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Abstract

An explicit isomorphism between the R-matrix and Drinfeld presentations of the
quantum affine algebra in type A was given by Ding and I. Frenkel (1993). We
show that this result can be extended to types B, C' and D and give a detailed
construction for type C' in this paper. In all classical types the Gauss decomposition
of the generator matrix in the R-matrix presentation yields the Drinfeld generators.
To prove that the resulting map is an isomorphism we follow the work of E. Frenkel
and Mukhin (2002) in type A and employ the universal R-matrix to construct the
inverse map. A key role in our construction is played by an embedding theorem
which allows us to consider the quantum affine algebra of rank n — 1 in the R-matrix
presentation as a subalgebra of the corresponding algebra of rank n of the same type.
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1 Introduction

The quantum affine algebras U,(g) were introduced independently by Drinfeld [9] and
Jimbo [23] as deformations of the universal enveloping algebras of the affine Lie algebras
g in the class of Hopf algebras. Another presentation of these algebras was given by
Drinfeld [10], which is known as the new realization or Drinfeld presentation. A detailed
construction of the isomorphism between the presentations was given by Beck [2]. Yet an-
other R-matrix presentation of the quantum affine algebras was introduced by Reshetikhin
and Semenov-Tian-Shansky [32] and further developed by I. Frenkel and Reshetikhin [17].

The algebras U,(g) possess a substantive algebraic structure and rich representation
theory. Their finite-dimensional irreducible representations were classified by Chari and
Pressly in terms of the Drinfeld presentation; see [5, Chapter 12]. A theory of ¢-characters
of these representations was developed in [14] and [16]; its connections with classical and
quantum integrable systems were reviewed in the expository paper [29].

The R-matrix presentation of the quantum affine algebras can also be used to describe
finite-dimensional irreducible representations by following the approach of Tarasov [34]; see
also [20]. The role of this presentation in the theory of Knizhnik-Zamolodchikov equations
is discussed in detail in the lectures [12].

An explicit isomorphism between the Drinfeld and R-matrix presentations of the al-
gebras U,(g) should provide a bridge between the two sides of the theory and widen the
spectrum of methods for their investigation. Such an isomorphism was already constructed
in the case of simple Lie algebras g of type A by Ding and I. Frenkel [8]. We aim to extend
this result to the Lie algebras g of types B, C' and D. The present article is concerned
with type C', while types B and D will be dealt with in a forthcoming paper.

Our approach is similar to [8]; it is based on the Gauss decomposition of the generator
matrices in the R-matrix presentation. The first part of the construction is the verification
that the generators arising from the Gauss decomposition do satisfy the required relations of
the Drinfeld presentation. The second part is the proof that the resulting homomorphism
is injective. We use an argument alternative to [8] and follow the work of E. Frenkel
and Mukhin [15] instead, where the map inverse to the Ding-Frenkel isomorphism was
constructed. This map relies on the formula for the universal R-matrix corresponding to
the algebra U,(g) due to Tolstoy and Khoroshkin [35] and Damiani [6]. It turns out to be
possible to use this formula in types B, C' and D to construct a similar map in those cases.

Similar to the Yangian case in our previous work [26], in this paper we will mainly work
with the extended quantum affine algebra in type C' defined by an R-matrix presentation.
We prove an embedding theorem which will allow us to regard the extended algebra of rank
n — 1 as a subalgebra of the corresponding algebra of rank n. We also produce a Drinfeld-
type presentation for the extended quantum affine algebra and give explicit formulas for
generators of its center. Note that a different approach to the equivalences between Yangian
presentations and to the description of the centers of the extended Yangians was developed
in [21] and [36] which should also be applicable to quantum affine algebras.

