EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS TO THE
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ABSTRACT. In this paper we are concerned with the stochastic Landau-Lifshitz-Slonczewski equation
(LLS) that describes magnetisation of an inifnite nanowire evolving under current driven spin torque.
The current brings into the system a multiplicative gradient noise that appears as a transport term in the
equation. We prove the existence, uniqueness and regularity of pathwise solutions to the equation.
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1. INTRODUCTION

In this paper we are concerned with the existence, uniqueness and regularity of solutions to the sto-
chastic Landau-Lifshitz-Slonczewski equation (LLS) equation considered on real line, see (2). To the
best of our knowledge , this is the first result on a system of stochastic PDEs that combines varia-
tional structure with the transport noise in the presence of geometric constraints, more precisely, with
solutions taking values in a sphere.

Let us recall briefly the physical motivation for LLS equation, see [1, 10] for more details. A deter-
ministic version of equation (2) was introduced in [16] in order to study the magnetisation dynamics of
ferromagnetic elements in presence of electric current. If the ferromagnetic element is small enough
(100 nanometers) then the interaction between the electric current and the magnetisation results in
the current-induced magnetisation switching and spin wave emission. It is expected that good under-
standing of those effects will allow us to develop new types of current-controlled magnetic memories
and current controlled magnetic oscillators.

Mathematical theory of the deterministic LLS equation is at an early stage. The case, when the fer-
romagnetic material fills in a 3-dimensional domain is studied in an important paper [10], where the
existence and uniqueness of solutions is proved and their regularity is studied. A physically important
case of a nanowire is a subject of ongoing intense research in physics. Mathematical analysis of dy-
namics of travelling domain walls and their stability was only recently initiated in [11, 13, 14].

The necessity to include random fluctuations (such as thermal noise) into the dynamics of magnetisa-
tion has been conjectured by physicists for many years (see for example [1, 2, 12]. The existence and
uniqueness of solutions for the Landau-Lifshitz equation without the Slonczewski term but including
random fluctuations was intensely studied in recent years [3, 7, 8].

Let us first recall briefly the formulation of the deterministic LLS equation. We will identify an
infinite nanowire made of ferromagnetic material with a real line R and will denote by m(z,x) € R?
the magnetisation vector at a time ¢ > 0 and at a point x € R. For temperatures below the Curie point
the length |m(z,x)| of this vector is constant in (,x) [2], hence can be assumed equal to 1:

m:[0,00) x R — S,
The LLS equation proposed in [16] describes the dynamics of the magnetisation vector subject to the
spin-velocity field (electric current):

v:(0,00) x R = R.
It takes the form
(D om = —m X dym — om X (m X i) — vdym~+ ym x (vdym) ,
with & > 0 and v € R. The term vdym is known as the adiabatic term and the non-adiabatic term is
given by ym x (vd,m). For more details on the form of this equation see [10].
We will consider a version of equation (1) with the spin-velocity field perturbed by noise:
(2)  Idm=—mXdum—amx (mx dym)—dmo (vdt+dW )+ (m x ydym) o (vdt +dW),

where W is an infinite-dimensional Wiener process taking values in an appropriate function space.
We emphasise, that noise arises in equation (2) in a way very different way from the way it appears in
stochastic Landau-Lifshitz equations studied in [3, 4, 7, 8]. While in the aforementioned papers it is
a thermal noise arising inside the magnetic domain and has bounded diffusion coefficient, in (2) it is
a transport noise brought into the system by the electric current, and has the gradient of the solution
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as a diffusion coefficient. Therefore, analysis of this equation requires more delicate arguments. We
will show that for every initial condition mg with

3) Imo(x)] = 1, /R|axmo\2dx<oo,

there exists a unique pathwise and strong in PDEs sense solution to (2). We will use the observation
made in [10] that under the constraint |m(¢,x)| = 1 for all (¢,x) € (0,00) x R, we have

dym = —m x (m x dym) ,
hence equation (2) can be written in the form
4) dm = —m x (dpm~+ am X dym) dt +m x (m x dym+ ydm) o (vdt + dW),

with m(0) = my satisfying (3). We will assume that W is a Wiener process taking values in H?(R) and
will prove the existence and uniqueness of pathwise solutions to this equation, see Theorem 2.4 for
details. Due to the presence of gradient noise of multiplicative type, we can prove this theorem only for
the Wiener process with the covariance small enough, see Theorem 2.4 for precise formulation. Let us
comment on the proof of this theorem. We start with the formulation of a semidiscrete approximation
scheme that allows to construction approximating solutions that satisfy the sphere constraint. The
same approach was used in [10] to study the deterministic equation (1). Then we obtain a set of
uniform estimates for the approximate solutions. This step requires using quadratic interpolations
and is technically much more complicated than in the case of the stochastic Landau-Lifshitz equation
without transport. Next, we follow compactness type argument to prove the existence of a limiting
point that is a strong in PDEs sense solution to stochastic LLS equation. Then we show uniqueness of
pathwise solutions and use the Yamada-Watanabe theorem in the same way as in [3].

2. SEMI-DISCRETE SCHEME AND THE MAIN RESULT
2.1. Notation.
2.1.1. Function spaces. Let p,,(x) = (1 +x*)~" for w > 0. Clearly,

5) pw(x) € (0,1), oy (x)] < wpw (),
and for w > 1, [ pu(x) dx < oo. For p € [1,0), define the weighted Lebesgue space L%, by

L= {7 R R [ 1700Ppud < o).
R
If w = 0, then we will write L” instead of L{;. We will denote by H! the Hilbert space

H),={feli;DfelL}.

2
Wi

[z, <12, < 1flees Vf el

Wy

Let 0 < w; <wy. Then p,,, > p,,, and the embeddings L2 12 < }Lfvz are continuous with

Moreover, the embeddings
Hy, < L2, and L3 NH*< H),

wo

are compact, where H?2 stands for a standard homogeneous Sobolev space of functions f : R — R?
with weak derivatives Df, D?f € IL2. The Laplace operator A considered in .2, with the domain H?,

is variational and the operator A} = I — A is invertible. For > 0, let Hﬁ denote the domain of Af /2

endowed with the norm | - | |All3 /2. |12 and with dual space H,,”.

mt =
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2.1.2. Assumption and Notation. Let W be an H?(IR)-valued Wiener process with the covariance
operator Q. Then there exists a complete orthonormal sequence { fivi= 1} of H?(R) made of eigen-
vectors of Q, that is

Ofi=a’f;, ¢ :=Y.q; <,
J
and then we have
W)=Y q;W;()f;.
Jj=1

The following is a standing assumption for the rest of the paper and it will not be enunciated again.

Assumption 2.1.
(©6) o= X q; (FF+P+ (7)) <e,
J=1 L
and v is in C([0,T]; H'(R)) with
(7) C, :==esssup |v(1)|p= < oo.
teRy

Define a function
=Y (), xek.
j=1

Remark 2.2. (a) Assumption 2.1 yields

K|~ < Cy, and |kK|L- < C2.

(b) Every H?-valued finite-dimensional Wiener process satisfies (6) provided fj’-' elL>” for j > 1.

The following notations will be used throughout the paper. Let G : L™ N H! — 1.2 be defined as
G(m) =m x (m x dym) +m X yoym.
Let G(m) := G'(m)(G(m)), which can be expressed as
G(m) = (Y — |m|*)m x (m x dpem) — 2y|m|*m X At — Y> O x (m X xm)

— |m x dem|* m+ y(m, dxm)m x dm.

In the rest of the paper we consider equation (4) in its Itd form:
1
(8) dm = (F(m) + 2S(m)> dt+G(m)dW, m(0) = my.
Here,
F(m) :=m x (m X vdym) 4+ ym X voym —m X (Oym + otm X dym)
and the Stratonovich correction term S(m) takes the form
S(m) == k*G(m) + k&’ [m x (m x G(m)) + ym x G(m)]
= k2G(m) + k&' [(V* — |m|*)m x (m x dym) — 2y|m|*m x dm] .
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2.2. Semi-discrete scheme.

2.2.1. Discrete operators and discrete spaces. Let Zy = {x = kh : k € Z} denote a discretization of
the real line of mesh size h > 0. For u: Z;, — R3, we write u™(x) for u(x + h), and we introduce
discrete gradient and discrete Laplace operators:

1 1
) d'u= 7 (u"—u) and Au= E(Qhu—ahuf).
Let L7, Li , H}l and E; ;=L N Iﬁ]l,ll be discrete spaces equipped with respective norms:
lulue = sup [u(x)], lulg, =h Y |u(x)”,
XEZLy L XEZLy

R, = s 10" 2y = (a2, +10"
where p € [1,00).

We will say that u : [0,T] x Q x Z;, — R? is an Ej-valued progressively measurable process if for
every x € Zj, the process u(-,x) is progressively measurable and for every ¢ € [0, T,

lu(t)|g, <o, P-as.
In particular, the process {|u(t)|g,; t > 0} is progressively measurable.

Let &, denote the space of [£;,-valued progressively measurable processes, with norm

1
julg, = sup (E[lu(r)lE,])”-
t€[0,T)

2.2.2. Discrete equation. For u € E;,, we define

F"(u) = u x (uxv&hu> + yu x vo"u — u x (Ahu—l—au xAhu>

(10) G(u) = u (uxa”u) +yux Oty
S"(u) = G () + KK’ {u % (1 x G"(u)) +yu x Gh(u)] ,
where
Gh() = 3 () + ) Gllw) + KG) + (k)" Gh(w)
Gl (u) = (P — u*)u x (u X Ahu> —2yjufPu x Aty
Gh(u) = —Pd"u x (u X 8hu> ~ux "ulPu
(u) = 29(u, 3" Yu x .

!
Fix a terminal time T € (0, o), we describe the semi-discrete scheme for (8) as a stochastic differential
equation in the space Ej:

1
(11) dm = <Fh(mh) + 2Sh(mh)) dt +G"(m"ydW, m"(0)=my €Ky,

In (10) and (11), k2,v(¢) and W(t) are the restrictions of the corresponding functions to Z; for every
t €10, T]. The term S"(m") is a discretised and a modified version of the Stratonovich correction S(m).
It is chosen to simplify the proof in Section 3.2 without affecting the limit. For example, Gé’(mh) with
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the constant 2 does not match with the term y(m, dym)m x dym in G(u), but if (m", d"m"~) converges
to 0 in a suitable space, then the constant will be irrelevant to the final equation.

2.3. Main result.

Definition 2.1. We say that a progressively measurable process m defined on (Q, F, (F;) ,P,W) where
W is a Wiener process, is a solution to equation (8) if

(a) Im(t,x)| =1 (t,x)-a.e.
(b) forevery T € (0,00),

T
]E[sup |axm|§2+/ Oml?s dt | < oo,
t 0

€[0,T]

(c) for everyt € [0,T] the following equality holds in I.? :
(12) m(t) —my = /l (F(m(s)) + 1S(m(s))) ds+ /t G(m(s))dW(s), P-a.s.
0 2 0

Note that (a)-(d) above and Assumption 2.1 yield

[ QPGB +S0()E+ KGO ds <o

hence the Bochner integral and the Itd integral in (12) are well defined in L.2.

Lemma 2.3. For every h > 0, let |mg|g, < Ko. Then there exists a unique solution m" of the semi-
discrete scheme (11) in &, satisfying |m"(t,x)| = 1, P-a.s. for all t € [0,T] and x € 7,

Theorem 2.4. There exists a solution (Q,F,(F;),P,W,m) of (8) in the sense of Definition 2.1, such
that for p € [1,0),

T p
E | sup [dum(r)|f, + (/ |0m(1)]7 2 dt> < oo,
t€[0,T) 0
and for every T > 0 and o € (O, %),
m—my € C*([0,T];L?), P-as.

Moreover, there exists a convergent subsequence {my} defined on (Q,F,P) such that my has the
same law as a quadratic interpolation of m" for every h > 0, and m is the P-a.s. limit of {my,} in
C([0,T];H,,Y) for some w > 1.

Theorem 2.5. The solution m of (8) is pathwise unique and therefore unique in law.

3. DISCRETIZATION

From the definition of discrete operators and the discrete LZ norm, we deduce following results.

