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ABSTRACT. In this paper, we develop a functional analytical theory for estab-
lishing that mild solutions of first-order Cauchy problems involving homo-
geneous operators of order zero are strong solutions; in particular, the first-
order time derivative satisfies a global regularity estimate depending only on
the initial value and the positive time. We apply those results to the Cauchy
problem associated with the total variational flow operator and the nonlocal
fractional 1-Laplace operator.

1. INTRODUCTION

In the pioneering work [7], Bénilan and Crandall showed that for the class
of homogeneous operators A of order α > 0 with α 6= 1, defined on a normed space
(X, ‖·‖X), every solution of the differential inclusion

(1.1)
du
dt

+ A(u(t)) 3 0

satisfies the global regularity estimate

(1.2) lim sup
h→0+

‖u(t + h)− u(t)‖X

h
≤ 2 L

‖u0‖X

|α− 1|
1
t

for every t > 0.
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Here, A ⊆ X× X might be multi-valued and is called homogeneous of order α if

(1.3) A(λu) = λα Au for all λ ≥ 0 and u ∈ D(A).

Moreover, to obtain (1.2), it is assumed that there is a family {Tt}t≥0 associated
with A of Lipschitz continuous mappings Tt on X of constant L such that

(1.4) u(t) = Ttu0 for every t ≥ 0,

is (in some given sense) a solution of (1.1) for some initial value u0 ∈ X. We
refer to Definition 3.2 and Definition 3.5 for the different notions of solutions.

Further, if X is equipped with a partial ordering “≤′′ such that (X,≤) defines
an ordered vector space, and if for this ordering, the family {Tt}t≥0 is order-
preserving (that is, (2.17) below holds), then every positive1 solution u of (1.1)
satisfies the point-wise estimate

(1.5) (α− 1)
du
dt+

(t) ≥ −u
t

in D′ for every t > 0.

Estimates of the form (1.2) describe an instantaneous and global regulariz-
ing effect of solutions u of (1.1), since they imply that the solution u of (1.1) is
locally Lipschitz continuous in t ∈ (0,+∞). Further (1.5) provides a rate of
dissipativity involved in the differential inclusion (1.1).

It is the aim of this paper to extend the theory developed in [7] to the impor-
tant case α = 0; in other words, for the class of homogeneous operators A of order
zero (see Definition 2.1 below). Important examples of this class of operators in-
clude the (negative) total variational flow operator Au = −∆1u := −div

(
Du
|Du|

)
,

also known as (negative) 1-Laplacian, or the 1-fractional Laplacian

Au = (−∆1)
su(x) := PV

∫
Σ

u(y)− u(x)
|u(y)− u(x)|

dy
|x− y|d+s , s ∈ (0, 1).

In our first main result (Theorem 2.3), we establish the global regularity esti-
mate (1.2) for order α = 0 and for solutions u of differential inclusions with a
forcing term:

(1.6)
du
dt

+ A(u(t)) 3 f (t) on (0, T),

where f : [0, T] → X is an integrable function, and T > 0. In Corollary 2.4 and
Corollary 2.6, we provide the resulting inequality when f ≡ 0 and the right
hand-side derivative du

dt+ (t) of u exists at t > 0.
In many applications (cf Section 5), X is given by the classical Lebesgue space

(Lr, ‖·‖r), (1 ≤ r ≤ ∞). If {Tt}t≥0 is a semigroup satisfying an Lq-Lr-regularity
estimate

(1.7) ‖Ttu0‖r ≤ C eωt ‖u0‖γ
q

tδ
for all t > 0, and u0 ∈ Lq,

for ω ∈ R, γ = γ(q, r, d), δ = δ(q, r, d) > 0, and some (or for all) 1 ≤ q < r,
then we show in Corollary 2.6 that combining (1.2) with (1.7) yields

(1.8) lim sup
h→0+

‖u(t + h)− u(t)‖r

h
≤ C L 2δ+2 eω t ‖u0‖γ

q

tδ+1 .

1Here, we call a measurable function u positive if u ≥ 0 for the given partial ordering “≤′′.
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Regularity estimates similar to (1.7) have been studied recently by many au-
thors (see, for example, [13, 19, 14] covering the linear theory, and [12] the non-
linear one and the references therein).

In Theorem 2.7, Corollary 2.9 and Corollary 2.10 we generalize the point-
wise estimate (1.5) to the homogenous order α = 0.

We emphasize that the regularizing effect of solutions u of (1.1) remains true
with a slightly different inequality (see Corollary 2.12) if the homogeneous op-
erator A is perturbed by a Lipschitz mapping F. This is quite surprising since
F might not be homogenous and hence, the operator A + F is also not homo-
geneous.

In Section 3, we consider the class of quasi accretive operators A (see Defini-
tion 3.1) and outline how the property that A is homogeneous of order zero is
passed on to the semigroup {Tt}t≥0 generated by −A (see the paragraph after
Definition 3.2). In particular, we discuss when solutions u of (1.1) are differen-
tiable a.e. in t > 0.

The fact that every Lipschitz continuous mappings u : [0, T] → X is differ-
entiable almost everywhere on (0, T) depends on the underlying geometry of
the given Banach space X; this property is well-known as the Radon-Nikodým
property of a Banach space. The Lebesgue space L1 has not this property, but
alone from the physical point of view, L1 is for many models not avoidable.
In [8], Bénilan and Crandall developed the celebrated theory of completely ac-
cretive operators A (in L1). For this class of operators, it is known that for each
solutions u of (1.1) in L1, the derivative du

dt exists in L1. These results have been
extended recently to the notion of quasi completely accretive operators in [12]. In
Section 4, we study regularity estimates of the form (1.2) for α = 0 satisfied
by solutions u of (1.1), where A is a quasi completely accretive operator of ho-
mogeneous order zero. In fact, the two operators −∆1 and (−∆1)

s mentioned
above, belong exactly to this class of operators. Thus, our two main examples
of differential inclusions discussed in Section 5 are

du
dt
− div

(
Du
|Du|

)
+ f (·, u) 3 0(1.9)

du
dt

+ PV
∫

Σ

(u(y)− u(x))
|u(y)− u(x)|

dy
|x− y|d+s + f (·, u) 3 0,(1.10)

which are equipped, respectively, with some boundary conditions on a domain
Σ in Rd, d ≥ 1. In (1.9) and (1.10), the function f is a Carathéodory function,
which is Lipschitz continuous in the second variable with constant ω > 0 uni-
formly with respect to the first variable (see Section 5 for more details).

Note, if the right hand-side derivative du
dt+ (t) of a solution u of (1.1) exists at

every t ∈ (0, 1], then (1.2) for α = 0 becomes

(1.11) ‖Au(t)‖X ≤ 2 L
‖u0‖X

t
for every t > 0.

Here, it is worth mentioning that if the operator A in (1.1) is linear (that is,
α = 1), then inequality (1.11) means that −A generates an analytic semigroup
{Tt}t≥0 (cf [4, 17]). Thus, it is interesting to see that a similar regularity inequal-
ity such as (1.11), in particular, holds for certain classes of nonlinear operators.
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In addition, if ‖·‖X is the induced norm by an inner product (·, ·)X of a Hilbert
space X and A is a sub-differential operators ∂ϕ on X, then inequality (1.11) is
also satisfied by solutions of (1.1) (cf [11]). In [2], inequality (1.11) was shown to
hold for solutions of (1.9) with f ≡ 0 and equipped with Neumann boundary
conditions.

2. MAIN RESULTS

Suppose X is a linear vector space and ‖·‖X a semi-norm on X. Then, the
main object of this paper is the following class of operators.

Definition 2.1. An operator A on X is said to be homogeneous of order zero if for
every u ∈ D(A) and λ ≥ 0, one has that λu ∈ D(A), and A satisfies (1.3) for
α = 0.

Remark 2.2. It follows necessarily from (1.3) that for every homogeneous op-
erator A of order α > 0, one has that 0 ∈ A0. But for homogeneous operators
A of order zero, the property 0 ∈ A0 does not need to hold.

Now, assume that for the operator A on X and for given f : [0, T] → X and
u0 ∈ X, the function u ∈ C1([0, T]; X) is a classical solution of the differential
inclusion (1.6) with forcing term f satisfying initial value u(0) = u0. If A is
homogeneous of order zero, then for λ > 0, the function

v(t) = λ−1u(λt), (t ∈ [0, T]),

satisfies

dv
dt

(t) =
du
dt

(λt) ∈ −A(u(λt)) + f (λt) = −A(v(t)) + f (λt)

for every t ∈ (0, T) with initial value v(0) = λ−1u(0) = λ−1u0. Thus, if for
every t ∈ [0, T], we denote

(2.1) Tt(u0, f ) := u(t) for every u0 and f ,

where u is the unique classical solution u of (1.6) with initial value u(0) = u0,
then the above reasoning shows that the homogeneity of A is reflected in

(2.2) λ−1Tλt(u0, f ) = Tt(λ
−1u0, f (λ·)) for every λ > 0,

and all t ∈ [0, T]. Identity (2.2) together with standard growth estimates of the
form

e−ωt‖Tt(u0, f )− Tt(û0, f̂ )‖X

≤ Le−ωs‖Ts(u0, f )− Ts(û0, f̂ )‖X + L
∫ t

s
e−ωr ‖ f (r)− f̂ (r)‖X dr

(2.3)

for every 0 ≤ s ≤ t(≤ T), (for some ω ∈ R and L ≥ 1) are the main ingredients
to obtain global regularity estimates of the form (1.2). This leads to our first
main result.

Theorem 2.3. For a subset C ⊆ X, let {Tt}T
t=0 be a family of mappings Tt : C ×

L1(0, T; X)→ C satisfying (2.3), (2.2), and Tt(0, 0) ≡ 0 for all t ≥ 0. Then for every
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u0 ∈ C, f ∈ L1(0, T; X), and t ∈ (0, T], h > 0, one has that

‖Tt+h(u0, f )− Tt(u0, f )‖X

≤ |h|
t L eω t

[
2‖u0‖X +

(
1 + h

t

) ∫ t

0
e−ωs

∥∥∥∥∥ f (s + h
t s)− f (s)

h
t

∥∥∥∥∥
X

ds

+
∫ t

0
e−ωs‖ f (s)‖X ds

]
.