To state our isomorphism theorem, choose simple roots for the symplectic Lie algebra



g = sp,,, in the form

a;=¢—€y1 for i=1,...,n—1 and a, = 26,,
where €y, ..., €, is an orthonormal basis of a Euclidian space with the bilinear form (-, -).
The Cartan matrix [A;;] is defined by
2(a, )
A =200 1.1
= g o) (1.1)
For a variable ¢ we set ¢; = ¢" for i = 1,...,n, where r; = (o, ®;)/2, so that ¢; = ¢ for
i <n and g, = ¢>. We will use the standard notation
k_ o —k
q —q
[k]q = P— (1.2)

for a nonnegative integer k, and

k k!
| o =

s=1

The quantum affine algebra U,(sp,,) in its Drinfeld presentation is the associative al-

gebra over C(q) with generators =7, a;;, k:ljE and ¢¥¢/% for i = 1,...,n and m,l € Z with
+c/2

lm7

[ # 0, subject to the following defining relations: the elements ¢
kik ' =k ki =1, g P =P =,

are central,

_ _ + 1_ iAij +
kikj = kjkiu kl Aj = Ajk ki, ]{7 le'j m kz xj,m’
me —mc
_ [mAijle 4™ —q
[a'i,ma aj,l] — Um,—1 —1 >
m 45 — g,

[mAl ] m|c
[ai.m, ;‘tl] = iTJ gFmle/? me

+ + +Ai;; + + +Ai;; + _+ + +
Tim+1Ti0 =4 " TjTime1 = 4 TimTii01 — Liie1%ims

m—l)c/2 m—l)c/2

T =10 ¢ Wil — q B Pim+l
[ 2] = 035 7
+ + % + - S,
Z Z [ ] ey Visey TimPis iy 0 Vissaiy T 0, ©#7,

€S, [=0
where in the last relation we set » =1 — A;;. The elements v, ,, and ¢; _,, with m € Z
are defined by

= i Yimu™ ™ =k exp im SU S , (1.3)
m=0

s=1
pi(u) =D @i ™ = k; exp(—(q; — q; Zal ) (1.4)

m=0



whereas ¥ ,, = @i _m = 0 for m < 0.

To introduce the R-matrix presentation of the quantum affine algebra, consider the

following elements of the endomorphism algebra End (C?" ® C?") = End C*" @ End C*:

2n 2n
7—7
P = E €5 & €ji, Q = E q ]EiEj €t (%9 €ijs
i,j=1 i,j=1

and

_qzen®6u+26u®eﬂ+q Zezz®ez/z’

i#5,5' i1

q_q Zeu®6]z_ q—q_l)Zqi_jgigjei/j,®eij’
i<j i>]

where ¢e;; € End C?" are the matrix units and we used the notation

1 for i=1,...,n,
€ =
‘ -1 for 1=n+1,...,2n
i" =2n—i+1and (1,2,...,2n)

(nym—1,...,1,—1,.
the formal power series

u) =1+ kauk
k=1

whose coefficients f; are rational functions in ¢ uniquely determined by the relation

.., —n). Furthermore, consider

1
R (T (T3 [ (rTa) )
where £ = ¢7?"2. Equivalently, f(u) is given by the infinite product formula
O 1 . u§2r q72 §2r+1)(1 _ uq2 §2r+1)(1 _ u€2r+2>
,1;[0 (1— uer1) (1 w2 ) (1 —u e (1 — ug2er) (1.6)

Introduce the R-matriz R(u) by

R(w) = f() (¢ (= D= R~ (¢ = Du—-P+ (g2~ )(u—-1EQ). (17)

This formula goes back to Jimbo [24]; for the significance of the scalar function f(u) see

u
the paper by Frenkel and Reshetikhin [17]. The R-matrix is a solution of the Yang—Baxter
equation

ng(u) ng(uv) R23(U) = Rgg(v) R13(U7)) ng(u). (18)



The associative algebra U (sp,,) over C(q) is generated by an invertible central element
¢“? and elements l$[$m] with 1 <4,j < 2n and m € Z, subject to the following defining
relations. We have

l;;[O] =1;0]=0 for i>j and 110]1;[0] = 1;;[0] L [0] = 1,

while the remaining relations will be written in terms of the formal power series

15 (u) = Z I [Fm] v (1.9)

which we combine into the respective matrices

2n
LH(u) = ) e @15(u) € End C*" @ U (spy,,) [[u, u™]].

ij=1

Consider the tensor product algebra End C?*" ® End C** ® UqR(ﬁJQn) and introduce the
series with coefficients in this algebra by