Remark 3.1. Foru:7Z, — R3,
(a) 9"(9"u) = 3 (9"u" — d"u) = AMu,
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(b) for any p € [1,%], |ulpp = [u*[yp = |u"|yp, which implies [0"u| p = [0"u™|p = |0"u~ |y,
and hence,

4 4
ho2 2 ho12 o2
|0%ulgy < ﬁ|“|Lga [AMulpy < hz‘a ulgp,
(c) Lemma A.1 indicates |ulp: < C]u]H}z forany u € H}.

3.1. Existence of a unique solution of the semi-discrete scheme.

Lemma 3.2. Forevery h >0, if f, g : B, — Ej, are locally Lipschitz and satisfy f(0) = g(0) =0, then
fxg (f,g) and 3" f are also locally Lipschitz on E,.

The result in Lemma 3.2 is clear and we omit the proof here. Then we check that the coefficients in
(11) are locally Lipschitz on [E;.

Lemma 3.3. For every h > 0, F" G",S": B, — E), are locally Lipschitz on Ey,.

Proof. Let u,w € E;,. It follows from Remark 3.1(b) that
10" u — 8hw]%Eh =[0"(u—w) |izo +10"0" (u—w) |H2~ﬁ

4 4
< 5 (Ju=wlkz +10"w—w), ) = Slu—wl,,

and
A= AW}, = |Ah<u—w>\iw 10" A —w)P
" h
< o (19" = w) B+ 18- w2,
16 16
< o7 (lu=witz +10" w=w);) = Flu—wi,.
By Lemma 3.2 and (7), F”*, G" and S" are locally Lipschitz. g

Proof of Lemma 2.3. For each n € N and r* = F" S" and G", define
' (u) if lulg, <n
- h

r ( au ) if |u|g, > n.

[ulr,,

Then F!, S and G" are Lipschitz on E,.
Fixn e N. Let A, : &, — &), be given by

m+/ Fl'(u +Sh )der/Gh
(13) ’ ( e
We first verify that A, (u) € &, for u € &,. Note that F! and S" are bounded on Ey,, with
; 2
B[R, <TE | [ |} u(o)+ 38hu() ds]
Ky
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t

< Cy(h,n)TE [ / \u(s)y%Ehds]
0

< Cl(han)TZW%ha

for some constant C; that depends on % and n. For J, (), we have

Y 116" () = X a3 | fus) x (uls) x 9*u(s) ) +vju(s) x 'u(s) i

h

2 h 2
<20y (Juls) e + Pluls)R; ) 19 u(s) 2.
where the last inequality holds by Tonelli’s theorem. This together with Remark 3.1(b) implies

Y 10" (16" u(s)); < %zqﬂfﬁh(u(s))\ﬁ%
J

< IRz () + PluCs) By ) 19"as) s

Then by the definition of G”, the assumption (6) and Fubini’s theorem,

E|f L3 £,GHu(0) oy as

4
<2C3(n* 4+ y*n?) ( h2> T sup E [|u(s )|IZE,,]
s€[0,]

= Cz(h,n, K‘)T|u\(2§h,

for Cy(h,n, k) = 2C%(n* +y*n*)(1+4 5)T. Thus, J, is a H} -valued continuous martingale. By Lemma
A.1 (or Remark 3.1(c)), there exists a constant C > 0 such that

(14) n ()1, = Ma ()2 +10"(0)]F5 < (C*+ D)(0) -
From [5, Corollary 4.29],

0

<E [/()T;qﬂijZ(u(S))

< CQ(h,n, K)T\u\%h.

(15)

2
H! ds]

< (C*+1)Co(h,n, k)T |ulg,.

It follows from (14) and (15) that

(16) E| sup [J.(1)[3,

t€[0,T]

Thus, A, (u) € &, for u € &,

For u,v € &, there exists a constant C > 0 such that

2
()~ A, <€ sup | [ EIV() - Bl us) ds ]
t€[0,T] Ey,
t 2
+C s E /0 > (Shvs)) = Shuts))) as E]
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2

+C sup E
t€[0,T]

Similarly, M,(t) := [; (GI(v(s)) — Gl (u(s))) dW (s) is a H}-valued continuous martingale, and re-
placing J,, by M,, in (14) and (15), we have
2 ]
ds|.
H;,

| Zailss (hoven - attucs)
By construction, if [V (s)|,  [u(s)|s, < n, then

GAV(5)) — Ghu(s)lz < 1V(s) — (o)l (V{5 + (o) + 1) 19"V 5l
+ (1R + )]sz ) 194 (5) — uts)

< (3 +2ln) [v(s) — u(s)]g,

If |v(s)|g,, |u(s)|g, > n, then let n} = n|v(s)|]Eh1 and nY = n|u(s)|IEhl, we have

[ (v - Ghut)

Ky,

a7 E <E

sup [M, (1)l
t€[0,T]

n? ] g, < V() — u(s)]s,.

and

(G (v(s)) = Gp(u(s))lp2

=|G"(n}v(s)) — G"(nu(s))|.2

< (v (s) = ()l + 1y = n ()l ) (n v ($) g + i)l + 1) my 19" v (5)] .z

o+ (n10"V(s) = 0"u(s)lgz + Inl — 10" u(s)liz ) () 2luCs) By + yimtlu(s)luz )

<230 +2/y}n) [v(5) — u(s)]s,.

If |v(s)|g, > n and |u(s)|g, <n, then
n{ =1 <n7Hn—|v(s)le,| < n7 lu(s)le, = [vs)lg, | <7 uls) = v(s)|e,,
implying that [n) — 1] |u|g, < |u(s) —V(s)|g, and
[GR(v(5)) = Gu(u(s)) |z < 2030 +2071n) [v(s) — u(s)[z,.

Similar result follow for 9" (G”(v) — G"(u)) using Remark 3.1(b). Then, by (17), Lemma 3.3 and

Holder’s inequality, there exist constants Ly (h,n,T) and Ly (h,n,T) such that

|A, (V) —An(u )]5 <Ly(h,n,T) sup E [/ [v(s) |Eh ds
t€[0,T]

< Ly(h,n,T)|v —u]gh.

Consider the discrete equation
(18) dmy (1) = (Ef’( a(0) + ;Sﬁ< a(t ))) d+ Gy (my (1)) dW (1),

with m"(0) = my € Ej, on intervals [(k— 1)T,kT] for k > 1, where T satisfies L,(h,n,T) < 1. By the
Banach fixed point theorem, there exists a unique solution m! € &, of (18) on [0, T].
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Define the stopping times
T =inf{t > 0: |ml(t)|g, > n}, T, :=inf{t >0:|m", (t)|g, > n}.
Let 7 = 7, AT,. Then A, (m!', ) = A,41(m!. ;) on [0,7), and by (17),

2
E [ sup |mZ+1(t/\‘c) —mﬁ(z/\‘c)‘Eh

1€[0,T]

5 s [ 0010
1€[0,T]

T
< Li(hn.T)E [ [ rts) i)l ds} |
O a

which implies

E

2
sup ’mZH (tAT)—m(t A ‘L')‘Eh] =0,
€[0T

by Gronwall’s lemma. Thus, m”_| (- A7) =mf(- A7) and T = 7,, P-a.s. and the discrete equation (11)

admits a local solution m" (t) = m/(t) for t € [0, 7).

Recall that mg € Ej, and |mg(x)| = 1 for all x € Z;,. Applying Itd’s lemma to 1[m"(t,x)|?,
1 1 1
020 = ()0 + 38" 0 0) 0 0.0) ) i+ 0IGH 1) o) e

+ (G (1)) (), m"(1,) ) AW ().
By (a,a x by =0, for any ¢ € [0, 7,] and x € Z,
(F" (), m") (1,5)
(S" "), " (1.)
(G (), ") (2,)

Therefore, |m"(t,x)| = |m(¢,x)| = |mo(x)| = 1 for any ¢ € [0,7,] and x € Z,.

=0,
= (K2Gh ("), ") (1.2) = — (|G (m") (1,3,
=0

For any fixed 4 and n, the unique solution m’; of (18) satisfies
E[Jmh(e A5, | =B [Imiie A By + 10" mh(e A 5) 2, |
—1+E [|ahmﬁ(m ‘L'n)hiz} :
h

2

We apply 1t6’s lemma to [0"m!!(t AT, 12
h

Loy 1
§|3hm2(t/\ Tn)\ig - 5\9hmo|iﬁ
ATy 1
= [ (ol P o) + 55"k ) s
0

1
w7 ;zq 9" (1,6 (ml(s)))

2 P gy
st [ (-amie), Gl aw (s)) .
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Since |m!(¢,x)| = 1 for (t,x) € [0,7,] x Zj,, and
B b2 b hyo 4 hyh
A2, + "m0, < 19 0) s,
there exist constants ; and 3, that depend on £ (not n) such that

(=), P (0) + 5505 >U-+ L4} [9" (116" ()

2
S B $)R.
h

and
2

(W), GMnl(s)))”, < 5 (i) % A'ml(s) 2, + 10" (5) 2, )
< Ba(0) " mi(s) .

Then, by the boundedness of k2, the stochastic integral [ ™ (A"m/(s),G" (ml(s)) dW(s))L’z is a square
integrable continuous martingale for m” € &,, for every h > 0. Now, we have

AT,
@ mh(t A )2, < [0"mol2, +2/0 Bi(h)| 0" ni(s)[7 ds

L, / (Awii(s), G ) (5) W (s) ).,

h

where the stochastic integral part vanishes after taking expectation. We obtain

E [inke AR, < B Il +26106) [ k(s A5, as]
By Gronwall’s lemma,
(19) E [\mﬁ(m r,,)|%h} <R [|molg, | exp </Ot 2B (h)ds) < K(h,1).
By the definition of 7, the left-hand-side of (19) is greater than n’P(t, € [0,¢]), thus
lim P(g, € [0,1]) < lim K(h,t)n > =0.

In other words, T, — oo, P-a.s, as n — co. Thus, the process m" (1) = lim,_,.m!(t A 7,) is the unique
solution of the semi-discrete scheme (11). ]

3.2. Uniform estimates for the solution " of the discrete SDE. For every h > 0, let

M) = [ (W (5),6 () aW ().

0

In the following lemma, we deduce an upper bound of the stochastic integral M"(¢) which is used in
the proof of Lemma 3.5 to obtain uniform estimates for m”.

Lemma 3.4. For any p € (0,0), there exists a constant b, independent of h such that

p
sup 9" (1 </ i (£) x Al (1) 2, dt) .
1€[0,T] h

E

wpwmm1 Shp(1+[Y)’CRE
t€[0,T]
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Proof. We observe that for every j > 1,

(A'm" (1),q; f;G" (m"(1)))12
= thjfj<mh x AP m" x 9"m" 4 yo"m") (1, x)

<(1+ W])h2|quj8hmh} |mh X Ahmh‘ (2,x)

1 1

<1+ <h2q 1219 2 ( m)z <hZ]mthhmh]2(t,x)>z,

which implies

Y (A (1), q 3G (m ()2 < (1+[71)% | (0) % A (1) (hzzqiffahm%,x))
J
< (L+[7))? G |m" (1) x A" (1) 5 |0"m" (1),

Then as in the proof of Lemma 2.3, for every fixed 4,

Z(Ahmh(t),ijjG]’(mh(t))>ﬁ% <oo, P-as.

J
implying that M"(¢) is a continuous martingale. By the Burkholder-Davis-Gundy inequality, for p €
(0,00), there exists a constant b, such that

E [ sup |Mh(t)|p] <b,E (/OTZ<Ahm]1(t>v‘]jijh(mh(t))>]iz dt)
t J "

€[0,T]

L
2

r

T 2
< b1+ L | ([ 1000, o) < )
0 h

—_

Taking the supremum over ¢ for |0"m"(t) iz,
h
E | sup |M"(1)?
t€[0,T]

<b,(1+|y))’CLE

sup |9"m" (¢ (/ " (1) x A"m h()|]L2 d’) ]
t€[0,T]

p
bp<1+|y|>pc£1a[sup 9 (/ 1) x & 1) ]

1€[0,T]

<

| =

Lemma 3.5. For any p € [1,0), assume that {(q;, f;) } j>1 satisfies
Nipi=1=4""1by (14 |7])"CE >0,

(20)
Napi=2" (@~ (1+27)C2—8)" — 47~ b, (14 |1)Cl > 0,
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for some small § > 0, where b, is the constant in Lemma 3.4. Let |mo|g, < Ko. Then, there exist
constants K, , and K> j, that are independent of h, such that

(21) E| sup |9"m"(1)[2] < Kip,
1€(0,T] h
p
(22) [(/ lm" (s) x Altm" (s Nig ds> ]SKZV,,,
forall h > 0.