(2.4)

In particular, if

V( f , t) := lim sup
ξ→0

∫ t

0
e−ωs

∥∥∥∥ f (s + ξs)− f (s)
ξ

∥∥∥∥
X

ds,

then the family {Tt}t≥0 satisfies

lim sup
h→0+

∥∥∥∥Tt+h(u0, f )− Tt(u0, f )
h

∥∥∥∥
X

≤ Leω t

t

[
2‖u0‖X + V( f , t) +

∫ t

0
e−ωs‖ f (s)‖X ds

]
.

(2.5)

for every t > 0, u0 ∈ C, f ∈ L1(0, T; X), and if f is locally absolutely continuous and
differentiable a.e. on (0, T), then

lim sup
h→0+

∥∥∥∥Tt+h(u0, f )− Tt(u0, f )
h

∥∥∥∥
X

≤ Leω t

t

[
2‖u0‖X +

∫ t

0
e−ωss‖ f ′(s)‖X ds +

∫ t

0
e−ωs‖ f (s)‖X ds

]
.

(2.6)

Moreover, if the right hand-side derivative d
dt+ Tt(u0, f ) exists (in X) at t > 0, then

(2.7)
∥∥∥∥dTt(u0, f )

dt +

∥∥∥∥
X
≤ Leω t

t

[
2‖u0‖X + V(t, f ) +

∫ t

0
e−ωs‖ f (s)‖Xds

]
.

Proof. Let u0 ∈ C, f ∈ L1(0, T; X), and for t > 0, let h 6= 0 satisfying 1 + h
t ≥ 0.

Then, choosing λ = 1 + h
t in (2.2) gives

Tt+h(u0, f )− Tt(u0, f )

= Tλt(u0, f )− Tt(u0, f )

=
(

1 + h
t

)
Tt

[(
1 + h

t

)−1
u0, f (·+ h

t ·)
]
− Tt(u0, f )

(2.8)

and so,

Tt+h(u0, f )− Tt(u0, f )

=
(

1 + h
t

) [
Tt

[(
1 + h

t

)−1
u0, f (·+ h

t ·)
]
− Tt(u0, f (·+ h

t
·))
]

+
(

1 + h
t

) [
Tt

[
u0, f (·+ h

t ·)
]
− Tt(u0, f )

]
+
[(

1 + h
t

)
− 1
]

Tt(u0, f ).

(2.9)
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Thus, by applying (2.3) and since Tt(0, 0) ≡ 0, one sees that

‖Tt+h(u0, f )− Tt(u0, f )‖X

≤
(

1 + h
t

) ∥∥∥∥Tt

[(
1 + h

t

)−1
u0, f (·+ h

t ·)
]
− Tt(u0, f (·+ h

t ·))
∥∥∥∥

X

+
(

1 + h
t

) ∥∥∥Tt(u0, f (·+ h
t ·))− Tt(u0, f )

∥∥∥
X

+
[(

1 + h
t

)
− 1
]
‖Tt(u0, f )‖X

≤
(

1 + h
t

)
L eω t

∥∥∥∥(1 + h
t

)−1
u0 − u0

∥∥∥∥
X

+
(

1 + h
t

)
L
∫ t

0
eω(t−s)‖ f (s + h

t s)− f (s)‖X ds

+ L eω t
∣∣∣(1 + h

t

)
− 1
∣∣∣ (‖u0‖X +

∫ t

0
e−ωs‖ f (s)‖X ds

)
.

From this is clear that (2.4)-(2.7) follows. �

In the case f ≡ 0, then the mapping Tt given by (2.1) only depends on the
initial value u0, that is,

(2.10) Ttu0 = Tt(u0, 0) for every u0 and t ≥ 0.

In this case, the estimates in Theorem 2.3 reduce to the following one.

Corollary 2.4. Let {Tt}t≥0 be a family of mappings Tt : C → C defined on a subset
C ⊆ X satisfying

‖Ttu0 − Ttû0‖X ≤ L eωt ‖u0 − û0‖X for all t ≥ 0, u, û ∈ C,(2.11)

λ−1 Tλtu0 = Tt[λ
−1u0] for all λ > 0, t ≥ 0 and u0 ∈ C,(2.12)

and Tt0 ≡ 0 for all t ≥ 0. Then, for every u0 ∈ C and t, h > 0, one has that

(2.13) ‖Tt+hu0 − Ttu0‖X ≤ 2 h
t L eω t‖u0‖X.

In particular, the family {Tt}t≥0 satisfies

(2.14) lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h
≤ 2Leωt ‖u0‖X

t
for every t > 0, u0 ∈ C.

Moreover, if the right hand-side derivative d
dt+ Ttu0 exists (in X) at t > 0, then

(2.15)
∥∥∥∥dTtu0

dt+

∥∥∥∥
X
≤ 2Leωt ‖u0‖X

t
.

For our next corollary, we recall the following well-known definition.

Definition 2.5. Let C be a subset of X. Then, a family {Tt}t≥0 of mappings
Tt : C → C is called a semigroup if Tt+su = Tt ◦ Tsu for every t, s ≥ 0, u ∈ C.

Corollary 2.6. Let {Tt}t≥0 be a semigroup of mappings Tt : C → C defined on a
subset C ⊆ X and suppose, there is a second vector space Y with semi-norm ‖·‖Y such
that {Tt}t≥0 satisfies the following Y-X-regularity estimate

(2.16) ‖Ttu0‖X ≤ M eω̂t ‖u0‖γ
Y

tδ
for every t > 0 and u0 ∈ C



HOMOGENEOUS EVOLUTION EQUATIONS 7

for some M, γ, δ > 0 and ω̂ ∈ R. If for u0 ∈ C, {Tt}t≥0 satisfies (2.14), then

lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h
≤ 2δ+2L M e

1
2 (ω+ω̂)t ‖u0‖γ

Y
tδ+1 .

Moreover, if the right hand-side derivative d
dt+ Ttu0 exists (in X) at t > 0, then∥∥∥∥dTtu0

dt+

∥∥∥∥
X
≤ 2δ+2L M e

1
2 (ω+ω̂)t ‖u0‖γ

Y
tδ+1 .

Proof. Since {Tt}t≥0 is a semigroup, one sees by (2.14) and (2.16) that

lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h
= lim sup

h→0+

‖T t
2+h(T t

2
u0)− T t

2
(T t

2
u0)‖X

h

≤ 4 L eω t
2
‖Tt/2u0‖X

t

≤ 2δ+2L M e
1
2 (ω+ω̂)t ‖u0‖γ

Y
tδ+1 .

�

Next, suppose that there is a partial ordering “≤” on X such that (X,≤) is
an ordered vector space. Then, we can state the following theorem.

Theorem 2.7. Let (X,≤) be an ordered vector space, C be a subset of X, and {Tt}t≥0
be a family of mappings Tt : C → C defined on a subset C ⊆ X satisfying

(2.17) for every u0, û0 ∈ C satisfying u0 ≤ û0, one has Ttu0 ≤ Ttû0 for all t ≥ 0.

and

(2.18) λ−1 Tλtu0 = Tt[λ
−1u0] for all λ > 0, t ≥ 0 and u0 ∈ C.

Then for every u0 ∈ C satisfying u0 ≥ 0, one has

(2.19)
Tt+hu0 − Ttu0

h
≤ 1

t
Ttu0 for every t, h > 0.

Before giving the proof of Theorem 2.7, we state the following definition.

Definition 2.8. If (X,≤) is an ordered vector space then a family {Tt}t≥0 of
mappings Tt : C → C defined on a subset C ⊆ X is called order preserving if
{Tt}t≥0 satisfies (2.17).

Proof of Theorem 2.7. Since
(

1 + h
t

)−1
< 1, one has that

(
1 + h

t

)−1
u0 ≤ u0.

Then, by (2.8) for f ≡ 0 and (2.17), one finds

Tt+hu0 − Ttu0 =
(

1 + h
t

)
Tt

[(
1 + h

t

)−1
u0

]
− Ttu0

= Tt

[(
1 + h

t

)−1
u0

]
− Ttu0 +

h
t Tt

[(
1 + h

t

)−1
u0

]
≤ h

t Tt

[(
1 + h

t

)−1
u0

]
≤ h

t Ttu0,

from where one sees that (2.19) holds. �
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By Theorem 2.7, if the derivative d
dt+ Ttu0 exists (in X) at t > 0, then we can

state the following.

Corollary 2.9. Under the hypotheses of Theorem 2.7, suppose that for u0 ∈ C satisfy-
ing u0 ≥ 0, the right hand-side derivative d

dt+ Ttu0 exists (in X) at t > 0, then

dTtu0

dt+
≤ 1

t
Ttu0.

Further, we can conclude from Theorem 2.7 the following result.

Corollary 2.10. In addition to the hypotheses of Theorem 2.7, suppose that there is a
linear functional Λ : X → R satisfying

Λx ≥ 0 for every x ∈ X satisfying x ≥ 0(2.20)
ΛTtu0 = Λu0 for every t ≥ 0 and u0 ∈ X satisfying u0 ≥ 0.(2.21)

Then, the following estimate holds for each ν ∈ {+,−},

(2.22) Λ[Tt+hu0 − Ttu0]
ν ≤ h

t
Λx for all t, h > 0, u0 ∈ C with u0 ≥ 0.

Example 2.11. If X = Lq(Σ, µ) for some Σ-measure space (Σ, µ) and 1 ≤ q ≤ ∞,
then an example for Λ satisfying (2.20) and (2.21) is given by

Λx =
∫

Σ
xdµ for every x ∈ X.

Proof of Corollary 2.10. Let u0 ∈ C with u0 ≥ 0, and t, h > 0. Then we note first
that by (2.21),

0 = ΛTt+hu0 −ΛTtu0 = Λ(Tt+hu0 − Ttu0)

and since

Λ(Tt+hu0 − Ttu0) = Λ [Tt+hu0 − Ttu0]
+ −Λ [Tt+hu0 − Ttu0]

− ,

one has that

(2.23) Λ [Tt+hu0 − Ttu0]
+ = Λ [Tt+hu0 − Ttu0]

− .

Further, by Theorem 2.7 and since Ttu0 ≥ 0, it follows from the definition of
[x]+ = max{x, 0}, (x ∈ R), that

(2.24) [Tt+hu0 − Ttu0]
+ ≤ h

t
Ttu0.