2n
Lf(u) = Zew®1®li( ) and Z 1®em®ljE (u). (1.10)

3,7=1 i,7=1

The defining relations then take the form

R(u/v)Ly (u) Ly (v) = Ly (v) Lt (u) R(u/v), (1.11)
R(ug®/v) Ly (u)Ly (v) = Ly (v)L{ (u)R(ug™/v), (1.12)

together with the relations
L*(u)DL*(ué)'D™' =1, (1.13)

where t denotes the matrix transposition with ej; = ¢;¢; ey » and D is the diagonal matrix
D =diag[¢",...,q,q" " ...,q¢ "] (1.14)

Now apply the Gauss decomposition to the matrices L*(u) and L~ (u). There exist
unique matrices of the form

0 ... 0 1 ) ... efy,(u)
Fr(u) = foilw) 1 .0 SR LI ex, (u)
Finlw) fialw) . 1 0 0 .. 1

and H*(u) = diag [hi (u), ..., h3,(u)], such that

L*(u) = F*(u)H* (u) E*(u). (1.15)

bt



Fori=1,...,n set

X (u) = €Zi+1(“qc/2) - e;i+1(uq_c/2), X (u) = ﬁu(uq_cm) - fi:—l,i(uqcm)'

To state our main result, combine the generators xlim of the algebra U, (sp,,) into the

series
r(u) = Z T, u (1.16)

meZ

Main Theorem. The maps ¢/? — ¢/2,

z (u) = (g — ¢ )7 X (ug),

i(u) = iy (ug’) hi (ug') ™,
pi(u) = hi (ug') b (ug') ™,
fori=1,....n—1, and
2y () = (an = ;) 7 X (ug™),
Un() = hyy g (ug™) by (ug™ ),
n(w) = b (ug™) by (ug™ )~
define an isomorphism Uy(8py,) — UL (py,).

For the proof of the Main Theorem we embed U, (p,,,) into an extended quantum affine
algebra U;"t (5p,,,) which is defined by a Drinfeld-type presentation. The next step is to
use the Gauss decomposition to construct a homomorphism from the extended quantum
affine algebra to the algebra U(R) which is defined by the same presentation as the algebra
Ul (spy,), except that the relation (1.13) is omitted. The expressions on the left hand side
of (1.13), considered in the algebra U(R), turn out to be scalar matrices,

L*(u)DL*(u€)' D! = 25 (u) 1,

for certain formal series 2*(u). Moreover, all coefficients of these series are central in U(R).
We will give explicit formulas for z*(u), regarded as series with coefficients in the algebra
U (8py,), in terms of its Drinfeld generators. The quantum affine algebra Uy (sp,,) can
therefore be considered as the quotient of U (sp,,,) by the relations z*(u) = 1.

As a final step, we construct the inverse map U(R) — U™ (spy,) by using the uni-
versal R-matrix for the quantum affine algebra and producing the associated L-operators
corresponding to the vector representation of the algebra U, ($p,,,).

An immediate consequence of the Main Theorem is the Poincaré-Birkhoff-Witt theo-
rem for the R-matrix presentation U, f(ﬁa%) of the quantum affine algebra which is implied
by the corresponding result of Beck [1] for U, (sp,,,). As another application, it is straightfor-
ward to transfer the classification theorem for finite-dimensional irreducible representations
of the algebra U, (spy,) to its R-matrix presentation U (sp,,); see [5, Chapter 12].

We acknowledge the support of the Australian Research Council, grant DP180101825.
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2 Quantum affine algebras

We start by recalling the original definition of the quantum affine algebra U,(g) as intro-
duced by Drinfeld [9] and Jimbo [23]. We suppose that g is a simple Lie algebra over C of
rank n and g is the corresponding (untwisted) affine Kac-Moody algebra with the affine
Cartan matrix [Aij];fj:o. We let ag, g, . . ., a,, denote the simple roots and use the notation
as in [5, Secs 9.1 and 12.2] so that ¢; = ¢" for r; = (v, ;) /2.