Proof. Asin Lemma 2.3, let ¢ (u) = %|8hu|]12‘2 for u € Ey,. Then, for v,w € H!,
h
¢/(M)V = <ah”7ahv>]L% = _<Ah”7v>]l,ﬁ7 ¢”(M)(V,W) = (ahv’ahw>]Lﬁ

By It6’s lemma,

S0 (02, — 210" ()12, = 0 (1)) — 9(m (0))

h)(S)>]L/21 ds

"(1))
- (st
< h)(S)>Lgds

/ 319" (56" ") (5)) 2 ds

\\

(23)

\S) \

<Ah "(5),G"(m")(s) AW (5))
O 1
t
= /0 (Ti (5) + To(s) + T3 (s)) ds — M" (1),
where M"(¢) is already estimated in Lemma 3.4.

An estimate on 77:

Ti(s) = —(A"m h() ( "))z

et s,
(24) = (A (5)om (5) < (' (5) % (5)9 "l () (5)0"m ) )
= —a|m"(s) x Ahmh(s)]Lz
+ <mh(s) x Alm (), m" (s) x V"' (5)9"m" (s) + Wh(s)8hmh(s)>L% :

The second term on the right hand side of (24) is estimated using (7) and the fact that |mh| =1P-as.,
as follows

<mh(s) x Am (s),m" (s) x V()" m" (s) + }’vh(s)ahmh(s)>]Lz
(25) !
< &% (s) x Alm" (5)[, + 5 2C2 (1+7)[0"m" (s)[2.
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for arbitrary € > 0. An estimate of 7} is obtained from (24) and (25)

(26) Ti < (" = a)lm" (e) x A'm" (1) + ﬁd (1+79)[0"m" (1) 7.

An estimate on 75:

Ta(s) = — 5 (A (5), " (" (5)))
= % <mh x A"m k! (mh x G"(m") + YGh(mh))>

1
— 5 (A Gi(m))
=T+ Tn.

L

2
]Lh

Using |m"| = 1, P-a.s., we estimate T»;:

1
Ty = > <mh x Atm", ki’ [(yz — )m" x 3"m" 4-2ym" x (m" x 8hmh)} >L2
h

@) < SEm ) x A ()F 4 5 (P = 17+ 47%) [ B 9"l (5) 2

4e
where \xx’\i; < Ci by (6).
To estimate T5;, we first note that for any u : Z;, — S?,
1
Gh(u) = 3 ((k*)” +K7) [(y2 —1ux (u X Ahu) —2yu x Ahu}
— k20" u x (u x 9"u)
12 |u < 9" uPu+2y(x*) ™ (u, (0"u) " Yu x 0"u.
By (97), we deduce
1
To(s) = —EhZ<Ahmh,gﬁ(mh)> (s,%)
_ %(7/2 —)RY () + K2) [ x Al (s, %)
+ l)/ZhZ’ K> <Amh M m" x (m" x ahmh)> (s,x)
2 ~ b b
1 20, o Ak, k2 (1 9k, k2 h hy—(2
4h;;< I x 9| (\a m P2+ (9" )(s,x)

- }/hZ(Kz)_ <Ahmh,mh X 8hmh> <mh, (8hmh)_> (s,x)
(28) = T224(5) + Toop (5) + To2c(5) + To2a (s)-

It is clear that

Troa(s) = —DhY ((x T k) |m" x AP (s, x)
X

(29) < )/2]K|Lm]m x Al hyLz —th T4 k) |m" x At (s, x),
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where the second term on the right-hand side will cancel with parts of 73.

To estimate T3;;,, we observe that for any u : Z;, — S2, using (97),
<Ahu,8hu X (u X 8hu)> = |9"u|? <u,Ahu> - <u,8hu> <8hu,Ahu>

_ _%whu‘z (,ahu’2+ ’ahﬂz) 4 %]8hu|2 <‘8hu‘2 _ <ahu,ahu7>)

IR AR T IR S NEN T BV
(30) = 310" uP|9"u 2 = 510" <a w,"u >
where

h h — _1 h 12 h, =12 _ 12(Ah,, |2
31) <8u,8u>—§<\8u\+]3ul h\Au\).

If |9"u(x)| < |9~ (x)] at some x € Zy, then
(9", 0" ) () < 19" ()P,
and by (30),
(8,3 (1 ")) (3) < —%\ahu(x)mahm(x)yz + %y&hu(x)\zyahu* WP
=0.

If |0"u(x)| > |0"u~(x)|, then we can show that the term given by (30) is bounded by |u x A"u|?(x).
Explicitly, by (31),

Al (x) — <Ahu, O x (u x 8hu)> (%)
2 1 1
= \Ahu\2—<u,Ahu> +§|8hu|2\8hu7|2+§|3hu|2<ahu,8hu7>
1 2 ] 1
= (U2 = 2 (10" + 10" [2) "+ 510 10" 2+ 19 uf? (10"l + 10" 2 = A"
1 1 1
= (1 - 4h2yahu|2) | A — Z|a’nr|4+Z|ahu|2\ahbf\2
>0,

where the last inequality holds by /#%|0"u|? < 4 and |0"u(x)| > |0"u~(x)|. Combining the two cases
and replacing u by m"(s), we have

1
Toop(s) = Eyzhz K> <Ahmh,8hmh x (m!* x ahmh)> (s,x)
1 20 oy AR R|2
= Eyzhgk X AR (922) L 5.0 b (5.0}

1
(32) < VG |m" x A" [5(s).
We will see later in the proof that 73, and 1554 also cancel with parts of 73.

An estimate on 75:

1(s) = 5 X 10", 6" )
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*qu{ah (f;G" (m" ‘]1}
= PR E [ (i )50+ S PR L} i ) 6.0
+ yh;Zcﬁ <ah ( Fim x (m x ahmh)> o ( Fim x 8hmh>> (5,%)
=T (s) —l—jng(s) + T33(s).
We first estimate 73 (s). For u : Z;, — S?, we have for every j > 1,
" ( Frux (ux ahu)) (%)
- % (17 x (wt x ') £i0" (ux (ux ') ) ()
+% (ahfj wx (ux 3"u) + f" (u x (1 X ahu))) (x)
- %ah i (1 % (" % 0" (ux ') ()
+ % [ F30"ux (ux 9"u)+ f ux 3" (u x ahu)] (x)

—I-% [ff&hu X (u x "ut) + fjut x 9" (ux ahu)} (x)

= JA0(x) + 5 [A1 () + B (0] + 5 [A2(0) + Ba()]

where

Ao(x) = " f; (u (1" X MUY +ux (ux O )) (%),

A1 (x) = £;0"u x (u x "u)

Az(x) = f;’&hu X (ut x d"u™)

Bi(x) = f;”u x 9" (u x 9"u)

By (x) = fiu" x 3" (ux "u).
Hence,

<fju>< uxah >‘2(x)

5
;( Ao (x yA1+Bl +A2+ Bof* (x) + é<Ao,A1+Az+Bl+Bz>(x)>

<3 < A0 (6) + A1+ Bi[*(6) + A + Baf?(x) + 3 (Ao, A1 + Ao 4By + Ba) <x>>
%Aol (x) (\A1\2+\31\2+’A2’2+|BZ| ) (%)
+;<A1,Bl>(x)+%(A2,Bz> (x)+%<A0aA1+A2+Bl+BZ>(X)'
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For the square §|Ao|*(x):
1 1 2
thZqﬂAOF(x) = thZqﬂahfj\z }Lﬁ x (ut x ahu+) +u x (ux ahu)} (x)
x o x o
1
(33) ggc,%hzwx(u+xahu+)+ux(uxahu)yz(x)
L oon 2
S ECK |8 M‘Lfl’

where the second inequality holds by applying the Mean Value Theorem to f; on the interval [x, x4+ h]
for every j > 1, such that there exists some &, € (x,x+ h) satisfying

fi(x+h) — f;(x)
h

=1£i(&n)l;

and | ¥; ¢3(f7)?|L= < Cg by assumption (6).

For the squares 1]A;|?(x) and 1[A2|?(x):
1
22 a; (A () + A (x)
7
1 2 2
- Z;;qi <}fj8hu x (ux 9"u)|"+ ‘fjf&hu X (ut x 8hu+)’ > (x)
1 1
G S L LA P xR T Y G 1M e )
x x o
1
=L (Zq?f?) o 3"l (|"f +10" ) ()
x\J
= Y Rl uf? (|0 (0" ) ()
4 = ’

where the right-hand side cancels with T».(s) in (28) when u is replaced with m" (s).

For the squares §|B;|?(x) and }|Bx|?(x), we first observe that

> 3" (wx ") () = u* x A

Then,
% (1B (x) + | B2 2 (x))
- %(mz o (u < atut) \z(x) +ifj2 it x (w0 x A ‘Z(X)
= % ((ff)%fsz) [ A | ().
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This implies that

LT (BP@) 18P W) = L g (702477 fuox (o)

x

(36) 1
= h Y (02) 452 ux A (x),

where the right-hand side cancels with a part of the estimate for Ty, in (29) when u = mh(s) as
aforementioned.

For the cross terms (A1, B;) (x) and § (A2, B>) (x):
(A1LBY) (x) = £ <8hu (1 x "u),u x M (u 8hu)> (x)
—fift <|8hu|2u ("), x O (u ahu)> (x)
— fif} (u,9"u) <u x 3", 9" (u 8hu)> (%),
and similarly,
(A2, B2) (x) = £ <8hu s (1 x MUY, ut X M (u x a’m)> (x)
= fif} 0" ) <u+ < M 9" (u x 8hu)> (x).
Then,
(A1,B1) + (A2, B2) (x)

37 = fifi <<u,8hu>u x 0"u+ (u", " uyut x 9"ut, 9" (u x 3h“)> (x)-

By (35), the left term in the inner product (37) can be simplified as
(u,0"u)u x " u+ (ut, 0" uyu" x "u"
= ((u,&hu> + <u+,8hu>) ux "u+ (u, " u)h (u+ X Ahu+)

=" ut —u) (l,t+ X Ahu+) ,

where the second equality holds by observing (u+u",d"u)(x) = 0 due to |u(x)| = 1 for all x. Recall
that the right term in the inner product (37) is 0" (u x 0"u) = u™ x A"u™ by (35). Then,

S (AL B+ {0 Ba) (0) = 3 fifi & (1)

2
1
< (F+07) o xatu P )
Taking the sum over x € Zj,

%hZZq%((Al,BQ +(A2,B2)) (x) <
(38) X
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For the cross term 3 <A0, Ay +Ay+B; +By) (x):

Ao(x) = f+h fi (u s (™ x ") +ux (ux d"u )) (x),
and
(A1 + A2+ By +Bo)(x) = (f; + f)0" <u * (u X 8hu)> (x)
_ f’+hff+ (Lﬁ (i % M) —ux (ux ahu)) (x),
which imply

1
— (Ao, A1 +A2+ B + Ba) (x)

2
= ((f+) £7) (It (M) = fux (ux ")) (x),
Then, using again the Mean Value Theorem for A" (f;)?,

1
ZhZZq? (Ao, A| +A2+ By +By) (x)

fhzz G (7= U7 = 77+ 7)o (wx ') (o)
= —ZhZZqﬁAh (sz) i x (1 x @"u)|?(x)

= 2 K H%'

Therefore, by (33), (34), (36), (38) and (39),

2
Toi(s th’ah (f,m x (" x 9"m h))\ (5,%)
< C%|9"m ”\Lz( +C2m" x A" ”yLz ()
40
“0) +Zh;1< I ¢ 9" 2 (|ahmh| +|(8hmh)_|2) (5,%)

1
+ Zh; (K2 + (Kz)_) lm" x A"m"|* (s, x).
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Next, we estimate T32( ). Using (35),

T (s YthZfI,fah fim! < 9"m")|? (s, x)

— Eyzhxzqﬁy(ahfj)mh x d"ml + 1 (m" x Aty (s, %)
(41) t

< PRY. Y3 [0 P (s.) + PR (ZQ§ff> " Al s..)
=5 = \5
< PCL (10" m" R (s) + " x A2, ).
Finally, we estimate T33(s). We note that for u = u(x) with u(x)| = 1 for all x and for all j > 1,
<ah (fju (1 X 8hu)) L (fju x ahu)>
= <(<9hfj)u+ X (u x dMut) 4 f0" (ux (ux "u)), (3" f;)ut x "ut + fi(u x AMu)* >
= (") f; <u+ (" x 9", (ux Ahu)+>
+ < F30%ux (u x MY+ fiux (ux At (M)t x it + fi(u x Ahu)+>
= (9" f))f; <(u ) x (T x M, (u x Ahu)+>
+f? <ahu x ('t x 3", ut x Ahu+> .
Since ¥; 43| £l |8hfj|(x) < C2 for all x € Zj, we have
Tis(s thZqJ <ah (f,m x m" % 3"m h) ol <fjm % 3"m h)> (5,%)

<IN E 0711571 (g ot i sl ) 5.9
+thZqJ < ("mMy~ > <mh X thh,Ahmh> (s,x)

~ e (ezahmﬂii ()€l < P () ) — T ).

where Thy4(s) is given in (28).

