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Abstract. We show that torsion-free elementary amenable groups
of Hirsch length 6 3 are solvable, of derived length 6 3. This class
includes all solvable groups of cohomological dimension 3. We show
also that groups in the latter subclass are either polycyclic, semidi-
rect products BS(1, n)oZ, or properly ascending HNN extensions
with base Z2 or π1(Kb).

We show that finitely generated, torsion-free elementary amenable
groups of Hirsch length 3 are in fact solvable minimax groups, of derived
length 6 3. We show also that such a group is finitely presentable if and
only if it is constructible, and such groups are either polycyclic, semidi-
rect products with base a solvable Baumslag-Solitar group, or properly
ascending HNN extensions with base Z2 or π1(Kb). Our interest in this
class of groups arose from recent work on aspherical 4-manifolds with
non-empty boundary and elementary amenable fundamental group [4].
Such groups have cohomological dimension 6 3 and are of type FP ,
and thus are in the class considered here. (One of the results of [4]
is that the groups arising there are all either polycyclic or solvable
Baumslag-Solitar groups, and so may be considered well understood.)

1. background

Let G be a torsion-free elementary amenable group of finite Hirsch
length h = h(G). ThenG is virtually solvable [6], and so has a subgroup
of finite index which is an extension of a finitely generated free abelian
group Zv by a nilpotent group [3]. Since v 6 h < ∞ we may assume
that v is the virtual first Betti number of G, i.e., the maximum of the
ranks of abelian quotients of subgroups of finite index in G. If G 6= 1
then 0 < v 6 h = h(G) 6 c.d.G 6 h+ 1.

We recall that the Hirsch-Plotkin radical
√
G of a group G is the

(unique) maximal locally nilpotent normal subgroup of the group. (For

the groups G considered below, either
√
G is abelian or G is virtually
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nilpotent.) If G is solvable then
√
G is its own centralizer in G (by

the maximality assumption), and so the homomorphism from G/
√
G

to Aut(
√
G) induced by conjugation in G is a monomorphism.

A solvable group is minimax if it has a composition series whose
sections are either finite or isomorphic to Z[ 1

m
], for some m > 0. A

group is constructible if it is in the smallest class containing the trivial
group which is closed under finite extensions and HNN extensions [1]. If
G is a torsion-free virtually solvable group group then c.d.G = h ⇔ G
is of type FP ⇔ G is constructible [7].

Let BS(m,n) be the Baumslag-Solitar group with presentation

〈a, t | tamt−1 = an〉,
and let BS(m,n) be the metabelian quotient BS(m,n)/〈〈a〉〉′, where
〈〈a〉〉′ is the commutator subgroup of the normal closure of the image
of a in BS(m,n). We may assume that m > 0 and |n| > m. (When
m = 1 and n = ±1 we get Z2 and π1(Kb).) Since we are only interested
in torsion-free groups we shall assume also that (m,n) = 1.

2. hirsch length 2

In this section we shall consider groups of Hirsch length 2, which
arise naturally in the analysis of groups of Hirsch length 3. (Note also
that some groups of Hirsch length 2 have cohomological dimension 3.)

Theorem 1. Let G be a torsion-free elementary amenable group of
Hirsch length 2. Then

√
G is abelian, and either

√
G has rank 1 and

G ∼=
√
Go Z or

√
G has rank 2 and [G :

√
G] 6 2.

Proof. Since G is virtually solvable [6] and the lowest non-trivial term
of the derived series of a solvable group is a non-trivial abelian normal
subgroup,

√
G 6= 1. Since any two members of

√
G generate a torsion-

free nilpotent group of Hirsch length 6 2 they commute. Hence
√
G is

abelian, of rank r = 1 or 2, say, and h(G/
√
G) = 2− r.

Let C = CG(
√
G) be the centralizer of

√
G in G. If N 6 C is

a normal subgroup of G with locally finite image in G/
√
G then N ′

is locally finite, by an easy extension of Schur’s Theorem [8, 10.1.4].