2.1 Drinfeld—Jimbo definition and new realization

The quantum affine algebra U,(g) is a unital associative algebra over C(q) with generators
E,,, F,, and k;ﬂ with ¢ =0,1,...,n, subject to the defining relations:

ikt =k k=1, ki = kik;,

kiBoki' =" Ea;,,  kiFo k' =q; "V F,,,

7

ki — k7t
[Eoéw Faj} = 62']'—_17
qi — ¢;
1—Aq;
J 1— A,
(—1)T{ J} (Bu,) Eu,(Ea) ™" =0, if i3],
r=0 r q;
1-Ay;
J 1— A,
(—1)T{ J] (Fo) Fo, (Fo)) ™77 =0, if i#j.
T
r=0 qi

By using the braid group action, the set of generators of the algebra U,(g) can be
extended to the set of affine root vectors of the form E, ks, Fuairs, Ewkss and Eus,,
where « runs over the positive roots of g, and § is the basic imaginary root; see [2, 3| for
details. The root vectors are used in the explicit isomorphism between the Drinfeld-Jimbo
presentation of the algebra U,(g) and the “new realization” of Drinfeld which goes back
to [10], while detailed arguments were given by Beck [2]; see also [3]. In particular, for the
Drinfeld presentation of the algebra U,(sp,,) given in the Introduction, we find that the
isomorphism between these presentations is given by

x> 0(1)F B, ks, Ty o(iI)* Fo i 1s, k>0,
xz__k — _O(i)kaaiJrkﬁ ki_lcha x;k = _O(i)kqikc kz Efaﬂrk(% k> 07
aig, > 0())* g2 Eps i, a; i = 0(i)* Fps g/, k>0,

where 0: {1,2,...,n} — {£1} is a map such that o(i) = —o(j) whenever A;; < 0.



2.2 Extended quantum affine algebra

As with the embedding of quantum affine algebras Uq(sA[N) — Uq(a[N) considered in [§]
and [15], it will be convenient to embed the algebra U,(sp,,) into an extended quantum
affine algebra which we denote by UZ(sp,,).

Beside the scalar function f(u) defined by (1.5) and (1.6) we will also use the function

g9(uw) = f(u)(u—q7?)(u—&). (2.1)
Definition 2.1. The extended quantum affine algebra U (sp,,,) is an associative algebra
with generators ka, hifps b, and ¢°2, where the subscripts take values i = 1,...,n

and k € Z, while 5 =1,...,n+ 1 and m € Z,. The defining relations are written with
the use of generating functions in a formal variable u:

Xif(u) =) Xju™ B =) ki, et
kEZ m=0
they take the following form. The element ¢¢? is central and invertible,

hf,ohf,o = h,;ohfo =1, (2.2)

2,

for the relations involving hi(u) we have

hE(u)hE(v) = hE(o)hiE (w), (2.3)
g(ug®/v) hE(u)hF (v) = glug~/v) hF (v)hE(u), (2.4)
g(ug® Jv) —=—F_pE)hF(v) = glug/v) —F— = BF()hE()  (25)

for ¢ < j and i # n, and

g(ug [v) =T hEu)hT,, (v) = gluqg/v) BT (V)hE(u),  (2.6)

Pusr — q 2y Pus — ¢ vy

where we use the notation u. = ug*™2. The relations involving hf(u) and X Ji(v) are

hE (W)X (v) = i X+(w)hE 2.7
i (u> J (U) q(ei,aj)u — q_(Ei,Oéj)/U:t J (v) i (u)’ ( )

B q(ei’aj)ui — qf(eivaj)v

+ - — (B E
h; (u)Xj (v) I X; (v)h;(u), (2.8)
for i # n 4+ 1, together with

Ur — v

B (X (0) = = X ), (29)
2, _ 2

B (WX, (0) = T X ()i (), (2.10)

L



and

-1
q "u—qu
Poir (0) 7 X (0) gy () = WXIA(UL (2.11)
1
+ X- + -1 _ w)( 2192
thrl(U’) n71<v)hn+1(u) q_gu . q v ( )7 ( )
while
ho1 (W) X5 (0) = X (0) iy (u), (2.13)
o (W)X (0) = X[ (v) hyy oy (w), (2.14)

for 1 <i < n — 2. For the relations involving X*(u) we have

(ug™* — ¢~ T XF (W) X5 (v) = (@@ — ¢ 7o) X (0) X (u)

x (8(ua o)y (v) b (v4) = S(ug® fo)h (us) iy () )
together with the Serre relations
r