(42)

An estimate on T} + 715 + Tx:
L+ T+ T =T + Ty + Tooa + Toop + Tooe + Toog + 131 + T3z + 133,
where by (29) and (40),

Toa0)+ T 4 Ta(5) < (377 41) Gan < A 6) + G2 B )

and by (42),

1
Toa(s) + Ta3(s) < |7ICx <82|9hmh|ﬁ; (s) + &2 |m" x Ahmhﬁﬁ(s)) :
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Then, by (26), (27), (32) and (41),

1 1
(43)  Ti(s)+Tals) + Tals) < 5Cre |9 m" ()|, + <2c2,£ - a) ' (s) > A"m" (s) .,
where
_ 2 2 o2 2
o Cie =55 [(P+1) CL+4MCE+2C2(1+ )] +2 (14 7) G,

Coe = (47 +2) Ca+€* (3+2Y/C3) .

Uniform estimate of 9"m/:

Using (23) and (43), we have

!
10" (1)[2, + (200 — Ca.e) / i (s) Al (s) 2, ds
h 0 h
(45) h 2 ! h h 2 h
< 10" mof2, + Cre [ 0" (), ds+2 sup [M¥(0)].
h 0 h 1€[0,T)

Taking a sufficiently small € such that $&* (34-2[y|C%) < &, we have from (20):

(46) 200—Cre > 0.
Then, for p > 1 and g = 35,
2 r !
E | sup \ahmh(l‘)hﬁ; + (2o —Cre)? (/ lm"(s) x Ahmh(s)hiz ds)
1€[0,T) h 0 !
, P
<E sup |<9hmh(t)]i2 +(2a— Cz.,g)/ |mh(s) X Ahmh(s)h%; ds
t€[0,7] g 0 "
<E

t€[0,T]

T )4
<|ahmo|§%+c1,s | 1t )2, ds+2 sup |Mh<r>r> ]

t€[0,s]

T
< (2"')VE !ahmo\i%cﬁgri /O sup |ahmh(t)\]i’]2: ds w
t€l0,

+2°71E !2” sup |Mh(t)|p]

1,e
t€(0,s]

T
<47 'E llahmo\ig—f—cp T§/ sup |ahmh(t)]i’; ds]
h h

+4771p, (14 ]y))PCEE

t€[0,T]

T P
sup \ahmh(r)|ig+< /0 (1) x A (1) 2, dt> ]

where the second inequality holds by (45) and the last inequality holds by Lemma 3.4. Then, by the
definitions of Ny , and N, ,,

T P
Ni,E | sup |8hmh(t)|i§ +N,  E [</ lm" (s) xAhmh(s)hiz ds> }
1€[0,T] h 0 h
47)
< 4P~ 'E

T
19" mo[22 4P T / sup [9"m"(1)|% ds| .
h 0 r¢[0,s] h
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Hence, by (20) and (47),

48) E
1€[0,T] L

sup \8hmh(t)|2p] < Ny lap-! <IE [|ahmo|§L } +CP TOE

T
/ sup 9" m" (1) 27 ds]).
0 1€f0,s] h

By Fubini’s theorem and Gronwall’s inequality,

(49)  E| sup |0 m" ()]

SN{IIAP*IE [\3hmo\L2 exp (/ Np, Yl le T4 dt> =K,
1€[0,T] '

where Kj , depends on p,C,,Cx,€,T and Ky, but not on A, proving (21).
Finally, by (20), (47) and (49),

T p »
E [(/0 [ (s) x Al (s) 2 ds) ] < Ny l4r'E [\ahmo\i%c{’_’snﬂm,p} =Ky,

where K5 , depends on p,C,,Cy, €,T and Ky, but not on A, proving (22). ]

Remark 3.6. Fix p € [1,), if

a—=o 1
C < A — Al—8,

, 1 1
L2722 by (Lt ) 4bj (1+]7))
then the assumption (20) of Lemma 3.5 is satisfied.

Lemma 3.7. For any p € [1,), under the conditions of Lemma 3.5, there exists a constant K3,
independent of h such that

T p
(50) E[( /0 At (s)2, ds> } <Ks,.

Proof. Since |m"(s,x)| = 1 for all (s,x) € [0,T] x Zj, we have
|Atm (5,x) |2 = |m" (s,x) x A (s,x)|? + (m" (5,x), Alm" (5,x))%.

Then,
|Atmt (s |IL2 =h Z (|m 8,X) Ahmh(s,x)|2+<mh(s,x),Ahmh(s,x)>2)
XEZLy
2
- ]mh(s) x A'm h \]Lz +h Z ( 8]’ (s x)]2+ |(8hmh)(s,x)|2)>
XGZ;,
< |m"(s) x Ahmh(s)\i% + |ahmh(s)y;2,
where

0" m" (s)lgs < [0"m" (5)[E |9"m" (5)]F-
Applying Lemma A.1 on 9"m" (s),
l
(51) [0"m" (s) |1z < C|0"m" (s )\Lzlah(ah ")) L2
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where |8h(8hmh(s))|le = |Ahmh(s)\]Lﬁ. Thus,
\9hmh(s)\iﬁ < C2!3hmh(s)!i% A" " (5)[2
(52) < 1C4 9l (5)[6 1 A (5)[2
<5 [0"m (S)\ng+§| m (S)|1L%'
We have
|Ahmh(s)|ii < 2|mh(s) X Ahmh(s)ﬁ% +C4|8hmh(s)]]ii.

Then, by Lemma 3.5,
T P
E [</0 |Ahmh(t)\]i% dt) ] < 217(17*1)[(2717 _|_2p*1C4PK173pr — K,
proving (50). O

4. QUADRATIC INTERPOLATION FOR THE SOLUTION ' OF (11)

4.1. Interpolations. For any fixed & > 0, let x; = kh € Zj, for k € Z. We introduce interpolations of
discrete functions defined on Z;, to functions defined on R.

Given u : Z;, — R3, let @ : R — R denote a quadratic interpolation of u, given by

1 _ 1
(53) u(x) = 3 (u(x) +ulxp—1)) + 0" () (x — x¢) + EAhu(xk)(x —x)?,
for x € [xx,xx+1), k € Z, where # is continuously differentiable with
54 Di(x) = 0"u () + A"u(x) (x —xi), X € [xe,xp1),
D?u(x) = AMu(xy), X € (Xp, Xr1)-

Let & : R — R? denote the piecewise constant interpolation of u, given by

(55) ulx) =u(xg), x€ [xp,Xes1),

for any k € Z. In terms of i, we can express % as

a(x) = % (800) + 7 (0) + "5 (x) (x—x) + %Ahﬁ(x) (x—x)?
(56) r 1
= ii(x) + (Du(x) — D*a(x) (x — xz)) <x—x - 2) + §D2ﬁ(x) (x—x1)%,

for x € [xg,xk11), k € Z.

We collect estimates of % and # in terms of u in the following remark.

Remark 4.1. Let u: 7, — R3. Then

|t~ = ulLe,

@z < e = lulyz, w>0,
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and

|- < 5|ulrs,
D> < 310"u],,
(57) D72 = |A"u

1 1
—14 41 7y216 2212
‘DM’]L4 S EC |DM|L2+§|D M|L2'
4.2. An equation and estimates for 77",

4.2.1. Equation for m". Since m" is the solution of the semi-discrete scheme (11), the piecewise
constant interpolation 7" satisfies

5 A= [ (R + 380D ) s+ [ GG 9) ait )

where Fah and Sfi( are defined as in (10) but with v, ¥ and KK in place of v, k¥ and Kk’ respectively,
and

Zq, (t)f;, te€l0,T).

In particular, for every fixed i > 0, m" € C([0,T];E;) and " € C([0, T]; L2 NH!) for w > 1.
In order to obtain an equation for 77", by using (56) we note that

ml =m" — Rom", J"m" = D" — Ry",
" x "' = m" x Dm" — P,  m" x (ﬁh X a’%h) =" x <mh X Dmh> — P,
i x o' P = |m x Dt } " — Py,
ot < (i x i) = it x (7 x i) — Pyt
(m", o"m"~) m" x " = (", D"y " x D" — Psmt",

i x A"t = m' x D*m" — Qim”, " x (r?zh X Ahn?h) =" x (mh X DZW’Z) Q,m",
where for u : R — R3 with well-defined weak derivatives,

Rou(x) := (Du(x) — D*u(x)(x —xp)) (x—xk - ;l) + %Dzu(x)(x—xk)z,

(59) Riu(x) = D2u(x)(x—x. — ),

Piu(x) := Rou(x) x Du(x) + (u — Rou)(x) X Rju(x),
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and
Pou(x) := [ux Piu+ Rou x (ux Du— Piu)] (x),
Psu(x) := [<2u X Du— Pyu, Piu) u+ |u x Du—P1u|2R0u} (x),
Pau(x) := [Rju X (u x Du) + (Du — Ryu) X Piu] (x),
(60) Psu(x) := ((Rw(x),Du(x)) + <(u—R0u)(x),D2u(x) (x—xk)>) u(x) x Du(x)

+ ((u— Rou) (x), Du(x) — D*u(x) (x — x3.) ) Pru(x),
Qiu(x) := Rou(x) x D*u(x),
Oru(x) := [u x Q1u+ Rou X ((u—Rou) X Dzu)] (x),
for x € [xg,xk41), k € Z.
Moreover, for u : [0,T] x R — R?, define

Fy(u) == —u x (D*u+ ow x D*u) +V(u x (u x Du) +yu x Du),

Se(u) := % (R)?+&) (¥ = Dux (ux D*u) —2yu x D*u)

— &2 (V*Du x (u x Du) + |u x Du|*u) +2y(K*) ™ (u, Du)u x Du
+EP[(}’2—1)MX (uxDu)—2yu><Du}.

(61)

By (58), we arrive at the equation of 7". For ¢ € [0,T],
1 1
(1) :mo+/ Fg(ﬁh(s))ds—&—E/ S (" (s ds+/ 5)) div" (s)
+ R ( —i—/ V(yPy + Py + 017" + o Qa7 )( ) ds
3 [ (@) ) [romt - (7 - eat] ) ds
(62) T
+5 / 2(Py + Y Py 2y(£2)—1>5m’“) (s) ds
+3 /0 KK/ 2yP1mh—(y2— l)szh} (s) ds

_ /0 (yPy+ P (s) AW (s).

4.2.2. Estimates for m". For p € [1,0) and w > 1, we deduce from Lemmata 3.5, 3.7 and Remark
4.1:

(63) sup [ (1)|F. <5°, P-as.
1€[0,T]
and
5 T p
64 E|sup rDmh<r>|L€+(/ (i) gp+|Dmh<r>|314+|02mh<r>|iz)dr) < C(p.T,w).
t€[0,T) 0 "

for some constant C(p, T,w).
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Results of convergence of Rom", Rym", Py, . .. ,P5mh and Qm", Q" are proved in the following
lemma.

Lemma 4.2. For f =Ry, P or Ps,

limE

h—0

T
sup R ()2 + [ | 1) dr] =0.
t€[0,T) 0

Moreover, for f = Ps, Py, Ps, Q1 or Qa, for any measurable process ¢ € L*(Q;L*(0,T;1L*)),

limE [/T <fmh(t), (p(t)>]L2} —0.

h—0 0

Proof. By construction, [x — x| </ forx € [x,x11), k € Z, and sup,¢ (g 7 |m" ()|~ < 5, P-a.s. Thus,
for p € [1,00), there is a constant Cg, independent of / such that

sup |Ror" (t)|7.. <Cg,, P-as.
t€[0,T]

Using (54), we can often re-write Ry, ..., Q> in terms of m" to simplify the estimates.