By the linearity of Λ and by (2.20), one has that x ≤ y yields Λx ≤ Λy. Thus
applying Λ to (2.24) leads to (2.22) for ν = “+′′. Moreover, by (2.23), inequal-
ity (2.22) also holds for ν = “−′′. This completes the proof of this corollary. �

For the last result of this section, we consider the following differential in-
clusion

(2.25)
du
dt

+ A(u(t)) + F(u(t)) 3 0 on (0,+∞),

for some operator A ⊆ X× X and a Lipschitz-continuous mapping F : X → X
with Lipschitz constant ω ≥ 0 and satisfying F(0) = 0. As for the differential
inclusion (1.6) and the case f ≡ 0, suppose, there is a subset C ⊆ X and a family
{Tt}t≥0 of mappings Tt : C → C associated with A through the relation that



HOMOGENEOUS EVOLUTION EQUATIONS 9

for every given u0 ∈ C, the function u defined by (1.4) is the unique solution
of (2.25) with initial value u(0) = u0. On the other hand, setting

(2.26) f (t) := −F(u(t)), (t ≥ 0),

one has that

(2.27) Tt(u0, f ) = u(t) = Ttu0 for every t ≥ 0, u0 ∈ C.

Thus, by Theorem 2.3 for T = +∞ we have the following estimates.

Corollary 2.12. Let F : X → X be a Lipschitz continuous mapping with Lipschitz-
constant ω > 0 and satisfying F(0) = 0. Suppose, there is a subset C ⊆ X, and a
family {Tt}t≥0 of mappings Tt : C → C satisfying

(2.28) ‖Ttu0‖X ≤ eωt ‖u0‖X for all t ≥ 0, u0 ∈ C,

and in relation with (2.27), suppose that {Tt}t≥0 satisfies (2.2) and (2.3) for f given
by (2.26). Then for every u0 ∈ C, and t, h > 0 such that |h|/t < 1, one has that

(2.29)
∥∥∥∥Tt+hu0 − Ttu0

h

∥∥∥∥
X
≤
[

2eL2ω
∫ t

0 e−ωsds + ω
∫ t

0
eL2ω

∫ t
s e−ωrdrds

]
eωtL‖u0‖X

t
.

Moreover, if the derivative d
dt Ttu0 exists (in X) for a.e. t > 0, then

(2.30)
∥∥∥∥dTtu0

dt

∥∥∥∥
X
≤ eωtL

[
2eLω

∫ t
0 e−ωss ds + ω

∫ t

0
eLω

∫ t
s e−ωrr dr ds

]
‖u0‖X

t

for a.e. t > 0.

For the proof of this corollary, we will employ the following version of Gron-
wall’s lemma.

Lemma 2.13. Let a ∈ L1(0, T), B : [0, T]→ R be an absolutely continuous function,
and v ∈ L∞(0, T) satisfy

v(t) ≤
∫ t

0
a(s)v(s)ds + B(t) for a.e. t ∈ (0, T).

Then,

v(t) ≤ B(0) e
∫ t

0 a(s)ds +
∫ t

0
e
∫ t

s a(r)dr B′(s)ds for a.e. t ∈ (0, T).

We now give the proof of Corollary 2.12.

Proof. Let u0 ∈ C, and t, h > 0 such that |h|/t < 1. Then, by the hypotheses
of this corollary, we are in the position to apply Theorem 2.3 to Tt(u0, f ) for f
given by (2.26). Then by (2.4), one finds∥∥∥∥∥Tt+hu0 − Ttu0

h
t

∥∥∥∥∥
X

≤ L eω t
[
2‖u0‖X +

∫ t

0
e−ωs‖F(Tsu0)‖Xds +

+
(

1 + h
t

) ∫ t

0
e−ωs

∥∥∥∥∥∥
F(T

s+ h
t s

u0)− F(Tsu0)

h
t

∥∥∥∥∥∥
X

ds

 .



10 DANIEL HAUER AND JOSÉ M. MAZÓN

Since F is globally Lipschitz continuous with constant ω > 0, F(0) = 0 and
by (2.28), it follows that∥∥∥∥∥Tt+hu0 − Ttu0

h
t

∥∥∥∥∥
X

≤ L eω t
[
(2 + ωt)‖u0‖X +

+
(

1 + h
t

)
ω
∫ t

0
e−ωs

∥∥∥∥∥∥
T

s+ h
t s

u0 − Tsu0

h
t

∥∥∥∥∥∥
X

ds

 .

Since |h|/t < 1,

e−ω t

∥∥∥∥∥Tt+hu0 − Ttu0
h
t

∥∥∥∥∥
X

≤ L
[
(2 + ωt)‖u0‖X +

+2 ω
∫ t

0
e−ωs

∥∥∥∥∥∥
T

s+ h
t s

u0 − Tsu0

h
t

∥∥∥∥∥∥
X

ds

 .

(2.31)

Due to (2.31), we can apply Gronwall’s lemma to

B(t) = L(2 + ωt) ‖u0‖X and a(t) = L2ω e−ωt.

Then, one sees that (2.29) holds. Now, suppose that the derivative d
dt Ttu0 exists

(in X) for a.e. t > 0, then by (2.7), the Lipschitz continuity of F and by (2.28),
one one has that

e−ωt t
∥∥∥∥dTtu0

dt

∥∥∥∥
X
≤
[

2‖u0‖X + ω
∫ t

0
e−ωss

∥∥∥∥dTsu0

ds

∥∥∥∥
X

ds + ωt ‖u0‖X

]
for a.e. t > 0. Now, applying Gronwall’s lemma to

B(t) = L(2 + ωt) ‖u0‖X and a(t) = Lω e−ωtt,

leads to (2.30). This completes the proof of this corollary. �

3. ACCRETIVE OPERATORS OF HOMOGENEOUS ORDER ZERO

Suppose X is Banach space with norm ‖·‖X. Then, we begin this section with
the following definition.

Definition 3.1. For ω ∈ R, an operator A on X is called ω-quasi m-accretive
operator on X if A + ωI is accretive, that is, for every (u, v), (û, v̂) ∈ A and every
λ ≥ 0,

‖u− û‖X ≤ ‖u− û + λ(ω(u− û) + v− v̂)‖X.

and if for A the range condition

(3.1) Rg(I + λA) = X for some (or equivalently, for all) λ > 0, λ ω < 1,

holds.

If A is ω-quasi m-accretive operator, then the classical existence theorem [9,
Theorem 6.5] (cf [6, Corollary 4.2]), for every u0 ∈ D(A)

X and f ∈ L1(0, T; X),
there is a unique mild solution u ∈ C([0, T]; X) of (1.6).
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Definition 3.2. For given u0 ∈ D(A)
X and f ∈ L1(0, T; X), a function u ∈

C([0, T]; X) is called a mild solution of the inhomogeneous differential inclu-
sion (1.6) with initial value u0 if u(0) = u0 and for every ε > 0, there is a
partition τε : 0 = t0 < t1 < · · · < tN = T and a step function

uε,N(t) = u0 1{t=0}(t) +
N

∑
i=1

ui 1(ti−1,ti ](t) for every t ∈ [0, T]

satisfying

ti − ti−1 < ε for all i = 1, . . . , N,
N

∑
N=1

∫ ti

ti−1

‖ f (t)− f i‖dt < ε where f i :=
1

ti − ti−1

∫ ti

ti−1

f (t)dt,

ui − ui−1

ti − ti−1
+ Aui 3 f i for all i = 1, . . . , N,

and
sup

t∈[0,T]
‖u(t)− uε,N(t)‖X < ε.

In particular, if A is ω-quasi m-accretive, and if for given u0 ∈ D(A)
X , f ∈

L1(0, T; X), the function u : [0, T]→ X is the unique mild solution of (1.6) with
initial value u(0) = u0, then by (2.1) the family {Tt}T

t=0 defines a semigroup of
ω-quasi contractions Tt : D(A)

X × L1(0, T; X) → D(A)
X for C = D(A)

X ; that is,
{Tt}T

t=0 satisfies
• (semigroup property) Tt+s = Tt ◦ Ts for every t, s ∈ [0, T];
• (strong continuity) for every (u0, f ) ∈ D(A)

X × L1(0, T; X), t 7→ Tt(u0, f )
belongs to C([0, T]; X);
• (ω-quasi contractivity) Tt satisfies (2.3)

Furthermore, keeping f ≡ 0 and only varying u0 ∈ D(A)
X , shows that by

(2.10) Ttu0 = Tt(u0, 0) for every t ≥ 0.

defines a strongly continuous semigroup {Tt}t≥0 of ω-quasi contractions Tt :
D(A)

X → D(A)
X . For the family {Tt}t≥0 on D(A)

X , the operator

A0 :=

{
(u0, v) ∈ X× X

∣∣∣∣∣ lim
h↓0

Th(u0, 0)− u0

h
= v in X

}
is an ω-quasi accretive well-defined mapping A0 : D(A0) → X and called the
infinitessimal generator of {Tt}t≥0. Under additional conditions on the geometry
of the Banach space X (see Definition 3.7), one has that A0 ⊆ A. Thus, we say
(ignoring the abuse of details) that both families {Tt}T

t=0 on D(A)
X × L1(0, T; X)

and {Tt}t≥0 on D(A)
X are generated by −A.

In application, usually X is given by the Lebesgue space L∞(Σ, µ) (or Lr(Σ, µ)
for 1 ≤ r < ∞) and Y is given by L1(Σ, µ) (or Lr(Σ, µ) for some 1 ≤ q < r) for
some σ-finite measure space (Σ, µ). Then, L1-L∞-decay estimates are intimately
connected with abstract Sobolev inequalities satisfied by the infinitesimal gen-
erator −A of the semigroup {Tt}t≥0. For more details to the linear semigroup
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theory we refer to the monograph [19] and to [12] for the nonlinear semigroup
theory.

Moreover (cf [9, Chapter 4.3]), for given u0 ∈ D(A)
X and any step function

f = ∑N
i=1 fi 1(ti−1,ti ] ∈ L1(0, T; X), let u : [0, T]→ X given by

(3.2) u(t) = u0 1{t=0}(t) +
N

∑
i=1

ui(t)1(ti−1,ti ](t)

is the unique mild solution of (1.6), where ui is the unique mild solution of

(3.3)
dui

dt
+ A(ui(t)) 3 fi on (ti−1, ti), and ui(ti−1) = ui−1(ti−1).