Hence N ′ = 1, so N is abelian, and then N 6
√
G, by the maximality

of
√
G. Therefore any locally finite normal subgroup of G/

√
G must

act effectively on
√
G.

If
√
G has rank 1 then G/

√
G can have no non-trivial torsion nor-

mal subgroup. If C 6=
√
G is infinite then it has an infinite abelian

normal subgroup (since it is non-trivial, virtually solvable, and has
no non-trivial torsion normal subgroup). But the preimage of any
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such subgroup in G is nilpotent (since it is a central extension of

an abelian group). This contradicts the maximality of
√
G. Hence

=
√
G and so G/

√
G acts effectively on

√
G. Since h(G/

√
G) = 1 and

Aut(
√
G) 6 Q×, and G/

√
G has no normal torsion subgroup, we see

that G/
√
G ∼= Z.

If
√
G has rank 2 then G/

√
G is a torsion group, and Aut(

√
G) is

isomorphic to a subgroup of GL(2,Q). If G/
√
G is infinite then it must

have an infinite locally finite normal subgroup (since it is a virtually
solvable torsion group). But finite subgroups of GL(2,Q) have order

dividing 24, and so G/
√
G is finite. If g in G has image of finite order

p > 1 in G/
√
G then conjugation by g fixes gp ∈

√
G. It follows that

g must have order 2 and its image in GL(2,Q) must have determinant

−1. Hence [G :
√
G] 6 2. �

If G is finitely generated then
√
G is finitely generated as a module

over Z[G/
√
G], with respect to the action induced by conjugation in G.

If h(
√
G) = 1 then

√
G is not finitely generated as an abelian group,

while G/
√
G ∼= Z. Hence Z[G/

√
G] ∼= Z[t, t−1], and the action of t

is multiplication by some n
m
∈ Q \ {0,±1}, since

√
G is torsion-free

and of rank 1. After replacing t by t−1, if necessary, we may assume
that

√
G ∼= Z[t, t−1]/(mt − n), for some m,n with (m,n) = 1 and

|n| > m > 0. Hence G ∼= BS(m,n). Then c.d.G = 2 ⇔ G is finitely
presentable ⇔ m = 1 [5].

If G is finitely generated and h(
√
G) = 2 then G ∼= Z2 or π1(Kb),

and so c.d.G = 2.
Let Z(2) be the localization of Z at 2, in which all odd integers are

invertible, and let Z(2) act on Q through the surjection to Z(2)/2Z(2)
∼=

Z× = {±1}. Let Q⊗Kb be the extension of Z(2) by Q with this action.
Then if h = 2 and G is not finitely generated it is either a subgroup
of Q om

n
Z, for some nonzero m,n with (m,n) = 1 (if h(

√
G) = 1),

or is a subgroup of Q ⊗ Kb (if h(
√
G) = 2). Every such group has

cohomological dimension 3.

3. hirsch length 3

Suppose now that h(G) = 3. Then h(
√
G) = 1, 2 or 3.

Theorem 2. Let G be a torsion-free elementary amenable group of
Hirsch length 3. If h(

√
G) = 1 then

√
G is abelian and G/

√
G ∼= Z2.

If h(
√
G) = 2 then

√
G is abelian and G/

√
G ∼= Z, D∞ or Z ⊕ Z/2Z.

If h(
√
G) = 3 then G is virtually nilpotent. In all cases, G has derived

length at most 3.
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Proof. If h(
√
G) = 1 then

√
G is isomorphic to a subgroup of Q and

(as in Theorem 1) G/
√
G has no locally finite normal subgroup. Since

CG(
√
G) is virtually solvable, it follows that CG(

√
G) =

√
G and so

G/
√
G embeds in Aut(

√
G), which is isomorphic to a subgroup of Q×.