An estimate on Ryii":

h
Roiit" (t,x) = " (t,x — h) (x—xk— =

I ope
2) + A", x) (x—x)?, x € [, xeni],

2

which implies

2
65 E [ sup |Romh(t)iz] < hfIE
+€[0,T] 2

sup (|8hfﬁh(t)|]i2 + |9 (1) — &hﬁzh—(z)iz)] :

t€[0,T]

The expectation on the right-hand side of (65) is bounded by Lemma 3.5, thus the left-hand side
converges to 0 as 4 — 0. As a result,

T
(66) E { / |Romi" (1) |1 4 dt} <E
0 t€[0,7]

C3.T sup yROmh(t)\izl "200.

An estimate on R,

T —h 2 h2 T 2—h 2
E / Ry ()2 di| < 2 / DY (1) 2, dxdi ||
0 0
implying Rym" — 0 in L?(Q;L*(0,T;1L?)) by (64).

An estimate on Py"":

E [ /0 " P )1, dt] _E { /O " R (6) x DA (1) 4 (1) x Ry (1) 2 dt}

=2 <E l:/OT [Ror" ()] dl} )é (E [/OT \Dm" (1) |14 dtD 2

T
+2F [ / Ry (1) 2 dt] ,
0
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where D" € L*(Q;L*(0,T;IL*)) for all & > 0 by (64). Then, by the L*-convergence of Ry in (66)
and the L*-convergence of Rj7", we have P — 0 in L>(Q;L*(0,T;1?)).

An estimate on Pi’":

E [ /0 "), dt] _E [ /O ") x Pt (1) + Rofi (1) (7 () x DA (1)) dt]
<2E [/OT " (1) < Pi" (1) |2 dt}

42 <E [/OT Ro" (1) 2, dt] >; <Eﬂ [/OT 7 (1) x D" (), dt] > "

which implies that Py — 0 in L?>(Q;L%(0,T;1.?)) by (63) and (64) together with the convergences
of Py and Ry,

An estimate on P;7i"":

Pt = | x 3" |*Rym" + <m’1 x D" + i x ahmh,leh>mh
=: P31ﬁh +P32mh.

Then for ¢ € L*(Q;L*(0,T;1L*)),

B[ [ (rmt0.00) @ < (5] [ a0 < a0l a] )
(e[ o] e o)

and

’ [/OT (Fa ) ¢(I)>L2 dt] = (E UOT i (1) x D (1) + i (1) " (1) dt} ) |

X <IE [/0T|(p(t)|§:4 dt])i (E [/OT P (1) s dtD .

By Lemmata 3.5 and 3.7, (63), (64) and the property of @, the expectations on the right-hand side of
the two inequalities above are finite. Then by the convergences of Ry7" and P77, we obtain the weak
convergence of P’ as desired.

An estimate on Py7i"":

Pyt = Ryt x (" x D) + 9" x Py
= P41mh —|—P42ﬁh.

We have

. [/OT <P4lmh(t)’(p<t)>u,2 dt} <53 (E [/OT [Rim" (1)|7 dt] ); <E [/OT \Di (1)}, dt} > !
o)
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Hﬁ%%wwwmhﬂﬁS@{[mﬂm@mbé@bfww@mmbi
X(E{Ame0ﬁ4m}>i

Using (64), (52) and the convergences of Rym" and Pm", the right-hand side of each of the two
inequalities above converges to 0 as i — 0.

and

An estimate on Ps7ir’:
Psm"(x) = (Rom" (x), Dm" (x) )" (x) x D" (x) + (x — x) (" (x), D*mi" (x) ym" (x) x D" (x)
+ (" (x), """~ (x)) Pru(x)
=: Py (x) + Pspiit" (x) + Ps3m’ (x),  x € [0, Xer1)-

By Lemma 2.3 and (63), we have
i T 2
o] ([ [/ morta] ) (o[ 1o o
0

EVOT<P51mh(f)(Pf o
o)) |
E[/OT<P52mh(t) o)) } h( [/ D1 |L2dtD2(E[/OTmeh(z)ﬁmdzD“

and

(o)

o] e et ) e el
<(e[[ o0t a] )

Similarly, by Lemma 3.5, (64) and the convergences of Ry and P77, the right-hand side of each of
the inequalities above converges to 0 as 7 — 0.

E [ /O ! <p53mh(t)

An estimate on Q;7":

Qi7" (t,x) = Roit" (t,x) x D*7’ (1, x)

. . h
= Ml (1, x) x Al (¢, x) <x—xk — 2) , X E [XgyXpt1)-
Thus,

| [ (i 0).00)):

QE[/ /|ahAh tx)HAhAh(tx)]|q0(tx)|dxdt}



LANDAU-LIFSHITZ-SLONCZEWSKI EQUATION 29

<A (e[ [ o dtD‘l‘ (=] [ . eré (2] [ 10t dr])‘l‘,

where the three expectation terms on the right-hand side are finite, proving that the right-hand side
converges to 0 as 7 — 0.

An estimate on Q,7"":

| [ @m0, 00 ]
=FE {/()T<Q1mh(t),(p(t) x 7" (1)) 2 dt—i-/OT<R0mh(t), (it (1) x A7 (1)) % @(£))p» dt]

<E [ [ 00, 00) <m0 dr}

+ (| [ ko mm]) (1t < it wr) (/10 |L4dr) |

where on the right-hand side, the first term converges to 0 as 4 — 0 by the argument for Q7" with
o xm" € L*(Q;L*(0,T;1*)), and the second term converges to 0 by (66). O

We also obtain uniform bounds for 77z in weighted spaces.

Lemma 4.3. For any w > 1, the quadratic interpolation m" satisfies
(i) sup, E[[ii"|} ] < oo for B, := L*(0,T; L2 NH2)NC([0,T]; L2 NH),
(ii) SuPhE“mhﬁVW(o,T;La)] < oo, for p € [2,00) and a € (0,%) such that o — 1 < 5
(iii) |m"| — 1in L*(Q;L*(0,T;L?)).

Proof. Part (i). For every fixed & > 0, /" is in C([0, T]; 1.2 N H') and so does 72" Then part (i) follows
directly from the estimates in (63) and (64).

Part (ii). Recall (58), we have from the definition (53) that
" (t,x) = Io(x) + 1 (t,x) + L (t,x) + B (t,x) + I4(t,x),

where for x € [x,x441), k € Z,

5 (o) -+ 1))+ (e —50)"mo(xg 1)+ 3 () mo(x).

L(t,x) = ;/Ot <Fh(ﬁh(s,xk)) + ;Sh(ﬁih(s,xk))> ds
4 % /Ot <Fh(n7h(s,xk_1)) 4 ;Sh(r?zh(s,xk_l))> ds,
it = (=) [ 9% (PG 4 3 ) son) ds

Ih(x) =

B = 5 —x)? [ & <Fh(nA1h) " ;Sh(ﬁih)> (s,3) ds,
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Ii(t,x) = % /O (G (s + G (s.501)) ) A (s)
+(r—x0) /O "G (i (5, % 1)) AW (s)
4 %(x ) /O " ARG (it (5,3)) AW (s).
By the L™-estimate of " in (63),
E [ /0 ! (1) 2, dt} < 5aT.

For I, by Lemma 3.5, there exists a constant a; that may depend on C,,Cy, o, 7, T,K1,1,K1 3 and K3 ;

such that
T
I

For I, and I3, since |x — x| < h and

2

B[ [ FhG )+ 586 )

dt] <ay,
[L2

h|0"u(x—1)] < Ju(x)] + |u(xe-1)],
WA ()| < Ju(er)| + Gt ) |+ 2[u(a)|

there also exist constants a;,as such that

E /OT ho" <Fh(rﬁh) +;Sh(ﬁh)> (1) i dt] <a,
L2

E /OT A" (Fh(mh)Jr;Sh(ﬁh)) (1) i dt] < as.
L2

Similarly, for the stochastic integrals in Iy, we only need to verify that [ G"(i"(s)) AW (s) is
bounded in L” (Q; W*»(0,T;1L?)). By [6, Lemma 2.1], there exist a constant C depending on «, p, ¥, T
and a constant as depending on C,Cy and Kj ,, such that for p € [2,0) and a € (0, 1),

p

E /0 " Gh G (s)) W (s) /O " Gh o (5)) dw ()

p
Wer(0,T;L2)
P

=E
Wer(0,T:1.2)

2

<CE /OT (Zflﬂijh(mh(S))}ig> ds

T
< Clx[P.E VO |G" (i ()] » ds] < ay.

Since L2 < IL%V for w > 1, the estimates above hold for the Lfv—norm. By Lemma A .4, the embedding
W12(0,T;1L2) < W*P(0,T;1L2) is continuous for o — % < 1. Thus,

Sl;PE [Whhzymp(o,T;Lgv)} < e
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Part (iii). Since |m"(t,x)| = 1, P-a.s. for all (¢,x) € [0,T] x Zj, we observe that

[ (1,x)] < 1+ ,

M m (1,01 (x — xi) + %Ahmh(t,xk)(x—xk)z

for (t,x) € [0,T] X [xk,Xk+1), k € Z. This implies

E[/OT/RHmh(t,x)\—l‘Z dxa’t}
Ll

2 1
< ZWK T+ —h*K
=3 1,11+ 10"t B3

2

1
<E Mmh (¢, x, 1) (x —xz) + EAhmh(t,xk)(x —x0)?| dx dt]

where the last inequality holds by Lemmata 3.5 and 3.7, and we obtain the convergence after taking
h— 0. O

5. EXISTENCE OF SOLUTION

In this section, we first show that the sequence { (7", W)}, is tight and then by using the Skorohod
theorem we obtain its almost sure convergence, up to a change of probability space. Finally, we prove
that the limit is a solution of the stochastic LLS equation (4) in the sense of Definition 2.1.

5.1. Tightness and construction of new probability space and processes. Fix w;,w; such that
wy > w; > 1. Define

Ey:=L*(0,T;L2 NH?)NnW**0,T;1.2),

wi w2
72 .Tard Lm—1
E:=1%0,T;H. )nc((o, 7] H,,)).

compact

Recall L2 NI H!, < L2 . By (98) and Lemma A 2,

compact

Ey < L*0,T;L2 nH*)nwP2(0,T;1L2) L*(0,T;H,,)),

where 7" € Ey, P-a.s. by Lemma 4.3. Also, since the embeddings H., L ]L,fv2 — H;ll are compact
and 4 > 1, it holds by Lemma A.3 that

compact

we4(0,T;L3,) c([o,T);H,, 1.

In summary, Ey is compactly embedded in E. For any r > 0,
1
P (I, > r) < E [},
r

where {["|g, < r} is compact in E, and the right-hand-side converges to 0 as r tends to infinity.
Therefore, the set of laws {£(7")} on the Banach space E is tight, which implies the following
convergence result.

Lemma 5.1. There exists a probability space (*,F*,IP*) and there exists a sequence (mj;,,W;") of
E x C([0,T]; H*(R))-valued random variables defined on (Q*, F*,P*), such that the laws of (", W)
and (m},W;?) on E x C([0,T]; H*(R)) are equal for every h, and there exists an E x C([0,T); H*(R))-
valued random variable (m* ,W*) defined on (Q*, F*,P*) such that

(67) my, —m"inE, P*-as.
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and

(68) Wy = W*inC([0,T];H*(R)), P*-a.s.

Proof. Since E x C([0,T]; H*>(R)) is a separable metric space, the result holds by the Skorohod theo-
rem. -

Since the laws of (", W) and (m},W;) on E x C([0,T]; H*(R)) are equal, due to the following remark
we obtain the same estimates for m1;,.

Remark 5.2. By Kuratowski’s theorem, the Borel sets of
B:=B,, = L*0,T;L2 nH*)nc([o,7T];L2, NH")
are Borel sets of E = L*(0,T;H),,) NC([0, T];H,,) for wi < w2, where
P (mh ¢ B) =1.

We can assume that mj, takes values in B and the laws on B of m" and my, are equal.