Then for every i = 1, . . . , N, the semigroup {Tt}T
t=0 is obtained by the exponen-

tial formula

(3.4) Tt(u(ti−1), fi) = ui(t) = lim
n→∞

[
JAi

t−ti−1
n

]n

u(ti−1) in C([ti−1, ti]; X)

for every i = 1, . . . , N, where for µ > 0, JAi
µ = (I + µAi)

−1 is the resolvent
operator of the operator Ai and Ai := {(x, y− fi) : (x, y) ∈ A}.

As for classical solutions, the fact that A is homogeneous of order zero, is
also reflected in the notion of mild solution and so in {Tt}t≥0. This is shown in
our next lemma.

Lemma 3.3. Let A be a ω-quasi m-accretive and {Tt}t≥0 be the semigroup on D(A)
X ×

L1
loc([0,+∞); X) generated by −A. If A is homogeneous of order zero, then {Tt}t≥0

satisfies (2.2) for every (u0, f ) ∈ D(A)
X × L1(0, T; X).

Proof. For every µ > 0, v ∈ X, and λ > 0, one has that

JAi
µ

[
λ−1v

]
= u if and only if u + µAiu 3 λ−1v,

which if A is homogeneous of order zero, is equivalent to

λu + λµAi(λu) 3 v or JAi
λµv = λu.

Therefore,

(3.5) λ−1 JAi
λµv = JAi

µ

[
λ−1v

]
for all λ, µ > 0, v ∈ X.

Now, for u0 ∈ D(A)
X and a partition

π : 0 = t0 < t1 < · · · < tN = T of [0, T]

let f = ∑N
i=1 fi1(ti−1,ti ] ∈ L1(0, T; X) be a step function and u be the unique

mild solution of (1.6) for f . Then u is given by (3.2), were on each subinterval
(ti−1, ti], ui is the unique mild solution of (3.3). For t > 0, n ∈N, and λ ∈ (0, 1],
apply (3.5) to

µ =
t
n

and v = JA1
λ t

n
[λ−1u0].

Then, [
JA1

t
n

]2
[λ−1u0] = JA1

t
n

[
λ−1 JA1

λ t
n
u0

]
= λ−1

[
JA1
λ t

n

]2
u0.
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Iterating this equation n-times, one finds that

(3.6) λ−1
[

JA1
λ t

n

]n
u0 =

[
JA1

t
n

]n [
λ−1u0

]
and so, by (3.4) sending n→ +∞ in the latter equation, yields on the one site

lim
n→+∞

λ−1
[

JA1
λ t

n

]n
u0 = λ−1u1(λt) = λ−1u(λt)

for every t ∈ [0, t1
λ ], and on the other side

lim
n→+∞

[
JA1

t
n

]n [
λ−1u0

]
= v(t)

for every t ∈ [0, t1
λ ], where v is the unique mild solution of (3.3) for i = 1 on

(0, t1
λ ) with initial value v(0) = λ−1u0. By uniqueness of the two limits, we

have thereby shown that

λ−1Tλt(u0, f1) = Tt(λ
−1u0, f11(0, t1

λ ]
) for every t ∈

[
0,

t1

λ

]
.

Similarly, for every i = 2, 3, . . . , N, replacing in (3.6) u0 by u(ti−1) (where

u(ti−1) = u(λ ti−1
λ ) = v( ti−1

λ )), A1 by Ai, and t
n by t− ti−1

λ
n gives

λ−1

[
JAi

λ
t−

ti−1
λ

n

]n

u(ti−1) =

[
JAi

t−
ti−1

λ
n

]n [
λ−1v(

ti−1

λ
)

]
and by sending n→ +∞, limit (3.4) leads one one side to

lim
n→+∞

λ−1

[
JAi

λ
t−

ti−1
λ

n

]n

u(ti−1) = λ−1u(λt)

and on the other side,

lim
n→+∞

[
JAi

t−
ti−1

λ
n

]n [
λ−1v(

ti−1

λ
)

]
= v(t)

for every t ∈
[

ti−1
λ , ti

λ

]
, where v is the unique mild solution of (3.3) for i on(

ti−1
λ , ti

λ

)
with initial value v( ti−1

λ ) = λ−1v( ti−1
λ ) = λ−1u(ti−1). Therefore, and

since u is given by (3.2), we have shown that

λ−1Tλt(u(ti−1), fi) = Tt(λ
−1u(ti−1), fi1(

ti−1
λ , ti

λ ]
) for t ∈

[
ti−1

λ
,

ti

λ

]
.

Since for every step function f on a partition π of [0, T], u is given by (3.2), we
have thereby shown that (2.2) holds if f is a step function. Now, by (2.3), an
approximation argument shows that if A is homogeneous of order zero, then
the semigroup {Tt}t≥0 on D(A)

X × L1(0, T; X) generated by −A satisfies (2.2).
�

By the above Lemma and Theorem 2.3, we can now state the following.
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Corollary 3.4. For ω ∈ R, suppose A is an ω-quasi m-accretive operator on a Banach
space X, and A is homogeneous of order zero satisfying 0 ∈ A0. Then, for every
(u0, f ) ∈ D(A)

X × L1(0, T; X), the semigroup {Tt}t≥0 of mapping Tt : D(A)
X ×

L1(0, T; X)→ D(A)
X generated by −A satisfies (2.4)-(2.7).

For having that regularity estimate (2.7) (respectively, (2.15)) is satisfied by
the semigroup {Tt}t≥0, one requires that each mild solution u of (1.6) (respec-
tively, of (1.1)) is differentiable and a stronger notion of solutions of (1.6). The
next definition is taken from [9, Definition 1.2] (cf [6, Chapter 4]).

Definition 3.5. A locally absolutely continuous function u[0, T] :→ X is called
a strong solution of differential inclusion (1.1) if u is differentiable a.e. on (0, T),
and for a.e. t ∈ (0, T), u(t) ∈ D(A) and f (t)− du

dt (t) ∈ A(u(t)).

The next characterization of strong solutions of (1.1) highlights the important
point of a.e. differentiability.

Proposition 3.6 ([9, Theorem 7.1]). Let X be a Banach space, f ∈ L1(0, T; X) and
for ω ∈ R, A be ω-quasi m-accretive in X. Then u is a strong solution of the dif-
ferential inclusion (1.6) on [0, T] if and only if u is a mild solution on [0, T] and u is
“absolutely continuous” on [0, T] and differentiable a.e. on (0, T).

Of course, every strong solution u of (1.6) is a mild solution of (1.6), abso-
lutely continuous and differentiable a.e. on [0, T]. Moreover, the differential
inclusion (1.6) admits mild and Lipschitz continuous solutions if A is ω-quasi
m-accretive in X (cf [9, Lemma 7.8]). But absolutely continuous vector-valued
functions u : [0, T] → X are not, in general, differentiable a.e. on (0, T). How-
ever, if one assumes additional geometric properties on X, then the latter im-
plication holds true. Our next definition is taken from [9, Definition 7.6] (cf [5,
Chapter 1]).

Definition 3.7. A Banach space X is said to have the Radon-Nikodým property
if every absolutely continuous function F : [a, b] → X, (a, b ∈ R, a < b), is
differentiable almost everywhere on (a, b).

Known examples of Banach spaces X admitting the Radon-Nikodým prop-
erty are:

• (Dunford-Pettis) if X = Y∗ is separable, where Y∗ is the dual space of a
Banach space Y;
• if X is reflexive.

We emphasize that X1 = L1(Σ, µ), X2 = L∞(Σ, µ), or X3 = C(M) for a σ-
finite measure space (Σ, µ), or respectively, for a compact metric space (M, d)
don’t have, in general, the Radon-Nikodým property (cf [5]). Thus, it is quite
surprising that there is a class of operators A (namely, the class of completely
accretive operators, see Section 4 below), for which the differential inclusion (1.6)
nevertheless admits strong solutions (with values in L1(Σ, µ) or L∞(Σ, µ)).

Now, by Corollary 3.4 and Proposition 3.6, we can conclude the following
results. We emphasize that one crucial point in the statement of Corollary 3.8
below is that due to the uniform estimate (2.7), one has that for all initial values
u0 ∈ D(A)

X , the unique mild solution u of (1.6) satisfying u(0) = u0 is a strong
solution, and not only for u0 ∈ D(A).
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Corollary 3.8. For ω ∈ R, suppose A is an ω-quasi m-accretive operator on a Banach
space X admitting the Radon-Nikodým property, and {Tt}t≥0 is the semigroup on
D(A)

X × L1(0, T; X) generated by −A. If A is homogeneous of order zero satisfying
0 ∈ A0, then for every u0 ∈ D(A)

X and f ∈ BV(0, T; X), the unique mild solution
u of (1.6) satisfying u(0) = u0 is a strong solution and satisfies (2.7) for every t > 0.

Now by Corollary 2.12 and Proposition 3.6, we obtain the following result
when A is perturbed by a Lipschitz mapping.

Corollary 3.9. Suppose X is a Banach space with the Radon-Nikodým property, F :
X → X be a Lipschitz continuous mapping with Lipschitz-constant ω > 0 satis-
fying F(0) = 0, A an m-accretive operator on X, and {Tt}t≥0 is the semigroup on
D(A)

X generated by −(A + F). If A is homogeneous of order zero satisfying 0 ∈ A0,
then (2.30) holds for every u0 ∈ D(A)

X and a.e. t > 0.

If the Banach space X and its dual space X∗ are uniformly convex, then (cf [6,
Theorem 4.6]) for every u0 ∈ D(A), f ∈W1,1(0, T; X), the mild solution u(t) =
Tt(u0, f ), (t ≥ 0), of (1.6) is a strong solution of (1.6), u is everywhere differen-
tiable from the right, du

dt+ is right continuous, and

du
dt+

(t) + (A− f (t))◦u(t) = 0 for every t ≥ 0,

where for every t ∈ [0, T], (A− f (t))◦ denotes the minimal selection of A− f (t)
defined by

(A− f (t))◦ :=
{
(u, v) ∈ A− f (t)

∣∣∣‖v‖X = inf
v̂∈Au− f (t)

‖v̂‖X

}
.