> S]] } XE () - XE ) XE(0) Xty - X tny) =0, (215)

WEGT l 0 qi
which hold for all ¢ # j and we set r = 1 — A;;. Here we used the notation

=> (2.16)
TEZ

for the formal 6-function. ]

Introduce two formal power series 27 (u) and 2z~ (u) in u and u™!, respectively, with
coefficients in the algebra U (sp,,) by

n—1 n
= [ nf &™)~ T b (u€a® )ik, (w), (2.17)
=1

=1

where we keep using the notation £ = ¢72"72. Note that by (2.3) the ordering of the factors
in the products is irrelevant.

Proposition 2.2. The coefficients of z(u) are central elements of U™ (spy,,).



Proof. We will outline the arguments for z* (u); the case of 2~ (u) is quite similar. By (2.3)
we obviously have 2*(u) b (v) = h (v) 2" (u) for all j = 1,...,n+ 1. It is straightforward
to deduce from the defining relations in Definition 2.1 that 27 (u) X;E(v) = X;E(U) 2t (u)
for j =1,...,n. We give more details to check that z*(u) h,,,(v) = h, 4 (v) 2% (u) as this
involves the function (2.1). The remaining calculations are performed in the same way.
Applying (2.4) we get

25 (W (v )—g(uq‘c/v) (uqc/v)‘1
anu@m Hhﬂ@” ) I (ug™ ) hyy oy (0) iy (w).

Furthermore, (2.6) implies

ZHuhn 1 (v) = glug™"/v) glug™" /v) " g(ug™*/v) gug/v)~
g 2u_ — vy up — v
U_ — U4 c_fQuJr — q*v_

anu@m HMw@% Vg a (V)RS (ug™) ity (w).

X

Due to (2.3), the last product can be rearranged as

n—2

LI A (uea®) 7 hi (™) Ity (ug ™) 7 (u€)hy o (0) ) (ug™ )it (w).

i=1

Now, applying (2.5) repeatedly, we come to the relation

2 (), (v) = g(uéq™/v) g(u&q/v) ™" gug™¢/v) glug®/v) ™"

uf—vy wbg—vglglu —qu up-vo N
1 1 n—‘rl( )Z (U)
u_€q—vpqt ug—vo um—vp g lug —quo

X

Replace g(u) by (2.1) to get

ZH(u)hn i (v) = f(ugq™/v) f(u€q®/v)~" flug™/v) f(ug®/v)™
y (u—/vy — g ) (u—/vy — §(u_/vy — ¢*)(u_ /vy — 1)

(s fo a2 fo— &) o — @) fo€ 1)
Since |
R e [(Rra] )
we can conclude that z*(u)h, (v) = h, 4 (v)2F(u). O

10



Proposition 2.3. The maps ¢*/* — ¢/,

wi(u) = (¢ — ;") 7' X (ug),
Yi(w) = hiyy (ug') by (ug') ™,
@i(u) = hiy (ug') hi (ug') ™",
fori=1,....,n—1, and
(1) = (gn — a4, ) 7 X (ug™),
Un(w) = hoyyy (ug™ ) by (ug™ )™,
() = Bty (ug™™) B (ug™™) 7
define an embedding < : Uy(8py,,) — U (5py,).

Proof. Writing the deﬁning relations of the quantum affine algebra U, (5p,,,) in terms of the
generating series 7" (u), 1;(u) and o;(u), it is straightforward to check that the maps define
a homomorphism. To show that its kernel is zero, we will construct another homomorphism
0 : U (8py,) — Uy(8py,) such that the composition gog is the identity homomorphism on
U,(5ps,). We will extend both algebras by adjoining the square roots kY2 and (tntnp1) T2
to U,(5p,,) and U, ot (8ps,, ), Tespectively, where we use the notation t; = hj,o- We will keep
the same notation for thus extended algebras for the rest of the argument. There exist
power series ¢(F(u) with coefficients in the center of U (sp,,) such that ¢*(u) (*(uf) =
2*(u); see Proposition 2.2. The mappings