By Remark 5.2, the sequence (m;} ), satisfies the same estimates as ("), on B. By (64), for any
pE€[l,00),

(69) supE" | sup |mj(t )| < oo,
h 1€(0,T] Ly

(70) supE* | sup |Dmj, (t)|H2f§ < oo,
h t€[0,T]

»
(71) supE*K/ \D*m;; )!det> < oo,

Since |p/,| < wp for w > 0, by Gagliardo-Nirenberg inequality,

1 . 1 . 1
mi (003, |- < € [D(m(0)p)[Es Imi(1)p |

1
* * 2 * 1
< C(IDm(0)pey 1o+ mi()pli2)” Imi(e)IE,
1 1
2 % >
< C(IpmiOliz + 5 miOlz, )" Il
C *
< = (Dm0l + im0l + 10l )
which implies
1
(72) Sup’ wpmmmm$]<% pele),
h t€[0,T]
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Thus, by (69) — (72), for p € [1,00),

T P
supE* [( | (t) x Dmj,(1)]7 dt> < oo,
h 0 w1 ]
T P
(73) supL* K / m (1) x D*mjs(1)|2, dt) < oo,
h 0 " ]
T 5 ) P
supE* K/O |mj, () x (my,(t) x D mZ(t)N]L% dt> < oo,
h Wy ]

Asin (52),

DO < S 1D (0) 2+ 3 D 1) 5

which implies
T p
(74) supE* [(/ \D (1)1 4 dt) ] <oo, peEl,oo).
h 0

5.2. Identification of the limit (", W*) and pathwise uniqueness.

5.2.1. Convergence of functions of mj;. For p € [1,e0), by the pointwise convergence of m; in (67)
and the uniform integrability of m;, and Dm;, in (69) — (70), we have

(75) mj, —m* in L*’(Q*L*(0,T;L},)),
(76) Dmj, — Dm* in L*’(Q*;L*(0,T;L},)).

By (70), Dm; also converges weakly to a measurable process X in L??(Q*;L2(0,T;1L?)), which im-
plies that X = Dm* € L*’(Q*;L*(0,T;1L?)) by the uniqueness of the limit of weak convergence in
L?P(Q*;L%(0,T;12,)). By (76) and integration-by-parts,

(77) D’mj — D*m*  in L*P(Q*;L*(0,T;1L2)).

> Hwy

Similarly, by (71), D*m}; converges weakly to a measurable process Y in L?7(Q*;L2(0,7;L?)), thus
Y = D’m* € L*’(Q*;L*(0,T;1.?)) and

(78) D’m; — D*m*  in L*P(Q*;L*(0,T;1L?)).
Lemma 5.3. We have
(i) |m*(t,x)| =1, (t,x)-a.e. P*-a.s.
(ii) m}ipéz — m"‘pé2 in LP(Q*,LP(0,T;1L7)), for p € [2,00),
(iii) Dm* € L*(Q*; L*(0,T;IL*)) NLP (Q*;L™(0,T;1L?)), for p € [2,0).

Proof. Part (i). Recall Lemma 4.3(iii), a similar argument holds for IL,EV2 (in place of IL?). Then,

E* [/OT/RHm*(Z,x)] 1Py, (x) dx dt]

T T
< 2E* [/O /RHmZ(tvx” _ 1|2Pw2(X) dx dt] +2E* [/0 |mZ(1) _m*(l‘)|i§,2dt )
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where the first expectation on the right-hand side converges to 0 since the laws of 7" and m;, are the
same on L2(0,T; IL%VZ), and the second expectation converges to 0 by (75). Thus,

T
E* [/ /Hm*(t,x)l—llzpwz(x)dxdt =0,
0 R

which implies |m*(¢,x)| = 1 a.e. on [0,T] x R, P*-a.s. This also means
m* € LP(Q%LP(0,T;LE)), Vpe[l,oo), w>1.

Part (ii). For wp > w; > 1 and p € [2,00),

B | [ i) - @)pi dz]

! p-1 1
(mi(6) - | Lo - <,x>>p@<x>rdxdr]

<E*| sup

1€[0,T]

1
| 1 2 2
sc(E* sup (!m,t(r)pél £J+\m*<r>pm£ml) D
1€[0,T]

><< [/ /]mhtx tx)|pW2()dxdt])2,

for some constant C that depends on p and 7. Then, by the L™-estimate (72), Lemma 5.3(i), (5) and
the strong convergence (75),

tim* | [ 000~ )AL @] =0, pe )

Part (iii). From part (i), we have 1D|m* (t,x)|> = (m*,Dm*)(t,x) = 0 and thus
<m*(t,x),D2m*(t,x)> = —|Dm*(1,x)|?,
for (¢,x)-a.e. P*-a.s. Since D*m* € L*(Q*;L*(0,T;L?)), we deduce

E* [/OT D" (1) 2, dt] —E* [/OT/R<m*(t,x),D2m*(t,x)>2 dx dt]
E* [ / "D () 2 dt] < o,

As in [3], we extend the definition of the Lfvz AH'-norm to H, 1 such that ’”|L2 i1 = o if the function

wisin H, 11 but not Lfvz NI, where the extended map
u+—> sup |u(t)|L2v i, UE C([O,T];H:vll),
t€[0,T] "2

is lower semicontinuous. Then, by the pointwise convergence (67), Fatou’s lemma and (70),

sup |my(t)|7, . | <o
te[OJ]’ " LazmHl ,

E*

sup |Dm*(1)|7, <11m1nfE*
1€[0,T] —0

for p € [2,00). O

Lemma 5.4. We have the following strong convergences:
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(i) mj; x Dmj; — m* x Dm* and (mj;,Dmj) — 0 in L*(Q*;L*(0,T; L)),
(ii) mj, x (m} x Dm},) — m* x (m* x Dm*) in L*(Q*;L*(0,T;L2, ).

wi+w2

Proof. Part (i). Note that

mj, X Dmj, —m* X Dm* = (m, —m") X Dmj, +m" x (Dmj, — Dm").

Then by Holder’s inequality,

* T * * * 2
E [ A (my(t) —m*(1)) ><Dmh(t)|]1ﬂ2v2 dt}

< (& | [ 100 -m0)phtear] % (= | [ 1wt an]) g

where the last line converges to 0 by Lemma 5.3(ii) and (74). Similarly, by Lemma 5.3(i),

T T
E* [ / (1) x (Dl (1) — Dm* (1)) 2, dt] <E' [ / D (1) — D ()2, dt] ,
0 wo 0 Wy
where the right-hand side converges to 0 by (76). Therefore,

T
(79) lim* [/O |miy (1) x Dmiy(1) —m* (£) x Dm* (¢)[7> dt] =0.

Since |m*(t,x)| = 1, we have (m*,Dm*)(t,x) = 0. By the same argument as above (replacing cross
product with scalar product), (mj},, Dmj;) — (m*,Dm*) = 0 in L*(Q*;L*(0,T;132)).

Part (ii). Note that
mj, X (my, x Dmy,) —m™ x (m* x Dm")
= (mj, —m") x (mj, x Dmj,) +m* X (mj, x Dmj, —m* x Dm") .

Then, with Pwi+w, = Pw,Pw,>

1m0 = 0) < (r0) < D), ]

0 wi+wy

1

|
< <IE* { OT () — m* (1)) s | dt])é <IE* [ /OT mj; (1), X D’"Z(’)\?‘u])é
(E* [ OT [ 0) = (1)) P dt] >;

R ) N
(E sup |mz<r>pél|iw]) (E[( [ omiiar) ]) ,
+€[0,7] 0

where the first expectation in the last inequality converges to 0 by Lemma 5.3(ii) and the second and
third expectations are finite by (72) and (74). Also,

E* [/OT m* (1) x (mis(t) x Dmj,(t) —m* (1) x Dm*(1))|12 a’t]

wi+wy

converges to 0 Lemma 5.3(i) and part (i). Then, the strong convergence of m; x (mj} x Dmj) follows
as desired. O
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Lemma 5.5. Assume that wy > 4w). For any measurable process ¢ € L*(Q*;L*(0,T;L3,)), we have
the following weak convergences (with test function @):

(i) mj; x (mj x Dmj}) — m* x (m* x Dm*) in L*(Q*;L*(0,T;132,)),
(i) |mj x Dmjy|*m}, — |m* x Dm*[*m* in L*(Q*;L*(0,T;L32,)),
(iii) Dmj, x (mj, x Dmj;) = Dm* x (m* x Dm*) in L*(Q*;L*(0,T;1L2))),
(iv) (my, D ymys x Dy — 0 in L(Q*;L*(0,T;12)),

(v) mj x D*mj = m* x D*m* in L*(Q*;L*(0,T; L)),

(vi) mj, x (mj, x D*mj}) — m* x (m* x D*m*) in L*(Q*;L*(0,T;L2,)).
Proof. Part (i). As in lemma 5.4(ii), we first observe that

| [ 0 =) Do, g 0

(30) < (=] [ 100 - e pit ar| )

(s [ it < omigonl ) (e[ [Towt, )

where the first expectation in the last line converges to 0 by Lemma 5.3(ii), the second and the third
expectations are finite by (73) with wy > 2w (equivalently, p,,, < pv%,l) and @ € L*(Q*; L*(0, T;]Lfvz)).
Since |[m*(r,x)| = 1 from Lemma 5.3(i), we have m* x ¢ € L*(Q*;L*(0,T;L% )). Then by Lemma
5.4(i),

T
(81) lim E* [/ (m* x (my, x Dmj —m™ x Dm™), @);> (1) dt] =0.
h—0 0 w)

Combining (80) and (81), we have the desired weak convergence for part (i).
Part (ii).

|m, x Dm;|* m}; — |m* x Dm* |*m*

- (|m;; x D} — |m* x Dm*|2) s+ [m* x Dm* |2 (m; —m”)

< |m} x Dmi —m* x Dm*||m};, x Dmj; +m* x Dm*| |mj}| + |m* x Dm*|* |m} —m*|.
Then, for the first term in the line above,

T
E* [/ (|my, x Dmy, —m* x Dm*||mj, x Dmj, +m"* x Dm*|my,, @);» (1) dt}
0 w2

1
2

T
80 < (| [ i Dmil < DR i PloR(0.0) puno) ] )

T
X (E* [ / i, Dty —m* x Dr* 2 (¢) dt])
0 v
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We show that the first expectation on the right-hand side of (82) is finite. Since wy > 4wy, it holds that
1
Pw> < Py, P, and

T
B [/0 /R jmj; x Dy [miy @[ (£,x) pu, (x) dix dt}

<E*

1 r 1
sup (mi()pi - [ [ 1D Plop F(r.) d dr]

t€[0,T]

N ) o

< (& [ sup miwpdite| ) x (&| ([ omicotear)
t€[0,T] 0

(= [ty a])

where three expectations in the last inequality are finite by (72), (74) and ¢ € L*(Q*;L*(0,T;L,)).
Similarly, by Lemma 5.3(i) and (iii),

T
E* V / m* 3 D2 |9[2(t,%) Py (x) dx dt]
0 JR

< (E* T\Dm*(t)\]}‘#vzdt %E* T\(p(t)]ﬁ%dt %<oo.
) )

Hence, the left-hand side of (82) converges to 0 as 4 — 0 by Lemma 5.4(i). Similarly, with |m*(¢,x)| =
1, P*-a.s. we have

E* UOT/]RW* < D [2 (m, — m*) (£,%), 9(£,3)) Py (x) dx dt]

) < (& [ [ oo dr])é < | [ ooty dei

<(=[ [ 1m0 -me it ai] )

where the last line converges to 0 by Lemma 5.3(ii) — (iii). Combining (82) and (83), we have the
desired weak convergence for part (ii).

Part (iii). Note that
Dmy, x (my, x Dmj,) —Dm™ x (m* x Dm")
= (Dmj, —Dm") x (m* x Dm"™) + Dmj, x (mj, X Dmj, —m" x Dm").

Then,
T

[ (D (0) =D (1) (" (1) x Do (1)), (1P dt]

[

E* |Dm* ( )pw2|]L4 dt d E* T ‘(p(t)"ﬂ“iz u i
/ /o

X <E [/0 (D (1) = D (1), dr] > g
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where the last line converges to 0 by Lemma 5.3(iii) and (76). Similarly,

* r * * * * *
| [ (Do) i0) < Di0) ~m(0) x Do (), 9000 |

([ it O”DA (= oot M

1

< (B[ [ Imito < Dmie) - < Do 0, ] )

which converges to 0 by (74) and Lemma 5.4(i). Together, we have
T
lim E* [/ ‘(Dm;‘, % (. % D) — Dm* x (m* x Dm*), @)1 (1) ‘ dt] —0.
— 0 2

1
Part (iv). Again, since w, > 4w, we have p,}, < p,,,. Then,

E* [ /OT< (s (), Dy (1)) (1) % D (6), @ (1) P )y 2 dt]

< (& [ 1m0y % Dm0 pi 14y a
([ - ]
(5] [0ty ar| ) (= | [ omito) ooy 2y ar] )

e[ ot ] e |

< <E i), |§;w]) 8 (E (f 1omicoltar) 2]) 8
(e [ [rowity ) (2 [ [ ooy oy )
(= | oot ) (= )

1
where the right-hand side converges to 0 by (72) (with p,;, < 1), (74) and the convergence of the scalar
product in Lemma 5.4(i).

