ(G) Quotients of Order 81 µ(Q) E A E

(C9 oC9)o4 C3 243.42 36 81.14∼= (C9×C3)o5 C3 27 × ×

(C9 oC9)o5 C3 243.43 18 81.13∼=C3× (C9 oC3)

81.14∼= (C9×C3)o5 C3

12
27

X ×

(C9 oC9)o6 C3 243.44 54 81.14∼= (C9×C3)o5 C3 27 × ×

(C9 oC9)o7 C3 243.45 54 81.14∼= (C9×C3)o5 C3 27 × ×

(C9×C9)o8 C3 243.46 36 81.13∼=C3× (C9 oC3)

81.14∼= (C9×C3)o5 C3

12
27

× ×

(C9×C9)o9 C3 243.47 18 81.13∼=C3× (C9 oC3) 12 × ×

C27×C3×C3 243.48 33 A 15
30

× ×

C3× (C27 oC3) 243.49 30 81.6∼=C27 oC3

81.11∼=C9×C3×C3

27
15

× ×

(C27×C3)o5 C3 243.50 81 81.11∼=C9×C3×C3 15 × ×

C3× ((C3×C3×C3)oC3) 243.51 12 81.7∼= (C3×C3×C3)o1 C3

81.12∼=C3× ((C3×C3)oC3)

9
12

× X

C3× ((C9×C3)o2 C3) 243.52 30 81.8∼= (C9×C3)o2 C3

81.12∼=C3× ((C3×C3)oC3)

27
12

× ×

C3× ((C9×C3)o3 C3) 243.53 30 81.9∼= (C9×C3)o3 C3

81.12∼=C3× ((C3×C3)oC3)

27
12

× ×

C3× (C3.5(C3×C3)oC3)) 243.54 30 81.10∼=C3.5((C3×C3)oC3)

81.12∼=C3× ((C3×C3)oC3)

27
12

× ×

((C9×C3)o2 C3)o3 C3 243.55 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

((C3×C3×C3)o1 C3))o1 C3 243.56 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

((C9×C3)o2 C3)o1 C3 243.57 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

(C3× ((C3×C3)oC3))o6 C3 243.58 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

(C3.((C3×C3)oC3)))o4 C3 243.59 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

((C9×C3)o2 C3)o2 C3 243.60 27 81.12∼=C3× ((C3×C3)oC3) 12 × ×

C9×C3×C3×C3 243.61 18 A 12
15

× ×

C3×C3× ((C3×C3)oC3) 243.62 15 81.12∼=C3× ((C3×C3)oC3)

81.15∼=C3×C3×C3×C3

12
12

× ×

Continued on next page
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Table 3 – continued from previous page

Structural Description ID µ(G) Quotients of Order 81 µ(Q) E A E

C3×C3× (C9 oC3) 243.63 15 81.13∼=C3× (C9 oC3)

81.15∼=C3×C3×C3×C3

12
12

× ×

C3× ((C9×C3)o5 C3) 243.64 30 81.14∼= (C9×C3)o5 C3

81.15∼=C3×C3×C3×C3

27
12

× ×

(C3× ((C3×C3)oC3))o7 C3 243.65 27 81.15∼=C3×C3×C3×C3 12 × ×

(C3× (C9 oC3))o11 C3 243.66 27 81.15∼=C3×C3×C3×C3 12 × ×

C3×C3×C3×C3×C3 243.67 15 A 12 × ×

REFERENCES

[1] I. Alotaibi and D. Easdown. Minimal degrees of groups associated with some wreath products. Preprint, School of
Mathematics and Statistics, University of Sydney, August 2023.

[2] J.R. Britnell, N. Saunders and T. Skyner. On exceptional groups of order p5. J. Pure App. Algebra, 221 (2017),
2647–2665.

[3] W. Burnside. Theory of groups of finite order. Cambridge University Press, 1911.
[4] R. Chamberlain. Minimal exceptional p-groups. Bull. Aust. Math. Soc. 98 (2018), 434–438.
[5] D. Easdown and C.E.. Praeger. On minimal permutation representations of finite groups. Bull. Aust. Math. Soc., 38

(1988), 207–220.
[6] D. Johnson. Minimal permutation representations of finite groups. Am. J. Math., 93 (1971), 857–866.
[7] G.I. Karpilovsky. The least degree of a faithful representation of abelian groups. Vestni Khar’kov Gos. Univ., 53

(1970), 107-115.
[8] S. Lemieux. Finite exceptional p-groups of small order. Comm. Algebra, 35 (2007), 1890–1894.
[9] P. Neumann. Some algorithms for computing with finite permutation groups. In E. Robertson and C. Campbell (Eds.),

Groups (St Andrews 1985), London Math. Soc. Lecture Note Ser. 121. Cambridge University Press, Cambridge
(1987), 59–92.

[10] D. Wright. Degrees of minimal embeddings for some direct products. Am. J. Math., 97 (1976), 897–903.

IBRAHIM ALOTAIBI, SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006, AUS-
TRALIA

E-mail address: ialo9634@uni.sydney.edu.au, ialotaibi@tvtc.gov.sa

DAVID EASDOWN, SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006, AUS-
TRALIA

E-mail address: david.easdown@sydney.edu.au