Thus, under those assumptions on X and by Proposition 3.6, we can state the
following three corollaries. We begin by stating the inhomogeneous case.

Corollary 3.10. Suppose X and its dual space X∗ are uniformly convex, for ω ∈ R,
A is an ω-quasi m-accretive operator on X, and {Tt}t≥0 is the semigroup on D(A)

X ×
L1(0, T; X) generated by −A. If A is homogeneous of order zero satisfying 0 ∈ A0,
then for every u0 ∈ D(A)

X and f ∈W1,1(0, T; X),

‖(A− f (t))◦Tt(u0, f )‖X

≤ eω t

t

[
2‖u0‖X +

∫ t

0
e−ωss‖ f ′(s)‖X ds +

∫ t

0
e−ωs‖ f (s)‖Xds

]
for every t > 0.

The following corollary states the homogeneous case.

Corollary 3.11. Suppose X and its dual space X∗ are uniformly convex, for ω ∈ R,
A is an ω-quasi m-accretive operator on X, and {Tt}t≥0 is the semigroup on D(A)

X

generated by −A. If A is homogeneous of order zero satisfying 0 ∈ A0, then

‖A◦Ttu0‖X ≤ 2eωt ‖u0‖X

t
for every t > 0 and u0 ∈ D(A)

X .

The last corollary states the case when A is perturbed by a Lipschitz map-
ping. This follows from [6, Theorem 4.6] and Corollary 2.12.
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Corollary 3.12. Suppose X and its dual space X∗ are uniformly convex, F : X → X be
a Lipschitz continuous mapping with Lipschitz-constant ω > 0 satisfying F(0) = 0,
A an m-accretive operator on X, and {Tt}t≥0 is the semigroup on D(A)

X generated
by −(A + F). If A is homogeneous of order zero satisfying 0 ∈ A0, then for every
u0 ∈ D(A)

X ,∥∥∥∥dTtu0

dt +

∥∥∥∥
X
≤ eωt

[
2eLω

∫ t
0 e−ωss ds + ω

∫ t

0
eLω

∫ t
s e−ωrr dr ds

]
‖u0‖X

t

for every t > 0.

4. COMPLETELY ACCRETIVE OPERATORS OF HOMOGENEOUS ORDER ZERO

In [8], Bénilan and Crandall introduced the celebrated class of completely ac-
cretive operators A and showed: even though the underlying Banach spaces
does not admit the Radon-Nikodým property, but if A is completely accretive
and homogeneous of order α > 0 with α 6= 1, then the mild solutions of differ-
ential inclusion (1.1) involving A are strong. In this section we will see that this
also happen for completely accretive operators of homogeneous order zero.

4.1. General framework. We begin by outlining our framework and then pro-
vide a brief introduction to the class of completely accretive operators.

For the rest of this paper, suppose (Σ,B, µ) is a σ-finite measure space, and
M(Σ, µ) the space of µ-a.e. equivalent classes of measurable functions u :
Σ → R. For u ∈ M(Σ, µ), we write [u]+ to denote max{u, 0} and [u]− =
−min{u, 0}. We denote by Lq(Σ, µ), 1 ≤ q ≤ ∞, the corresponding standard
Lebesgue space with norm

‖·‖q =


(∫

Σ
|u|q dµ

)1/q

if 1 ≤ q < ∞,

inf
{

k ∈ [0,+∞]
∣∣∣ |u| ≤ k µ-a.e. on Σ

}
if q = ∞.

For 1 ≤ q < ∞, we identify the dual space (Lq(Σ, µ))′ with Lq′ (Σ, µ), where q′
is the conjugate exponent of q given by 1 = 1

q +
1
q′ .

Next, we first briefly recall the notion of Orlicz spaces (cf [18, Chapter 3]).
A continuous function ψ : [0,+∞) → [0,+∞) is an N-function if it is convex,
ψ(s) = 0 if and only if s = 0, lims→0+ ψ(s)/s = 0, and lims→∞ ψ(s)/s = ∞.
Given an N-function ψ, the Orlicz space is defined as follows

Lψ(Σ, µ) :=

{
u ∈ M(Σ, µ)

∣∣∣∣∣
∫

Σ
ψ

(
|u|
α

)
dµ < ∞ for some α > 0

}
and equipped with the Orlicz-Minkowski norm

‖u‖ψ := inf

{
α > 0

∣∣∣∣∣
∫

Σ
ψ

(
|u|
α

)
dµ ≤ 1

}
.

With these preliminaries in mind, we are now in the position to recall the no-
tation of completely accretive operators introduced in [8] and further developed
to the ω-quasi case in [12].
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Let J0 be the set given by

J0 =
{

j : R→ [0,+∞]
∣∣∣j is convex, lower semicontinuous, j(0) = 0

}
.

Then, for every u, v ∈ M(Σ, µ), we write

u� v if and only if
∫

Σ
j(u)dµ ≤

∫
Σ

j(v)dµ for all j ∈ J0.

Remark 4.1. Due to the interpolation result [8, Proposition 1.2], for given u,
v ∈ M(Σ, µ), the relation u� v is equivalent to the two conditions

∫
Σ
[u− k]+ dµ ≤

∫
Σ[v− k]+ dµ for all k > 0 and∫

Σ
[u + k]− dµ ≤

∫
Σ[v + k]− dµ for all k > 0.

Thus, the relation� is closely related to the theory of rearrangement-invariant
function spaces (cf [10]). Another, useful characterization of relation “ �′′ is
the following (cf [8, Remark 1.5]): for u, v ∈ M(Σ, µ), u � v if and only if
u+ � v+ and u− � v−.

Further, the relation � on M(Σ, µ) has the following properties. We omit
the easy proof of this proposition.

Proposition 4.2. For every u, v, w ∈ M(Σ, µ), one has that
(1) u+ � u, u− � −u;
(2) u� v if and only if u+ � v+ and u− � v−;
(3) (positive homogeneity) if u� v then αu� αv for all α > 0;
(4) (transitivity) if u� v and v� w then u� w;
(5) if u� v then |u| � |v|;
(6) (convexity) for every u ∈ M(Σ, µ), the set {w |w� u} is convex.

With these preliminaries in mind, we can now state the following definitions.

Definition 4.3. A mapping S : D(S)→ M(Σ, µ) with domain D(S) ⊆ M(Σ, µ)
is called a complete contraction if

Su− Sû� u− û for every u, û ∈ D(S).

More generally, for L > 0, we call S to be an L-complete contraction if

L−1Su− L−1Sû� u− û for every u, û ∈ D(S),

or for L = eωt with ω ∈ R and t ≥ 0, S is then also called an ω-quasi complete
contraction.

Remark 4.4. Note, for every 1 ≤ q < ∞, jq(·) = |[·]+|q ∈ J0, j∞(·) = [[·]+ −
k]+ ∈ J0 for every k ≥ 0 (and for large enough k > 0 if q = ∞), and for every
N-function ψ and α > 0, jψ,α(·) = ψ( [·]

+

α ) ∈ J0. This shows that for every
L-complete contraction S : D(S) → M(Σ, µ) with domain D(S) ⊆ M(Σ, µ),
the mapping L−1S is order-preserving and contractive respectively for every
Lq-norm (1 ≤ q ≤ ∞), and every Lψ-norm with N-function ψ.

Now, we can state the definition of completely accretive operators.
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Definition 4.5. An operator A on M(Σ, µ) is called completely accretive if for
every λ > 0, the resolvent operator Jλ of A is a complete contraction, or equiv-
alently, if for every (u1, v1), (u2, v2) ∈ A and λ > 0, one has that

u1 − u2 � u1 − u2 + λ(v1 − v2).

If X is a linear subspace of M(Σ, µ) and A an operator on X, then A is m-
completely accretive on X if A is completely accretive and satisfies the range con-
dition (3.1). Further, for ω ∈ R, an operator A on a linear subspace X ⊆ M(Σ, µ)
is called ω-quasi (m)-completely accretive in X if A + ωI is (m)-completely accre-
tive in X.

Before stating a useful characterization of completely accretive operators, we
first need to introduce the following function spaces. Let

L1+∞(Σ, µ) := L1(Σ, µ) + L∞(Σ, µ) and L1∩∞(Σ, µ) := L1(Σ, µ) ∩ L∞(Σ, µ)

be the sum and the intersection space of L1(Σ, µ) and L∞(Σ, µ), which are equipped,
respectively, with the norms

‖u‖1+∞ := inf
{
‖u1‖1 + ‖u2‖∞

∣∣∣u = u1 + u2, u1 ∈ L1(Σ, µ), u2 ∈ L∞(Σ, µ)
}

,

‖u‖1∩∞ := max
{
‖u‖1, ‖u‖∞

}
are Banach spaces. In fact, L1+∞(Σ, µ) and and L1∩∞(Σ, µ) are respectively the
largest and the smallest of the rearrangement-invariant Banach function spaces
(cf [10, Chapter 3.1]). If µ(Σ) is finite, then L1+∞(Σ, µ) = L1(Σ, µ) with equiva-
lent norms, but if µ(Σ) = ∞ then L1+∞(Σ, µ) contains

⋃
1≤q≤∞ Lq(Σ, µ). Further,

we will employ the space

L0(Σ, µ) :=
{

u ∈ M(Σ, µ)
∣∣∣ ∫

Σ

[
|u| − k

]+ dµ < ∞ for all k > 0
}

,

which equipped with the L1+∞-norm is a closed subspace of L1+∞(Σ, µ). In fact,
one has (cf [8]) that L0(Σ, µ) = L1(Σ, µ) ∩ L∞(Σ, µ)

1+∞ . Since for every k ≥ 0,
Tk(s) := [|s| − k]+ is a Lipschitz mapping Tk : R → R and by Chebyshev’s
inequality, one sees that Lq(Σ, µ) ↪→ L0(Σ, µ) for every 1 ≤ q < ∞ (and q = ∞
if µ(Σ) < +∞), and Lψ(Σ, µ) ↪→ L0(Σ, µ) for every N-function ψ.

Proposition 4.6 ([12]). Let P0 denote the set of all functions T ∈ C∞(R) satisfying
0 ≤ T′ ≤ 1 such that T′ is compactly supported, and x = 0 is not contained in the
support supp(T) of T. Then for ω ∈ R, an operator A ⊆ L0(Σ, µ) × L0(Σ, µ) is
ω-quasi completely accretive if and only if∫

Σ
T(u− û)(v− v̂)dµ + ω

∫
Σ

T(u− û)(u− û)dµ ≥ 0

for every T ∈ P0 and every (u, v), (û, v̂) ∈ A.