X (uw) = X (u) and B (w) = b (u) (F(w) ™

)

define a homomorphism from the algebra U (sp,,,) to itself. The definition of the series
¢*(u) implies that for images of A (u) we have the relation

B () ¢ (u) ™ bt (u€) ¢ (u€) ™ = i (u) B (ug) 2 (u) ™,

whose right hand side can be written as a product of series of the form A3, (ug®) hi-
Hence the property go¢ = id will be satisfied if we define the map o : U™ (spy,,) —
by

(ug")™".
Uy(592,)
XEu) = (¢ — ¢ ") 2 (ug™) for i=1,....,n—1,

and
XEw) = (o — a, ") af (ug™ ™),
while
hE(u) = o (u) for i=1,...,n+1,

where the series ;f (u) are defined by the relations

o () o (u€) = Hsokugq Hsokufq ) [ entua ™)

11



fort=1,...,n, and

ap o (w) oty (ug) = pu(uég™ Hsok uéq®) Hsok uéq*

The relations defining «; (u) are obtained from those above by the respective replacements

o (u) — a; (u) and pg(u) — Y(u). As with the map ¢, a direct calculation verifies that

the map p defines a homomorphism. O

By Proposition 2.3, we may regard U,($p,,) as a subalgebra of the extended quantum
affine algebra U;Xt (5p,,,). With the notation used in the proof of the proposition, let C be
the subalgebra generated by the coefficients of the series 2 (u).

Corollary 2.4. We have the tensor product decomposition

quXt<5/]\J2n> = Uq(gbm) & C

Proof. The decomposition U (sp,,) = Uy(spy,)C is clear from the proof of Proposi-
tion 2.3. The linear mdependence of elements of U, (sp,,,) over C can be verified by the same
argument as for an analogous Yangian decomposition; see e.g. [31, Theorem 1.8.2]. O

3 R-matrix presentations

3.1 The algebras U(R) and U(R)

Recall from the Introduction that the algebra U(R) is generated by an invertible central
element ¢*? and elements l,j'; [Fm] with 1 < 4,5 < 2n and m € Z such that
0] = 5[0 25 [0] = 1,

’L’L[

l;;[O] =1;0]=0 for i>j and 0]l

and the remaining relations (1.11) and (1.12) (omitting (1.13)) written in terms of the
formal power series (1.9). We will need another algebra U(R) which is defined in a very
similar way, except that it is associated with a different R-matrix R(u) instead of (1.7).
Namely, the two R-matrices are related by R(u) = g(u)R(u) with g(u) defined in (2.1), so

that ) )
— u— q—q

Ru)= ——— R+ 1-9

() ug—q " uqg—q! (g — g~ ") (u

Note the unitarity property

(=g H-1)¢
P 6 Q. (3.1)
ng(u) Egl(u’l) =1, (3.2)

satisfied by this R-matrix, where Rio(u) = R(u) and Ry (u) = PR(u)P.
The algebra U(R) over C(q) is generated by an invertible central element ¢*? and
elements Ef; [Fm] with 1 < 4,7 < 2n and m € Z, such that

(510] = £;[0] =0 for i>j and (£10] ¢;;[0] = £;;[0] £ ]0] =

12



Introduce the formal power series
Ef;(u) = Z Ef; [Fm] u™™ (3.3)
m=0

which we combine into the respective matrices

LE(u) = ey ®LE(u) € EndC* @ U(R)[[u, u™]).

ij=1
The remaining defining relations of the algebra U(R) take the form

R(u/v) L3 (u) L5 (v) = Ly (v) L1 (u) R(u/v), (3.4)

R(ug®/v) L1 (u) L3 (v) = L5 (v) L (u) R(ug™/v), (3.5)

where the subscripts have the same meaning as in (1.10). The unitarity property (3.2)
implies that relation (3.5) can be written in the equivalent form

R(uq™/v) Ly (u) L3 (v) = L3 (v) Ly (u) R(ug"/v). (3.6)