Hence G/
√
G ∼= Z2, and so G has derived length 2.

If h(
√
G) = 2 then

√
G is abelian and (as in Theorem 1 again) the

maximal locally finite normal subgroup of G/
√
G has order at most

2. Since G/
√
G is virtually solvable and h(G/

√
G) = 1, it has an

abelian normal subgroup A of rank 1, which we may assume torsion-free
and of finite index in G/

√
G. Moreover, G/

√
G embeds in Aut(

√
G),

which is now isomorphic to a subgroup of GL(2,Q). No nontrivial
element of A can have both eigenvalues roots of unity, for otherwise
CG(
√
G) >

√
G. Since the eigenvalues of A have degree 6 2 over Q, it

follows that no nontrivial element of A can be infinitely divisible in A.
Hence G/

√
G is virtually Z, and so it is either Z or the infinite dihedral

group D∞ = Z/2Z ∗ Z/2Z, or an extension of one of these by Z/2Z.

If G has a normal subgroup H such that H/
√
G ∼= Z/2Z then conju-

gation in G must preserve the filtration 0 < H ′ <
√
G of

√
G. There-

fore elements of G′ act nilpotently on
√
G, and so G/H cannot be D∞.

Thus if h(
√
G) = 2 then G/

√
G ∼= Z, D∞ or Z ⊕ Z/2Z, and G has

derived length 2, 3 or 2, respectively.
If h(
√
G) = 3 then h(G/

√
G) = 0, and so G is virtually nilpotent.

Since iterated commutators live in finitely generated subgroups, the
derived length of G is the maximum of the derived lengths of its finitely
generated subgroups. Finitely generated torsion-free virtually nilpotent
groups of Hirsch length 3 are polycyclic, and are fundamental groups
of Nil3-manifolds. These are Seifert fibred over flat 2-orbifolds without
reflector curves, and so these groups have derived length 6 3. Hence
G has derived length 6 3. �

Corollary 3. If G is finitely generated then it is a minimax group.

Proof. If h(
√
G) = 1 and G is finitely generated then

√
G is finitely

generated as a Z[Z2]-module. Since it is also torsion-free and of rank 1

as an abelian group, it is in fact a cyclic Z[Z2]-module. Hence
√
G ∼=

Z[ 1
D

] for some D > 0.

If h(
√
G) = 2 then G has a subgroup K of index 6 2 such that

K/
√
G ∼= Z. If G is finitely generated then K is also finitely generated.

Then
√
G is again finitely generated as a Λ-module, and is torsion-free

and of rank 2 as an abelian group. Hence it is isomorphic as a group
to a subgroup of Z[ 1

m
]2, for some m > 0.



ELEMENTARY AMENABLE GROUPS 5

If G is finitely generated and h(
√
G) = 3 then G is polycyclic. In all

cases it is clear that G is a minimax group. �

We shall consider more closely the cases with h(
√
G) = 1 or 2.

Lemma 4. If G is finitely generated and h(
√
G) = 1 then G is a

semidirect product BS(m,n) o Z, where mn has at least 2 distinct
prime factors.

Proof. If h(
√
G) = 1 then G has a presentation

〈a, t, u | tamt−1 = an, uapu−1 = aq, utu−1 = tae, 〈〈a〉〉′ 〉.
for some nonzero m,n, p, q with (m,n) = (p, q) = 1 and some e ∈ Z[ 1

D
],

where D is the product of the prime factors of mnpq. Hence
√
G ∼=

Z[ 1
D

]. After a change of basis for G/
√
G, if necessary, we may assume

that mn has a prime factor which does not divide pq. We may further
arrange that p divides m and q divides n, after replacing t by tuN

or tu−N for N large enough, if necessary. Hence D is the product of
the prime factors of mn. It must have at least 2 prime factors, since
G/
√
G ∼= Z2 maps injectively to Aut(

√
G) ∼= Z[ 1

D
]×.