Remark 4.7. For convenience, we denote the unique extension of {Tt}t≥0 on
Lψ(Σ, µ) or L1(Σ, µ) again by {Tt}t≥0.

Definition 4.8. A Banach space X ⊆ M(Σ, µ) with norm ‖·‖X is called normal
if the norm ‖·‖X has the following property:{

for every u ∈ X, v ∈ M(Σ, µ) satisfying v� u,
one has that v ∈ X and ‖v‖X ≤ ‖u‖X.



HOMOGENEOUS EVOLUTION EQUATIONS 19

Typical examples of normal Banach spaces X ⊆ M(Σ, µ) are Orlicz-spaces
Lψ(Σ, µ) for every N-function ψ, Lq(Σ, µ), (1 ≤ q ≤ ∞), L1∩∞(Σ, µ), L0(Σ, µ),
and L1+∞(Σ, µ).

Remark 4.9. It is important to point out that if X is a normal Banach space,
then for every u ∈ X, one always has that u+, u− and |u| ∈ X. To see this,
recall that by (1) Proposition 4.2, if u ∈ X, then u+ � u and u− � −u. Thus,
u+ and u− ∈ X and since |u| = u+ + u−, one also has that |u| ∈ X.

The dual space (L0(Σ, µ))′ of L0(Σ, µ) is isometrically isomorphic to the space
L1∩∞(Σ, µ). Thus, a sequence (un)n≥1 in L0(Σ, µ) is said to be weakly convergent
to u in L0(Σ, µ) if

〈v, un〉 :=
∫

Σ
v un dµ→

∫
Σ

v u dµ for every v ∈ L1∩∞(Σ, µ).

For the rest of this paper, we write σ(L0, L1∩∞) to denote the weak topology on
L0(Σ, µ). For this weak topology, we have the following compactness result.

Proposition 4.10 ([8, Proposition 2.11]). Let u ∈ L0(Σ, µ). Then, the following
statements hold.

(1) The set
{

v ∈ M(Σ, µ)
∣∣∣ v� u

}
is σ(L0, L1∩∞)-sequentially compact in L0(Σ, µ);

(2) Let X ⊆ M(Σ, µ) be a normal Banach space satisfying X ⊆ L0(Σ, µ) and

(4.1)

 for every u ∈ X, (un)n≥1 ⊆ M(Σ, µ) with un � u for all n ≥ 1

and lim
n→+∞

un(x) = u(x) µ-a.e. on Σ, yields lim
n→+∞

un = u in X.

Then for every u ∈ X and sequence (un)n≥1 ⊆ M(Σ, µ) satisfying

un � u for all n ≥ 1 and lim
n→+∞

un = u σ(L0, L1∩∞)-weakly in X,

one has that
lim

n→+∞
un = u in X.

Note, examples of normal Banach spaces X ⊆ L0(Σ, µ) satisfying (4.1) are
X = Lp(Σ, µ) for 1 ≤ p < ∞ and L0(Σ, µ).

To complete this section we state the following Proposition summarizing
statements from [12, Proposition 2.9 & Proposition 2.10], which we will need in
the sequel (cf [8] for the case ω = 0).

Proposition 4.11. For ω ∈ R, let A be ω-quasi completely accretive in L0(Σ, µ).
(1.) If there is a λ0 > 0 such that Rg(I + λA) is dense in L0(Σ, µ), then for the

closure A of A in L0(Σ, µ) and every normal Banach space with X ⊆ L0(Σ, µ),
the restriction AX := A∩ (X×X) of A on X is the unique ω-quasi m-completely
accretive extension of the part AX = A ∩ (X× X) of A in X.

(2.) For a given normal Banach space X ⊆ L0(Σ, µ), and ω ∈ R, suppose A is ω-
quasi m-completely accretive in X, and {Tt}t≥0 be the semigroup generated by
−A on D(A)

X . Further, let {St}t≥0 be the semigroup generated by−A, where A
denotes the closure of A in XL1+∞ . Then, the following statements hold.
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(a) The semigroup {St}t≥0 is ω-quasi completely contractive on D(A)L1+∞ , Tt is
the restriction of St on D(A)

X , St is the closure of Tt in L1+∞(Σ, µ), and

(4.2) Stu0 = L1+∞(Σ, µ)− lim
n→+∞

(
I +

t
n

A
)−n

u0 for all u0 ∈ D(A)L1+∞ ∩ X;

(b) If there exists u ∈ L1∩∞(Σ, µ) such that the orbit {Ttu | t ≥ 0} is locally
bounded on R+ with values in L1∩∞(Σ, µ), then, for every N-function ψ,
the semigroup {Tt}t≥0 can be extrapolated to a strongly continuous, order-
preserving semigroup of ω-quasi contractions on D(A)

X ∩ L1∩∞(Σ, µ)
Lψ

(re-
spectively, on D(A)

X ∩ L1∩∞(Σ, µ)
L1

), and to an order-preserving semigroup
of ω-quasi contractions on D(A)

X ∩ L1∩∞(Σ, µ)
L∞

. We denote each exten-
sion of Tt on on those spaces again by Tt.

(c) The restriction AX := A ∩ (X × X) of A on X is the unique ω-quasi m-
complete extension of A in X; that is, A = AX.

(d) The operator A is sequentially closed in X× X equipped with the relative
(L0(Σ, µ)× (X, σ(L0, L1∩∞)))-topology.

(e) The domain of A is characterized by

D(A) =
{

u ∈ D(A)L1+∞ ∩ X
∣∣∣ ∃ v ∈ X s.t. e−ωt Stu− u

t
� v for small t > 0

}
;

(f) For every u ∈ D(A), one has that

(4.3) lim
t→0+

Stu− u
t

= −A◦u strongly in L0(Σ, µ).

4.2. The subclass of homogeneous operators of order zero. As mentioned in
Section 3, the Banach spaces X1 = L1(Σ, µ) and X2 = L∞(Σ, µ) don’t have the
Radon-Nikodým property. But for the class of quasi m-completely accretive
operators A defined on a normal Banach space X ⊆ M(Σ, µ), for semigroup
{Tt}t≥0 generated by −A, the time-derivative dTtu0

dt+ exists in X at every t > 0

for every u0 ∈ D(A)
X . This fact follows from the following compactness result.

Here, the partial ordering “≤′′ is the standard one defined by u ≤ v for u,
v ∈ M(Σ, µ) if u(x) ≤ v(x) for µ-a.e. x ∈ Σ, and we use the symbol ↪→ for
indicating continuous embeddings.

Lemma 4.12. Let X ⊆ L0(Σ, µ) be a normal Banach space satisfying (4.1). For
ω ∈ R, let {Tt}t≥0 be a family of mappings Tt : C → C defined on a subset C ⊆ X
of ω-quasi complete contractions satisfying (2.18) and Tt0 = 0 for all t ≥ 0. Then, for
every u0 ∈ C and t > 0, the set

(4.4)

{
Tt+hu0 − Ttu0

h

∣∣∣∣∣ h 6= 0, t + h > 0

}
is σ(L0, L1∩∞)-weakly sequentially compact in L0(Σ, µ).

Proof. Let u0 ∈ C, t > 0, and h 6= 0 such that t + h > 0. Then by taking
λ = 1 + h

t in (2.18), one sees that

|Tt+hu0 − Ttu0| = |λ Tt

[
λ−1u0

]
− Ttu0|
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≤ λ
∣∣∣Tt

[
λ−1u0

]
− Ttu0

∣∣∣+ |1− λ| |Ttu0|.

Since Tt is an ω-quasi complete contraction, by (3) of Proposition 4.2, and since
Tt0 = 0, (t ≥ 0), one has that

λ e−ωt
∣∣∣Tt

[
λ−1u0

]
− Ttu0

∣∣∣� |1− λ| |u0|

and
|1− λ| e−ωt|Ttu0| � |1− λ| |u0|.

Since the set {w |w� |1− λ| |u0|} is convex (see (6) of Proposition 4.2), we can
conclude that

1
2

e−ωt|Tt+hu0 − Ttu0| � |1− λ| |u0| =
|h|
t
|u0|

and hence, by (3) of Proposition 4.2,

(4.5)
|Tt+hu0 − Ttu0|

|h| � 2 eωt |u0|
t

.

Since for every u ∈ M(Σ, µ), one always has that u+ � |u|, the transitivity of
“�′′ (see (4) of Proposition 4.2) implies for

fh :=
Tt+hu0 − Ttu0

|h| , one has that f+h � 2 eωt |u0|
t

Therefore, by (1) of Proposition 4.10, the two sets { f+h | h 6= 0, t + h > 0}
and {| fh|| h 6= 0, t + h > 0} are σ(L0, L1∩∞)- weakly sequentially compact in
L0(Σ, µ), and since f−h = | fh| − f+h and fh = f+h − f−h , we have thereby shown
that the claim of this lemma holds. �

With these preliminaries in mind, we can now state the regularization ef-
fect of the semigroup {Tt}t≥0 generated by a ω-quasi m-completely accretive
operator of homogeneous order zero.

Theorem 4.13. Let X ⊆ L0(Σ, µ) be a normal Banach space satisfying (4.1). For
ω ∈ R, let A be ω-quasi m-completely accretive in X, and {Tt}t≥0 be the semigroup
generated by −A on D(A)

X . If (0, 0) ∈ A and A is homogeneous of order zero, then
for every u0 ∈ D(A)

X and t > 0, dTtu0
dt exists in X and

(4.6) |A◦Ttu0| ≤ 2eωt |u0|
t

µ-a.e. on Σ.