Part (v).
(m}; x D*mj, —m* x D*m*, @)y >
w2
= ((mj, —m") X D*mj,, @py, )12 + (m* x (D*mj — D*m*), Py, )y 2.
Then, for the first term on the right-hand side,

B | [ (o) =m0 < Dm0, 900 |
<E [ [ 1) )00 900 1D () dr]

T 1 1
<[ [ i) = (Dol 1009 s 0P 015 ]

IN
/N
=

*
| — |
ﬂ
—
3
=
—
N
|
3
*
—~
N
=%
= poi—
[S)
=&
N
QU
-~
—_
N———
Bl
X
N
&=
*
| — |
S—
ﬂ
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(e[t

where the first expectation in the last inequality converges to O by Lemma 5.3(ii), the second expecta-
tion is finite as @ € L*(Q*;1L4(0,T; L}, )) and the final expectation is finite by (71). Thus, the left-hand
side converges to 0 as h — 0. Also, m* x ¢ € L*(Q*;L*(0,T;1L2,)) and then by the weak convergence
(77,

h—0

lim E* { /O " (6) x (DA (1) — DA (1), ()1, dt} ~0.

Therefore,

lim E* [ /O ' ‘ (mj () % D2 (1) —m* (£) D" (1), @(1) )z, dt] ~0.

Part (vi). Similarly,
{mj x (mj; x Dzm;;) —m* x (m* x Dzm*) V@)1
W’z
= ((mjy—m") x (mj, < D*my) @)z + (m" x (mj, x D2mj, —m" x D*m"), @)1z .

w2

Then,

wp

| [ (im0 () % (0) < D20 (0, |

<E* [/ )= dtDi . <E* [/OT ()P 1L dz]>4

1

, ,
(B | [ mit) < Dmiopl )
0

1
where the last line converges to 0 by Lemma 5.3(ii), ¢ € L*(Q*;1L4(0,T;Ly,,)) and (73) with p,,, > pif,.
Also, we have

T
B |00 000) ¢ D 0) = m(0) < D () (0 |
< | [ ni0) < Do) (0) < D2 )" () ¢ 9(0) 2, .

where m* x ¢ € L*(Q*;L*(0,T;Ls;,)) and thus by part (iii), the expectation in the last line above
converges to 0. Therefore,

T
lim E* [/ (mj, x (mj, x Dsz) —m* x (m* x Dzm*) ,@)12 (1) dt} =0.
0 W)

h—0

Lemma 5.6. Assume that wo > 4wy. Recall the definitions (61), we have
(i) Fo(mj,) = F(m*) in L*(Q*L*(0,T;L3,)),
(ii) Sg(mj) — S(m*) in L*(Q*;L*(0,T;13,)),
(iii) KG(m};) — KG(m*) (strongly) in L*(Q*;L*(0,T;L2, ,,,,)).
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Proof. As in Lemma 5.5, let @ be an arbitrary measurable process in L*(Q*;L*(0,T;Ls,)). By (6)
and (7), k2, kk’ € L>NH' and v € C([0, T]; L NH!'). Then for y = x?,(k?)~, k&', v, any piecewise
constant approximation (in the x-variable) z of y satisfies

(84) z—y inL*0,T;Ly).

For example, the approximation z can be taken to be y~ or y. Let u be a function such that u(mj) €
L*(Q*L*(0,T;1.2 )). Then,

wo

R [ /OT (O ulm(6) — y(Ou(m* (1)), (1)) d;]

< | [ (e <l oz, 0 ar| 4| [ 0utnp) —utn') o)z 0) o]
(85) I !

< (& [ [Tt @] ) ([ [ oo, @) (e[ [ oo, a])
+8 | [ ni (1) =t ). 509 0, ]

If u(mj}) — u(m*) in L*(Q*;L*(0,T;13,)), then the right-hand side of (85) converges to 0 by (84) and
yo € LY(Q*L40,T;Ly)).

Part (i). Let u(mj;) = mj x (m; x Dmj) and let y = v. The result follows immediately from (85) and
Lemma 5.5(v) and (vi).

Part (ii). Since wy > 4w, we have p,,, < pf;l , We observe that from (74) and (72) that

Dl x (m} x Dm}), |m} x Dmi[*m}, (m},Dm})m} x Dm}

are in L*(Q*;L(0,T;1LZ))). Taking the following choices of u, y and z:

1, . ~
u(m}) = (Y — Dm x (m}, x D*m}) —2ym} x D*m}, y=x>, z= 3 ((;()24_ KZ) 7
u(m}) = y*Dm}; x (m} x Dm}}) + |m}, x Dmj|*m;, y=K>, z=K,
() = 2y(m}, D) i, x Do, y=k, = (@)

—

u(m) = [(72 = 1)mj, x (mj, x Dmj)) = 2ymj, x Dmj], y=rkK', z= KK,

and using Lemma 5.5(ii) — (vi), we follow again the argument (85) to obtain weak convergence of
Sg(m}) to S(m*) in L*(Q*;L*(0,T;1L2))).

Part (iii). The result follows from (6) and Lemma 5.4. ]

5.2.2. Wiener process. Define a sequence of processes {M },~0 on (Q,F,P) by

M (1) := /0 ’ (G (5)) — (vt + Py (s) ) AW ().

Recall the equation of ", we have from (62) that

My (1) = 7 () — mo — /0 ’ (Fg(mh(s))+;S§(mh(s))> ds — Ry (1) — / "R (s) ds,

0
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where the operator R" is given by
Riu:= —5(yP, + Py)u+ Qrut aQau+ % (%) + %) 2701 — (¥ — 1)0u]
+ % (K% (P + 7Py) u—2y(K*) " Psu) + %@ 2y — (¥ — D)P] u.
Similarly, define a sequence of processes {M; },~o on (Q*, F*,P*) by

M (1) :=my,(t) —mo — /Ot <Fg(m2;(s)) + ;Sg(m}i(s))> ds — Rom;,(t) — /Ot R'mj (s) ds.

Lemma 5.7. For eacht € (0,T), we have the following weak convergence in L*(Q*;H,!):
! 1
M (1) = M*(t) == m"(t) —mgy — / <F(m*(s)) + 2S(m"(s))) ds.
0

Proof. Recall that H}, is compactly embedded inLj, . Lets € (0,7] and ¢ € L*(Q*; H,
5.2, the two sets of remainders

—h —1 —h —h —1 —h
{Rom ,R1m1,P1m ,...,ij 7Q1m1aQ2m }7

{Rom;;?leZaplm;fn “ee ,PSmZ,leZ,szZ},

). By Remark

have the same laws for m",m} € L*(0,T; L2, NH2) NC([o, T);LZ, NH'"). Then, by Lemma 4.2,

1
- <Rom;;<r>+ | R ds,<p> ]
Wl 0 HEVI

t
1 * * h % —
=1limE [(Romh(t),([J)Lz + A <R mh(s),(p>]LZ ds] =0.

h—0 w2 "

lim E*
h—0

By the pointwise convergence (67) of mj; in C([0,7];H,,!) and Lemma 5.6(i) — (ii),

HmE* [y (M3 (6,9, |

wi wy

. * * ! * ! *
=i |y 000 =m0. 0y = [ (B0 + 355i(5).0) ds]
V/'z
t
Lm E™ g <R0mh(f)+/0Rmh(S)a‘P>H1]
H'l

_ R [H,l (M*(1), <p>H;,,} :

wy

O

Lemma 5.8. The process W* is a Q-Wiener process on (Q*, F*,P*), and W*(t) — W*(s) is indepen-
dent of the c-algebra generated by m*(r) and W*(r) for r € [0, s].

Proof. See [3, Lemma 5.2(i)] (using Lemma 5.1). ]
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Lemma 5.9. For eacht € [0,T],

- /0 "Gl (s)) dW*(s).

Proof. Fix hand t € (0,T]. For each n € N, define the partition {s? = £ :i=0,...,n}. Define

SWh(t,st) := Wh(t Asty) —Wh(t As),
SWy(t,s7) == Wi (t NSl ) — Wik(e AsT),
OW™(t,s7) == W™ (t Asiy) =Wt As)),

where Wh* (s) is the piecewise constant approximation of W;*(s) (as in (55)) for every s € [0,7]. As in
(68), we also have

(86) Wi — W*inC(|0,T];L*(R)), P*-as.

Consider the following two Lfvz -valued random variables:

Vi) = ( — (P +P) ' (57) ) W' (1.7),

OM‘

3
|
—

Vi) 1= My (1) = ) (G(my(s7)) = (VP + Pa) i (s; 1) Wy (2,55).-

i
=}

Following Remark 5.2, Y}, , and Y}::n have the same distribution. As n — oo,
— — t AN .
Yin(t) — My(t) — /O (G(mh(s)) —(yP, +P2)mh(s)) dW"(s) =0in L*(Q; 1L}, ).
This implies that Y, (¢) also converges to 0 in L*(Q*;13,) as n — oo. Thus,
t A~
M; (1) = /O (G(mp(s)) = (vPr+ Pa)my,(s)) dW (s),  P-as.

We observe that

B i) [ Gl (5) w5

t n—1 N
-5 /o (G(’“Z“)) = (YP+ P (s) - ;am,ﬁ(s?mw m(s)) dWh*(s)]

n—1

2| L, Glmitsh) oW Z G(m <tAs?>]

t [n—1
E* /()(;)G(m*(s?)) v:17Yl+1](s)G(m*(s))> dW*(s)]
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For Jg and J,, let € > 0 and choose n € N such that

(87) G(m"(s)) -

t
/()

n—1
2 GOm" (1)) U sr.,,1(5)
i=0

=

2

ds
iy

Since W}f and W" have the same laws on C([0,T]; H2(R)), we have

1
(& 2.))' < (=

| |76 - Fi60m ()
L J

2 ] ) |
ds
|

N m

[ t N n—1 2
wE | [xal (G<m*<s>>—ZG<m*<s?>>n<sy,S;;l <s>) ds

i 0 J i=0 HL;II

[ t n—1 2 T
+ | E /0 Y& |L (G0 (1)~ G (1)) L (5)]| s

10 H;!

1

2 2
(= )
H,!

Recall that ]Lfv — H;ll for all w > wy. Let w = w; +wy. As h — 0, the first and the third term on the
right-hand side converges to O by Lemma 5.6(iii), the fourth term converges to 0 by Lemma 4.2 and
(6), and the second term is less than % by (87). Hence, for a sufficiently small /, we have

J &€
’JO1|L2(Q*;H;|1) < 2"

| X |7ieri+Pmics
J

Similarly, || 2@, < 5.

For J{i, we have

2
n—1
B W | < B || X (GOmi(s9) = Glm* (7)) W (1,57)
i=0 H;ll
n—1 = 2
+E || X Gl (57)) (W (1,7 = SW(1,57) )
i=0 H‘:ll

Since W* is a Q-Wiener process, the first term on the right-hand side converges to 0 by Lemma
5.6(iii), Also, the second term converges to 0 by the pointwise convergence (68) (or (86)) and the
result G(mj)py € L*(Q*;L2(0,T;1L)), which can be deduced from the estimates (70), (71) and (72).

Therefore, for any sufficiently small 4,

2

2

E* < €°.

wi0) - [ () aw s

—1
le

Using Lemma 5.7 and the uniqueness of weak limit, the proof is concluded.