Thus G ∼= BS(m,n)oθZ, for some automorphism θ of BS(m,n). �

Theorem 5. A finitely generated torsion-free elementary amenable
group G of Hirsch length 3 is coherent if and only if it is FP2 and
h(
√
G) > 2.

Proof. If G is coherent then it is finitely presentable and hence FP2.
Suppose that h(

√
G) = 1. Then

√
G ∼= Z[ 1

D
] for some D > 1, and the

image of G/
√
G in Aut(

√
G) ∼= Z[ 1

D
]× has rank 2. Hence it contains a

proper fraction p
q

with p, q 6= ±1, and so G has a subgroup isomorphic

to BS(p, q). Since this subgroup is not even FP2 [2], G is not coherent.

If h(
√
G) = 2 then we may assume that G/

√
G ∼= Z. If, moreover,

G is FP2 then G is an HNN extension with base a finitely generated
subgroup of

√
G [2], and the HNN extension is ascending, since G is

solvable. Any finitely generated subgroup of G is either a subgroup of
the base or is itself an ascending HNN extension with finitely generated
base, and so is finitely presentable.

If h(
√
G) = 3 then G is polycyclic, and every subgroup is finitely

presentable. �

It remains an open question whether an FP2 torsion-free solvable
group G with h(G) = 3 and h(

√
G) = 1 must be finitely presentable.

Note also that the argument shows that G is almost coherent (finitely
generated subgroups are FP2) if and only if it is coherent.
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We shall assume next that h(
√
G) = 2 and that G/

√
G ∼= Z. Since

Q ⊗
√
G ∼= Q2, the action of G/

√
G on

√
G by conjugation in G de-

termines a conjugacy class of matrices M in GL(2,Q). Hence G ∼=√
GoM Z.

Lemma 6. A matrix M ∈ GL(2,Q) is conjugate to an integral matrix
if and only if detM and trM ∈ Z.

Proof. These conditions are clearly necessary. If they hold then the
characteristic polynomial is a monic polynomial with Z coefficents. If
x ∈ Q2 is not an eigenvector for M then the subgroup generated by
x and Mx is a lattice. Since M preserves this lattice, by the Cayley-
Hamilton Theorem, it is conjugate to an integral matrix. �

If G is finitely generated then
√
G is finitely generated as a Z[G/

√
G]-

module. It is finitely generated as an abelian group (and so G is poly-
cyclic) ⇔ M is conjugate to a matrix in GL(2,Z)⇔ detM = ±1 and
trM ∈ Z.

If G is FP2 then G is an ascending HNN extension with base Z2

(as in Theorem 5 above). Hence M (or M−1) must be conjugate to
an integral matrix, and G is finitely presentable. On the other hand,
if G ∼=

√
G oM Z and neither M nor M−1 is conjugate to an integral

matrix then G cannot be FP2.
We conclude this section by giving some examples realizing the other

possibilities for G/
√
G allowed for by Theorem 2. Torsion-free poly-

cyclic groups G with h(
√
G) = 2 are Sol3-manifold groups. There are

such groups with G/
√
G ∼= Z, D∞ or Z ⊕ Z/2Z. (The examples with

G/
√
G ∼= D∞ are fundamental groups of the unions of two twisted

I-bundles over a torus along their boundaries.)
For instance, the group G with presentation

〈u, v, y | uyu−1 = y−1, vyv−1 = v−2y−1, v2 = u2y〉
is a generalized free product with amalgamation A ∗C B where A =
〈u, y〉 ∼= B = 〈v, u2y〉 ∼= π1(Kb) and C = 〈u2, y〉 ∼= Z2. It is clear that

G/C ∼= D∞, and it is easy to check that C =
√
G.

If G is the group with presentation

〈t, x, y | tx = xt, tyt−1 = yn, xyx−1 = y−1〉
then

√
G is normally generated by x2 and y, so h(

√
G) = 2 and

G/
√
G ∼= Z⊕ Z/2Z.