In particular,

(4.7)
∥∥∥∥dTtu0

dt

∥∥∥∥ ≤ 2eωt ‖u0‖
t

for every t > 0,

and

(4.8)
dTtu0

dt
≤ Ttu0

t
µ-a.e. on Σ for every t > 0 if u0 ≥ 0,

for every u0 ∈ D(A)
X (then ‖·‖ denotes the norm on X), respectively, for every u0 ∈

D(A)
X ∩ L1∩∞(Σ, µ)

Lψ

(then ‖·‖ is the Lψ-norm) for every N-function ψ or for every
1 ≤ ψ ≡ p < ∞, and for every u0 ∈ D(A)

X ∩ L∞(Σ, µ) (where then ‖·‖ is the
L∞-norm).
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Proof. Let u0 ∈ D(A)
X , t > 0, and (hn)n≥1 ⊆ R be a zero sequence such that

t + hn > 0 for all n ≥ 1. Due to Lemma 3.3, we can apply Lemma 4.12. Thus,
there is a z ∈ L0(Σ, µ) and a subsequence (hkn)n≥1 of (hn)n≥1 such that

(4.9) lim
n→+∞

Tt+hkn
u0 − Ttu0

hkn

= z weakly in L0(Σ, µ).

Moreover, by (2e) of Proposition 4.11, one has that (Ttu0,−z) ∈ A. Thus (2f) of
the same proposition 4.11 yields that z = −A◦Ttu0 and

(4.10) lim
n→0

Tt+hkn
u0 − Ttu0

hkn

= −A◦u0 strongly in L0(Σ, µ).

After possibly passing to another subsequence, we have that limit (4.10) holds
also µ-a.e. on Σ. Since 2e−ωt |u0|

t ∈ X and X ⊆ L0(Σ, µ), (2) of Proposition 4.10
implies that

(4.11) lim
h→0

Tt+hu0 − Ttu0

h
= −A◦Ttu0 exists in X and µ-a.e. on Σ.

Thus and since by (4.5),

|Tt+hkn
u0 − Ttu0|
|hkn |

≤ 2 e−ωt |u0|
t

for all n ≥ 1,

sending n → +∞ in the last inequality, gives (4.6). In particular, by Corol-
lary 2.4, one has that (4.7) holds for the norm ‖·‖X on X and by Theorem 2.7,
it follows that (4.8) holds. Moreover, we have that −A◦Ttu0 = dTtu0

dt+ µ-a.e. on
Σ for every t > 0. Thus, sending h → 0+ in (4.5) shows that (4.6) holds. Fur-
ther, by the µ-a.e.-limit (4.11), applying Fatou’s lemma to (4.5) yields that (4.7)
holds for the Lψ-norm for every N-function ψ and the Lp-norm 1 ≤ p < ∞.
Since (4.7) holds for all p < ∞, sending 1 ≤ p → +∞ completes the proof of
this theorem. �

Remark 4.14 (Open problem). We emphasize that the crucial point in the pre-
vious proof is that due to the zero-order homogeneity of A, the set (4.4) is
σ(L0, L1∩∞)-weakly sequentially compact in L0(Σ, µ) and hence, for every t >
0, Ttu0 ∈ D(A) and

dTtu0

dt+
= lim

h→0+

Tt+hu0 − Ttu0

h
= −A◦Ttu0 exists in X.

We believe that this remains true if the infinitesimal generator of the semi-
group {Tt}t≥0 is of the form A + F where A is homogeneous of order zero and
F is Lipschitz-continuous. But so far, we are not able to show this result.

As a final result of this section, we state the following decay estimates for
semigroups generated by the perturbed operator A + F. Here, we write Lq0∩∞

for the intersection space Lq0(Σ, µ) ∩ L∞(Σ, µ).

Theorem 4.15. Let F : M(Σ, µ) → M(Σ, µ) be a mapping such that for every N-
function ψ and for ψ ≡ 1 and ψ ≡ +∞, the restriction F|Lψ : Lψ(Σ, µ) → Lψ(Σ, µ)
is Lipschitz continuous with constant Lipschitz ω > 0 and F(0) = 0. Let A be an m-
completely accretive operator on normal Banach space X ⊆ L0(Σ, µ), and {Tt}t≥0 the
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semigroup generated by −(A + F) on D(A)
X . If (0, 0) ∈ A and A is homogeneous of

order zero, then

(4.12)
∥∥∥∥dTtu0

dt+

∥∥∥∥
ψ

≤
[

2eω
∫ t

0 e−ωssds + ω
∫ t

0
eω
∫ t

s e−ωrrdrds
]

eωt ‖u0‖ψ

t

for every t > 0, and every u0 ∈ D(A)
X ∩ L1∩∞(Σ, µ)

Lψ

for every N-function ψ, and
every 1 ≤ ψ ≡ p < ∞, and for every u0 ∈ D(A)

X ∩ Lq0∩∞(Σ, µ) for q = ∞ (where
then ‖·‖ψ is the L∞-norm).

Proof. Since (0, 0) ∈ (A + F), Tt0 = 0 for all t ≥ 0. Thus, u ≡ 0 ∈ L1∩∞(Σ, µ)
such that {Ttu| t ≥ 0} is locally bounded in R+. Thus, by Proposition 4.11,
for every N-function ψ (respectively, for ψ ≡ 1 and ψ ≡ ∞) each Tt admits
a unique extension (which we denote again by Tt) of an ω-quasi contractions

on D(A)
X ∩ L1∩∞(Σ, µ)

Lψ

with respect to the Lψ-norm. In addition, the fam-
ily {Tt}t≥0 remains a semigroup satisfying (2.28) and in relation with (2.27),
{Tt}t≥0 satisfies (2.2) and (2.3) for f given by (2.26). Further, for 1 < ψ ≡ q < ∞,
Lq(Σ, µ) and its dual space Lq′ (Σ, µ) are uniformly convex. Therefore, by Corol-

lary 2.12 and Proposition 3.6, for every u0 ∈ D(A)
X ∩ L1∩∞(Σ, µ)

Lq

, for every
t > 0, dTtu0

dt +
exists in Lq(Σ, µ),

(4.13)
dTtu0

dt+
= lim

h→0+

Tt+hu0 − Ttu0

h
exists µ-a.e. on Σ,

and (4.12) holds. Moreover, by Corollary 2.12, one has that (2.29) holds for

the Lψ-norm and every u0 ∈ D(A)
X ∩ L1∩∞(Σ, µ)

Lψ

and every N-function ψ,

respectively for the L1-norm and every u0 ∈ D(A)
X ∩ L1∩∞(Σ, µ)

L1
. Thus and

by (4.13), sending h → 0+ in (2.29) one obtains that (4.12) holds for all N-
function ψ and q = 1.

Next, let u0 ∈ D(A)
X ∩ Lq0∩∞(Σ, µ) for some 1 ≤ q0 < +∞ and t > 0. We

assume ‖dTtu0
dt +
‖∞ > 0 (otherwise, there is nothing to show). Then, for every

s ∈ (0, ‖dTtu0
dt +
‖∞) and every q0 ≤ q < ∞, Chebyshev’s inequality yields

µ

({ ∣∣∣∣dTtu0

dt +

∣∣∣∣ ≥ s

})1/q

≤

∥∥∥dTtu0
dt +

∥∥∥
q

s

and so, by (4.12),

s µ

({ ∣∣∣∣dTtu0

dt +

∣∣∣∣ ≥ s

})1/q

≤
[

2eω
∫ t

0 e−ωssds + ω
∫ t

0
eω
∫ t

s e−ωrrdrds
]

eωt ‖u0‖q

t
.

Thus and since limq→∞‖u0‖q = ‖u0‖∞, sending q → +∞ in the last inequality,
yields

s ≤
[

2eω
∫ t

0 e−ωssds + ω
∫ t

0
eω
∫ t

s e−ωrrdrds
]

eωt ‖u0‖∞

t

and since s ∈ (0,
∥∥∥dTtu0

dt +

∥∥∥
∞
) was arbitrary, we have thereby shown that (4.12)

also holds for q = ∞.
�
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5. APPLICATION

Throughout this section, let Σ be an open set of Rd and the Lebesgue space
Lq(Σ) is equipped with the classical Lebesgue measure. Suppose f : Σ×R →
R is a Lipschitz-continuous Carathéodory function, that is, f satisfies the follow-
ing three properties:

• f (·, u) : Σ→ R is measurable on Σ for every u ∈ R,(5.1)

• f (x, 0) = 0 for a.e. x ∈ Σ, and(5.2)
• there is a constant ω ≥ 0 such that

| f (x, u)− f (x, û)| ≤ ω |u− û| for all u, û ∈ R, a.e. x ∈ Σ.(5.3)

Then, for every 1 ≤ q ≤ ∞, F : Lq(Σ)→ Lq(Σ) defined by

F(u)(x) := f (x, u(x)) for every u ∈ Lq(Σ)

is the associated Nemytskii operator on Lq(Σ). Moreover, by (5.3), F is globally
Lipschitz continuous on Lq(Σ) with constant ω > 0 and F(0)(x) = 0 for a.e.
x ∈ Σ.

5.1. Decay estimates of the total variational flow. In this subsection, we con-
sider the perturbed total variational flow operator (1-Laplace operator) given
by

Au := −∆1u + f (x, u) with ∆1u = div
(

Du
|Du|

)
,

equipped with either Neumann or Dirichlet boundary conditions on a bounded
domain Σ in Rd, d ≥ 1.

Here, we use the following notation. A function u ∈ L1(Σ) is said to be a
function of bounded variation in Σ, if the distributional partial derivatives D1u :=
∂u
∂x1

, . . . , Ddu := ∂u
∂xd

are finite Radon measures in Σ, that is, if∫
Ω

u Di ϕ dx = −
∫

Ω
ϕ dDiu

for all ϕ ∈ C∞
c (Σ), i = 1, . . . , d. The linear vector space of functions u ∈

L1(Σ) of bounded variation in Σ is denoted by BV(Σ). Further, we set Du =
(D1u, . . . , Ddu) for the distributional gradient of u. Then, Du belongs to the class
Mb(Ω, Rd) of Rd-valued bounded Radon measure on Ω, and we either write
|Du|(Σ) or

∫
Σ |Du| to denote the total variation measure of Du. The space BV(Σ)

equipped with the norm ‖u‖BV(Σ) := ‖u‖L1(Σ)+ |Du|(Σ) forms a Banach space.
Further, let

X1(Σ) =
{

z ∈ L∞(Σ, Rd)
∣∣∣ div(z) :=

d

∑
i=1

Diz ∈ L1(Σ)
}

,

sign0(s), (s ∈ R), is the classical sign function with the additional property that
sign0(0) = 0, and for every k > 0, Tk(s) := [k− [k− |s|]+ sign0(s), (s ∈ R).