We are ready to prove the main theorem.
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5.2.3. Proof of Theorem 2.4. By Lemmata 5.7 and 5.9, m* satisfies the (12) in H;.]- Moreover, using
Lemma 5.3(i), we can simplify F,S and G:

F(m*) = —v(Dm* +ym* x Dm*) —m* x D*m* + aD*m* + o|Dm*|*m”,
S(m*) = &* (1 — Y¥)D*m* — 27| Dm*[*m* — 2ym* x D*m”)
+xk’ ((1—y*)Dm* — 2ym* x Dm*)
G(m*) = —Dm" + ym* x Dm",
and each of them is in L?(Q*; L?(0,T;1L?)), hence the equality (12) holds in IL2. Recall the properties
of m* shown previously in (78) and Lemma 5.3, we have now verified that m* is a solution of (8) in

the sense of Definition 2.1. It only remains to show that m —mg € C*([0,T];1L?). For s,z € [0,T] and
p € [1,0), there exists a constant C that may depend on p, T, Cy such that

E* || (1) = m* ()77
2 r
dr) ]
L2

‘ p
( [ T alseo 0k dr) ]
* 2 ! * * b
s o (R ([ (om0 102 (0)) ) ] ,

F(m*(r)) + ~S(m* (1))

< |t —s|PE*
<li—s :

+E*

< Clt —s|PE*

where the expectation on the right-hand side is finite. Then by Kolmogorov’s continuity criterion,
m*(t) —mg € C*([0,T];L?), P*-a.s. for a € (0, 1).

5.2.4. Proof of Theorem 2.5. Let (my,W) and (my,W) on (Q,F,(F;),P) be two solutions of (8) in
the sense of Definition 2.1. Let u = m; —m, and w > 0. Applying It6’s lemma to  |u(r) 2.,
1 t
SO = ()R + [ ((s),F (i) = F(ma()y s
1 t
45 [ w(s),Smi () = S(ma()y dr

9 43 [ E @G () G, a

.2

+ [ s),(GOm () = Glma(s))) aW ()
0
— (O + [ 1U1)+Vals) + Us(o)] s+ Us(o).

An estimate on Uj:
Ui(s) = (u, F (m1) — F(m2))y2 (s)
= (u,v (=Du+ yu x Dmy + ymy X Du) —u x D*my —my x D*u), (s)

+ ot (u, (D(my +my), Duy m, +D*u+|Dmy ’2”>L2 (s)
= (u,v(—Du+ ymy x D”»M (s) + (u, —my x D2M>]Lz, (s)
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+a(u,(D(m; +my),Du) m2>m (5)+a <D2u, u>La (s)+a <u, |Dm; \2u>m (s).

Then, for an arbitrary € > 0,

1 1
(u,v(=Du+ymy x Du))y, (s) = <upu% V(—Du+ ymy x Du)pvﬁ> (s)
W LZ

(89) 1
< S C PR, +e1Du(s) ;.
and
(1= X D)y (5) = = (DPuse < mapy)y ()
= (Du,Du x map,, +u x D(mapy,))p2 (s)
(90) = (Du,u x Dmy); » + (Du,u x mZPCvP»;1>La_ (s)
< gz (Dma(9) - +2) )R + 2Duts) By
Similarly,
Ot e, (Dlmy -+ ma). Duiyma) () < 530 Doy () + Dna(s) ()2 + 5% Du(o) .
and
o (1.0} (5) = @Dy (9
= —o(Du, D(upy,))y» (s)
92) = —oc|Du(s)|Hazv — a(Du,up,,p,’ >1L%- (s)
= —a|Du(s)|ia + %sz\Du(s)\ia + 2%920‘2W2|u‘1i§:
Also,
93) o (u, D [Pu), 5 (s) < & Drmy (s) = [u(s)7 -
Hence,

U(s) < yi(s)[u(s)lE + (3> — o) |Du(s)[£
for the process y; given by

1
op V1= (COHP) 4D 407 407D (5) 4 Dma(s) - + @207)
+a|Dmy(s) [

For i = 1,2, there exists a constant C > 0 such that
T T
(95) E* [ / \Dm;|3.(1) dt] <E* [ / \Dm;|Z (1) dt] < oo,
0 0

which implies [,y (r) dr < oo, P-a.s.

An estimate on Us:

Us(s) = 5 (u,S(m1) — S(m2))y 2 (s)

(u, K> [(1- Y)D?u — 2y(u x D*my +my x Dzu)] o (5)

w

N =N =

45
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_ ,),2 <M, K2 [<D(m1 +ma),Du) my +|Dm |2”} >1Lgv (s)

2 e [(1 =)D 2500 Doy -+ x Dw)]) 9
% (u, k&’ [(1—y*)Du—2ymy x Du| >]L‘2v (s)
. %(1 ) (D), (5) P x D) ()

‘ﬁg

<u K2 (D(my +my),Du) m2>m (s)— yz <u, K2|Dm1 |2M>1L% (s).

Again, for € > 0,

—

(u, k6" [(1— Y)Du — 2ym; x Dul), 2 (s)
1

2
<
~ 4¢2

Ce (1= +47) [u(9) L2 + 5 SZ\DM( 9tz
As in (90) and (91),
—¥{(u,12my x D2u) , (5) = —y(DPu, K2u X mapyy), - (s)
= y(Du,Du x myk>py, +u x D(mak>pyy) )y » (5)

= y(Du, Ku x Dmy + K*u x mapl,py, " +2KkK'ux my) 5 (s)

1
< TEZYZCi (|Dm2(s)|]iw +w? +4) |u(s)]i‘zu + 82\Du(s)h?ng7

and
1 1
—7* (u, k* (D(my +my), Du) m2>]L£, < 2—82]/4Ci|Dm1 (s) +Dm2(s)|ﬂzdw|u(s)|ia + 582|D“(S)|1%‘§V'
Also,
—7* {u, k*|Dmy \2u>L2 (s) <0, Vsel0,T].

For the remaining term in U,, we use integration-by-parts as in (92):

%U = 7) (u,x*D%u),,
= S0P =)D D(Cup,)),

— %(yz —1) {<Du7 K’2Du>m (s)+ <Du K2 up,,p,, 'y okk u>]L2 (s )}

1 1 1
< _EZQ?‘iju(s)‘i%+ EYZC%\DM(S)’]%%, e —Ci (1 —72) (w*+4) ’M(S)’ig,
J
1
- Eez\Du(s)\ia.

Thus,

5 1
U2(S)S‘I/Z(S)’”(Sﬂig+§82\D”(S)\ig,+§7’zci|D” |1L2— Zq]|fJDM I]Lz,
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where
4 202
va(s) = 432C (1=7)*(w*+5)
1
t3a (P (W? +6) + 7| Dma(s)[F + ¥ [Dmi (s) + Dma(s)[F) ,
and by (95), [ wa(t) dr < oo, P-as.

(96)

An estimate on Us:

)= %Zq? 1£7(Glm) — Gm)[2, ()

Zq,\fj )+ yu(s) x Dmy (s) + yma(s) x Du(s))|L, (),

where for every j > 1,
£71G(my) = G(m2)? (s.x)
= sz |—Du+ yu x Dmy + ymy x Dul* (s, x)
= f~2 (\Du!z + 72 |my x Du|? + y*|u x Dmy|* + 2y (—Du + ymy x Du,u x Dmy)) (s,x)
< (14 7)1fDuls,x)[* + 457 |Dma (s) - | fju(s, )|
+g7’2 (1+7°) [Dmy (s)[E= [ £7u(s,x) | + €| Du(s,x)|*.

Hence,

1 1 1
06) < 514 PV EGDU)R, +7CE (5 + (14 7ICE) IDm(6)-lu(o),
J
1
+ 582|Du(s) |112ﬂ2
1 1 1
< (s) ()2 + 5 L a1 f0u(s) B + 5 PCADU(s) R + 5 eDu(s) B,
J
where the second term on the right-hand side cancels with the corresponding term in U,(s) and
yi(s) = PPCL (5 + 8%(1 +9%)C%) [Dm; (5)|} - is similarly integrable P-a.s.
We have
Ui(s) +Ua(s) +Us(s) < (Wi(s) + als) + w3 (s)) |u(s)7, + (687 +¥*CZ — o) [Dus)|,
We can choose a sufficiently small € > 0 such that under the assumption (20),
(6 +7*Ci—a) <0,
which implies
Ui(s) + Ua(s) +Us(s) < (Wi (s) + wa(s) + y3(s)) u(s)IF, = w(s) [u(s)[3.
Therefore, by (88),

%d\u(t)lia, < y(O)u()[, di+u(t), [Gmi(t)) — Glma(1)]dW (1)1, -

w
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Define the process Y by
1 o (" wls
Y(t):= §|u(t)|igve 2hvis)ds —p e 0,T).

Then,
1 . 1 .
ar(t) = <2d u(t)[f,,e 0¥ ds> + <2|u(t)li5,de‘2f° v dS>

T <;d|u(f)|igvadezfé . ‘“>
< e 2V A (1), [G(m (1)) — G(ma())] AW (1)) 5

Since |u(t)|L~ < 2 P-a.s. and there exists a constant C such that

E[SUP (IDmy (1) [72 + |Dma (1) [72) | < C,

t€[0,T]

the process

M) i= [ 2BV u(s), [Glm (5) ~ Gloms(5) AW ().

is a martingale, and then
EY(#)] <Y(0)+E[M()]=Y(0), rel0,T].
By the definition of Y (¢), if Y (0) = m;(0) —m2(0) = 0, then
’”(t)higv =0, P-as.

fort € [0,T], proving pathwise uniqueness of the solution of (8). By the Yamada-Watanabe Theorem,
the uniqueness in law follows.

APPENDIX A.
A.1. Some calculations in discrete spaces.
(a) discrete integration-by-parts:

Y (ulx),0"w(x)) = — Y (9"u (x), w(x)),

XEZLp XELy
foru,w e H} = {ve L3 : \ahvm < oo} with appropriate decay properties. In particular,

<8hu,9hw>L2 =— <Ahu,w>L2 .

h h
(b) discrete expansion of (u, A"u) and (u,d"u): for any u satisfying that |u(x)| = 1 for all x € Z,

(u(x), A'u(x)) = = (19" u(@)? + 10"~ (x) ) <0,

1
2

o7 b
(u(x), @"u(x)) = —=|0"u(x) < 0.
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(c) product rule:
" (fu) = (0" f)u(x)+ £+ 0"u = (3" f)u* + f9"u(x)

for f scalar-valued and u vector-valued; similarly for f and u both scalar-valued, and for (f,u)
and u x u when f,u are vector-valued.

(d) Li—norm of Au:
A"l = (9" (0"u) |12 = [0"(9"u) 1.

Lemma A.1 ([17, Chapter 1, Theorem 3]). For W 7y — R,

1 11
k3 t27p
n

‘(3h)kuh‘Lp SC’uh“; n ‘(ah n h‘{[} 7

Sl

for p € [2,0], k € [0,n) and C is a constant independent of u".
A.2. Some tightness results.

Lemma A.2 ([6, Theorem 2.1]). Let By C B C B be Banach spaces, By and B reflexive, with compact
embedding of By in B. Let p € (1,00) and a € (0, 1) be given. Let X be the space

X =L"(0,T;By) NW*P(0,T;By)
endowed with the natural norm. Then the embedding of X in L?(0,T;B) is compact.
Lemma A.3 ([6, Theorem 2.2]). If B; C B are two Banach spaces with compact embedding, and the
real numbers o € (0,1), p > 1 satisfy op > 1, then the space W*P(0,T;B)) is compactly embedded
into C([0,T];B).

Lemma A.4 ([15, Corollary 19]). Let I be an either bounded or unbounded interval of R. Let E be a
Banach space. Suppose s > r, p < qands—% > r—éforO <r<s<landl<p<g<oo Then,

WP (ILE) < W™ (I;E).

In addition, we verify the continuous embedding

11 1
(98) WE0,T;1L2) — WP2(0,T;1L2), w>1, ac <4 2) B=a——.

Indeed, for u € W**(0,T;1.2),

1
O 2
lulws20,7:02) = / Ju(t) ’1L2 dr+ // \t—s\“rzﬁ dt ds
1
|u(r) 2
</ |u(t |]det> T> +<// t—s|2+4ﬁ S drds| T
ju(e) —u(s)l} %
ult
2 L2
2T/\ IdeH—ZT// ]tfs\”“ﬁ dtds]

1

2

IN

IN
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o () —u(s)it,
< (2max{T,T"}) /\ ]]Lza’ // e dt ds

1
= (2maX{T, Tz}) * |u’W°‘~4(O.,T;]L§‘,)7
where the second inequality holds by \/a + /b < v/2a+2b for a,b > 0.
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