If G/
√
G ∼= D∞ then G is generated by

√
G and two elements u, v

with squares in
√
G. The matrices in GL(2,Q) corresponding to the

actions of u and v have determinant −1. Hence t = uv corresponds to
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a matrix with determinant 1. There are finitely generated examples of
this type which are not polycyclic. For instance, let F be the group
with presentation

〈u, v, x, y | u2 = x, uyu−1 = y−1, v2 = xy, vy3v−1 = x2y−1〉,
and let K be the normal closure of the image of {x, y} in F . Then
F/K ∼= D∞ and K/K ′ ∼= Z[1

3
]2, and F/K ′ is torsion-free, solvable and

h(F/K ′) = 3.
However, if such a group G is FP2 then so is the subgroup generated

by
√
G and t. Hence this subgroup is an ascending HNN extension

with finitely generated base H 6
√
G [2]. Since t maps H ∼= Z2 into

itself and has determinant 1 it must be an automorphism of H, and so
G is polycyclic.

4. finitely presentable implies constructible

In this section we shall show that if a torsion-free solvable group G
of Hirsch length 3 is finitely presentable then it is in fact constructible,
and we shall describe all such groups.

If G is FP2 and G/G′ is infinite then G is an HNN extension H∗ϕ
with finitely generated base H [2], and the extension is ascending since
G is solvable. Clearly h(H) = h(G) − 1 6 2, and c.d.G 6 c.d.H + 1.
In fact h(H) must be 2, for otherwise H ∼= Z and c.d.G = 2. In our
next theorem we shall need the stronger hypothesis that G be finitely
presentable. (Homological methods do not seem to be useful here; a
spectral sequence argument shows that Hi(G;Z) is finite for all i > 1.)

Theorem 7. Let G be a torsion-free solvable group of Hirsch length 3.
Then G is finitely presentable if and only if it is constructible.

Proof. If G is constructible then it is finitely presentable. Assume that
G is finitely presentable. If

√
G has rank 1 then G has a presentation

〈a, t, u | tamt−1 = an, uapu−1 = aq, utu−1t−1 = C(a, t, u), R 〉,
for some nonzero m,n, p, q with (m,n) = (p, q) = 1 and word C(a, t, u)
of weight 0 in each of t and u, and some finite set of relators R. Let D
be the product of the prime factors of mnpq. Then

√
G ∼= Z[ 1

D
], and

contains the image of c in G. As observed after Corollary 3, we may
assume that p and q divide m and n, respectively and that mn has a
prime factor which does not divide pq.

We may assume that each of the relations in R has weight 0 in each
of t and u. Then we may write C(a, t, u) and each relator in R as
a product of conjugates bi,j = tiujau−jt−i of a. Since R is finite the
exponents i, j involved lie in a finite range [−L,L], for some L > 0.
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The relations imply that the normal closure of the image of a in G
is
√
G ∼= Z[ 1

D
]. Hence the images of the bi,js in G commute, and are

powers of an element α represented by a word w = W (a, t, u) which is
a product of powers of (some of) the bi,js. In particular, a = αN and
bi,j = αe(i,j), for some exponents N and e(i, j). Clearly N = e(0, 0).

It follows also that tαmt−1 = αn and uαpu−1 = αq. Hence adjoining
a new generator α and new relations

(1) a = αN ;
(2) tαmt−1 = αn;
(3) uαpu−1 = αq;
(4) α = W (a, t, u); and
(5) tiujau−jt−i = αe(i,j), for all i, j ∈ [−L,L].

gives an equivalent presentation.
We may use the first relation to eliminate the generator a. Since the

image of α in G generates an infinite cyclic subgroup, the relations R
must be consequences of these, and so we may delete the relations in
R. Moreover the relation α = W (a, t, u) collapses to a tautology, and
so may also be deleted, and we may use the final set of relations to
write C(a, t, u) as a power of α. Since tbi,jt