The Neumann total variational flow operator. In [2] (see also [3]), the neg-
ative total variational flow operator (1-Laplace operator) −∆N

1 in L1(Σ) equipped
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with Neumann boundary conditions was introduced by

−∆N
1 =

{
(u, v) ∈ L1(Σ)× L1(Σ)

∣∣∣∣∣ Tk(u) ∈ BV(Σ) ∀ k > 0 & ∃ z ∈ X1(Σ)
such that ‖z‖∞ ≤ 1 & (5.4) holds

}
,

where

(5.4)


v = −div(z) in D′(Σ), and∫

Σ
(ξ − Tk(u) v dx ≤

∫
Σ

z · Dξ dx−
∫

Σ
|DTk(u)|

for every ξ ∈ W1,1(Σ) ∩ L∞ and all k > 0. Moreover, the negative Neumann 1-
Laplace operator −∆N

1 is m-completely accretive in L1(Σ) with dense domain.
Therefore, under the hypotheses (5.1)–(5.3), the operator −∆N

1 + F is ω-quasi
m-completely accretive on L1(Σ) (cf [12]). Now, it is not difficult to see that
−∆N

1 is homogeneous of order zero and 0 ∈ −∆N
1 0. Thus, by Theorem 4.13 and

Theorem 4.15, we can state the following regularity result.

Corollary 5.1. For every 1 ≤ q < ∞ and u0 ∈ Lψ(Σ) (respectively u0 ∈ L1∩∞(Σ) if
q = ∞), the unique mild solution u of problem

(5.5)


du
dt
− div

(
Du
|Du|

)
+ f (x, u) = 0 on Σ× (0,+∞),

Dνu = 0 on ∂Σ× (0,+∞),

u(0) = u0 on Σ× {t = 0},

is a strong solution satisfying (4.12). Moreover, if f ≡ 0, then either for every 1 ≤
ψ ≡ p ≤ ∞ or N-function ψ and every u0 ∈ Lψ(Σ), the unique mild solution u of
problem (5.5) satisfies (4.7) and (4.8).

Next, for d ≥ 2, the following Sobolev-Poincaré inequality (cf [3, formula (B.2),
p.302])

‖u− ū‖ d
d−1
≤ C |Du|(Σ) for every u ∈ BV(Σ),

holds for a constant C = C(d) > 0, where ū := 1
|Σ|
∫

Ω u(x)dx denotes the
mean-value of an integrable function u. Thus, we have that the negative Neu-
mann 1-Laplace operator A = −∆N

1 satisfies the following abstract Sobolev
inequality

‖u− ū‖σ
r ≤ C [u, v]2 for every (u, v) ∈ A

with parameters r = d
d−1 > 1 and σ = 1, where [·, ·]2 denote the L2-inner prod-

uct. Now, it follows from [12, Theorem 1.2], the semigroup {Tt}t≥0 generated
by ∆N

1 − F satisfies the following L2-L
d

d−1 -regularity estimate

‖Ttu− ū‖ d
d−1
≤ C

2
t−1 e3ωt‖u− ū‖2

2 for every t > 0

and u ∈ L2(Σ). Further, for every q > d− 1, one has

‖Ttu‖∞ ≤ C̃ t
− 1

( d
d−1−1)q−1 e

(
1

( d
d−1−1)q−1

+1

)
ωt
‖u‖

( d
d−1−1)q

( d
d−1−1)q−1

dq
d−1

for every t > 0
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and u ∈ L
dq

d−1 (Σ). Thus, by Corollary 2.6 and inequality (4.12) for q = ∞, we
also have the following estimate.

Corollary 5.2. Let d ≥ 2 and q > d− 1. Then for every u0 ∈ L
dq

d−1 (Σ), the unique
solution u of (5.5) satisfies

∥∥∥∥du
dt

∥∥∥∥
∞
≤ C̃ Cω(t/2)2

1
( d

d−1−1)q−1
+2

e
ω
2

(
1

( d
d−1−1)q−1

+1

)
t ‖u0‖

( d
d−1−1)q

( d
d−1−1)q−1

dq/(d−1)

t
1

( d
d−1−1)q−1

+1

for every t > 0, where Cω(t) is the constant in (4.12).

Remark 5.3 (The Dirichlet boundary case). In [1] (cf [3]), existence and unique-
ness of the the parabolic initial boundary-value problem

(5.6)


du
dt
− div

(
Du
|Du|

)
= 0 on Σ× (0,+∞),

u = ϕ on ∂Σ× (0,+∞),

u(0) = u0 on Σ× {t = 0},
associated with the total variational flow equipped with (inhomogeneous) Diri-
chlet boundary conditions was established. For every boundary term ϕ ∈
L1(Σ), the negative Dirichlet total variational flow operator (1-Laplace operator)
∆D

1 u := div
(

Du
|Du|

)
is m-completely accretive in L1(Σ). But only in the homo-

geneous case ϕ ≡ 0, the operator ∆D
1 is homogeneous of order zero. Thus, the

same statement as given in Corollary 5.1 holds in the Dirichlet case with ϕ ≡ 0.

5.2. Decay estimates of the nonlocal total variational Flow. In this very last
section, we consider for 0 < s < 1, the perturbed fractional 1-Laplace operator

Au := PV
∫

Σ

(u(y)− u(x))
|u(y)− u(x)|

dy
|x− y|d+s + f (x, u)

equipped with either Dirichlet on a domain Σ in Rd or with or vanishing con-
ditions if Σ = Rd, d ≥ 1.

For 0 < s < 1, letW s,1
0 (Σ) be the Banach space given by

W s,1
0 (Σ) =

{
u ∈ L1(Σ)

∣∣∣ [u]s,1 < ∞ and u = 0 a.e. on Rd \ Σ
}

equipped with the norm ‖·‖W s,1
0

:= ‖·‖1 + [·]s,1, where

[u]s,1 :=
∫

Rd

∫
Rd

|u(x)− u(y)|
|x− y|d+s dydx for every u ∈ W s,1

0 (Σ).

Further, let BL∞
as

denote the closed unit ball of all anti-symmetric η ∈ L∞(Rd ×
Rd), that is,

η(x, y) = −η(y, x) for a.e. (x, y) ∈ Rd ×Rd and ‖η‖∞ ≤ 1.

Then, it was shown in [16, Section 3.] that the fractional Dirichlet 1-Laplace oper-
ator (−∆D

1 )
s in L2(Σ) can be realized by (the graph)

(−∆D
1 )

s =
{
(u, v) ∈ L2(Σ)× L2(Σ)

∣∣∣ u ∈ W s,1
0 (Σ) & ∃ η ∈ BL∞

as
s.t. (5.7) holds

}
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where

(5.7)


η(x, y) ∈ sign(u(x)− u(y)) for a.e. (x, y) ∈ Rd ×Rd and

1
2

∫
Rd

∫
Rd

η(x, y)(ξ(x)− ξ(y))
|y− x|d+s dydx =

∫
Σ

v(x) ξ(x)dx

for all ξ ∈ W s,1
0 (Σ) ∩ L2(Σ),

and (−∆D
1 )

s is m-completely accretive in L2(Σ) with dense domain D((−∆D
1 )

s)
in L2(Σ). One immediately sees that (−∆D

1 )
s is homogeneous of order zero

and 0 ∈ (−∆D
1 )

s0. Moreover, under the hypotheses (5.1)–(5.3), the opera-
tor (−∆D

1 )
s + F is ω-quasi m-completely accretive on L2(Σ). Thus, by Theo-

rem 4.15, we have the following regularity result.

Corollary 5.4. For every 1 ≤ q < ∞ and u0 ∈ Lψ(Σ) (respectively u0 ∈ L1∩∞(Σ) if
q = ∞), the unique mild solution u of problem

(5.8)


du
dt

+ PV
∫

Σ

u(x)− u(y)
|u(y)− u(x)|

dy
|x− y|d+s + f (x, u) = 0 on Σ× (0,+∞),

u = 0 on ∂Σ× (0,+∞),

u(0) = u0 on Σ× {t = 0},

is a strong solution satisfying (4.12). Moreover, if f ≡ 0, then either for every 1 ≤
ψ ≡ p ≤ ∞ or N-function ψ and every u0 ∈ Lψ(Σ), the unique mild solution u of
problem (5.5) satisfies (4.7) and (4.8).

Further, since for every 0 < s < 1 and d ≥ 1, the following (fractional) Sobolev
inequality (cf [15, Theorem 14.29])

‖u‖ d
d−s
≤ C [u]s,1 for every u ∈ W s,1

0 (Σ),

holds for a constant C = C(d, s) > 0, we have that the fractional Dirichlet 1-
Laplace operator A = (−∆D

1 )
s satisfies the following abstract Sobolev inequal-

ity

‖u‖σ
r ≤ C [u, v]2 for every (u, v) ∈ A

with parameters r = d
d−s > 1 and σ = 1, where [·, ·]2 denote the L2-inner

product. Thus, by [12, Theorem 1.2], the semigroup {Tt}t≥0 generated by
−((−∆D

1 )
s + F) satisfies the following L2-L

d
d−s -regularity estimate

‖Ttu‖ d
d−s
≤ C

2
t−1 e3ωt‖u‖2

2 for every t > 0

and u ∈ L2(Σ). Further, for every q > d−s
s , one has that

‖Ttu‖∞ ≤ C̃ t−
d−s

s(q+1)−d e
(

d−s
s(q+1)−d+1

)
ωt ‖u‖

d−s
s(q+1)−d

sq
d−s

dq
d−s

for every t > 0

and u ∈ L
dq

d−s (Σ). Thus, by Corollary 2.6 and inequality (4.12) for q = ∞, we
also have the following estimate.
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Corollary 5.5. Let d ≥ 1, 0 < s < 1 and q > d−s
s . Then for every u0 ∈ L

dq
d−s (Σ), the

unique solution u of (5.8) satisfies

∥∥∥∥du
dt

∥∥∥∥
∞
≤ C̃ Cω(t/2)2

d−s
s(q+1)−d+2e

ω
2

(
d−s

s(q+1)−d+1
)

t ‖u0‖
d−s

s(q+1)−d
sq

d−s

dq/(d−s)

t
d−s

s(q+1)−d+1
for every t > 0,

where Cω(t) is the constant in (4.12).
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