−1 = bi+1,j and ubi,ju
−1 =

bi,j+1, we see that e(i, j) = ( n
m

)i( q
p
)je(0, 0), for all i, j ∈ [−L,L]. Since

α generates the subgroup spanned by the bi,js it follows that N =
(mnpq)L and e(i, j) = N( n

m
)i( q

p
)j for i, j ∈ [−L,L]. Hence the final set

of relations are consequences of the second and third relations.
Thus G has the finite presentation

〈t, u, α | tαmt−1 = αn, uαpu−1 = αq, utu−1t−1 = αc〉,

for some c ∈ Z. Since the subgroup generated by the images of t and
α is isomorphic to BS(m,n) and is solvable, either m or n = 1 [2].

If h(
√
G) = 2 then G has a subgroup J of index 6 2 which is an

ascending HNN extension with finitely generated base H 6
√
G. Since

h(H) = 2, we have H ∼= Z2. Hence J is constructible, and G is also
constructible.

If h(
√
G) = 3 then G is virtually nilpotent, and so is again con-

structible. �

Theorem 8. Let G be a torsion-free elementary amenable group of
Hirsch length 3. Then G is constructible if and only if either

(1) G ∼= BS(1, n) oθ Z for some n 6= 0 or ±1 and some θ ∈
Aut(BS(1, n));

(2) G ∼= H∗ϕ is a properly ascending HNN extension with base
H ∼= Z2 or π1(Kb); or
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(3) G is polycyclic.

Proof. It shall suffice to show that if G is constructible then it is one
of the groups listed here, as they are all clearly constructible. We may
also assume that G is not polycyclic, and so h(

√
G) = 1 or 2.

Since G is constructible it has a subgroup J of finite index which is
an ascending HNN extension with base a constructible solvable group
of Hirsch length 2. Since G is not polycyclic, we may assume that
J = G, by Theorem 2 (when h(

√
G) = 1) and by Theorem 2 with the

observations towards the end of §3 (when h(
√
G) = 2). Constructible

solvable groups of Hirsch length 2 are in turn Baumslag-Solitar groups
BS(1,m) with m 6= 0.

If h(
√
G) = 1 then |m| > 1 and G ∼= BS(1,m)∗ϕ, for some injective

endomorphism of BS(1,m). We shall use the presentation for BS(1,m)
given in §2. After replacing a by t−katk, if necessary, we may assume
that ϕ(a) = aq and ϕ(t) = tar, for some q 6= 0 and r in Z. Then G has
a presentation

〈a, t, u | tat−1 = am, uau−1 = aq, utu−1 = tar〉.
Let s = tu and n = mq. Then sas−1 = an, and the subgroup H ∼=
BS(1, n) generated by a and s is normal in G. Conjugation by u
generates an automorphism θ of H, since q is invertible in Z[ 1

n
]. Hence

G ∼= BS(1, n) oθ Z, and so G is of type (1).

If h(
√
G) = 2 then m = ±1, and so H ∼= Z2 or π1(Kb). Since the

HNN extension is properly ascending, G is not polycyclic, and so G is
of type (2). �

We have allowed an overlap between classes (1) and (2) in Theorem
8, for simplicity of formulation. Polycyclic groups of Hirsch length
3 are virtually semidirect products Z2 o Z, and hence are ascending
HNN extensions, but the extensions are not properly ascending, and
so classes (2) and (3) are disjoint.

Taking into account the fact that solvable groups G with c.d.G =
h(G) are constructible [7], we may summarize the above two theorems
as follows.

Corollary 9. If G is a torsion-free elementary amenable group of
Hirsch length 3 then c.d.G = 3 ⇔ G is constructible ⇔ G is finitely
presentable ⇔ G is one of the groups listed in Theorem 8 above. �
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