Remark 3.1. The defining relations satisfied by the series E;(u) with 1 <, j < n coincide
with those for the quantum affine algebra Uq(gA[n) in [8]. O

Now we will follow [8] to describe a relationship between the algebras U(R) and U(R).
Introduce a Heisenberg algebra #H,(n) with generators ¢¢ and 3, with » € Z \ {0}. The
defining relations of H,(n) have the form

[67"763] - 5r,—s A, rz=1,

and ¢¢ is central and invertible. The elements «, are defined by the expansion

—~ ,  glug™)
exp ;aru = )

q°)

So we have the identity
g(ug°) exp iﬁrur - exp iﬁsvs = g(ug ) exp iﬁsvs - exp iﬁu
r=1 s=1 s=1 r=1
Proposition 3.2. The mappings
LT (u) + exp i Beu” - LT (u), L™ (u) — exp i Bru™" - L7 (u), (3.7)
r=1 r=1

define a homomorphism U(R) — Hq(n) ®cge,q-q U(R). O
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We will need to apply the matrix transposition defined in (1.13) to certain copies of the
endomorphism algebra End C?" in multiple tensor products. The corresponding partial
transposition applied to the a-th copy will be denoted by t,. We point out the following
crossing symmetry relations satisfied by the R-matrices:

(1= ¢®)(us = 1)

R(u)DRue)" DY = =™ (33)

R(u)DiR(ué)" Dyt = 272, (3.9)

where the diagonal matrix D is defined in (1.14) and the meaning of the subscripts is the
same as in (1.10).

Proposition 3.3. In the algebras U(R) and U(R) we have the relations
DL*(ué)' D 'L (u) = L* ()DL (ué)'D™ = 2 (u) 1, (3.10)

and
DL (ué)' D™ L¥ (u) = L5 (u) DL (ué)' D™ = 37 (u) 1, (3.11)

for certain series z*(u) and 3% (u) with coefficients in the respective algebra.

Proof. The proof is the same in both cases so we only consider the algebra U(R). Multiply
both sides of (3.4) by u/v — ¢ and set u/v = £ to get

QLY (u€) Ly (u) = L3 (u) LY (ug) Q. (3.12)

By the definition of the element @, we can write Q = D;'P% D,. Therefore, (3.12) takes
the form

P"D\ LT (ué) Dy Ly (u) = L3 (u) DL (ué) Dyt P, (3.13)

The image of the operator P® in End (C?")®? is one-dimensional, so that each side of
this equality must be equal to P times a certain series 3 (u) with coefficients in U(R).
Observe that P D; = P Dy and PY LY (ué) = PYLE (ué)t and so we get

P D, LE () Dy £F(u) = L3 (u) Do (u€) Dy PY = 3% (u) P,
The required relations now follow by taking trace of the first copy of End C?". O]

Proposition 3.4. All coefficients of the series z*(u) and z~(u) belong to the center of the
algebra U(R).

Proof. We will verify that z*(u) commutes with all series /;;(v); the remaining cases follow
by similar or simpler arguments. By the defining relations (1.12) we can write

Dy L (ug)' Dy 'Ly (u) Ly (v) = Dy Ly (u€) Dy ' R(ug®/v) ™' Ly (v) L () R(ug™“/v).
By (3.9) the right hand side equals
§7q" D1y (u€) R(uéq®/v)" Ly (v) Dy L (u) R(ug™*/v).

14



Applying the patrial transposition t; to both sides in (1.12) we get the relation
L{ (u€) ' R(uéq®/v)" Ly (v) = Ly (v) R(ugq™/v)" L (ug)".
Hence, using (3.9) and (3.10) we obtain
2 (u)Ly (v) = DiL{ (u€)" Dy 'L (u) Ly (v)
=&77¢" Ly (v)D1R(uéq™*/v)" DY Dy Ly (ug) Dy ' L (u) R(ug™*/v)
=§77¢" Ly (v)DiR(ugq ™ /v)" Dy 2" (w) R(ug™/v) = Ly (v)2" (u),
as required. H

Remark 3.5. The crossing symmetry properties (3.9) of the R-matrix R(u) were essential
for Proposition 3.4 to hold. Although the coefficients of the series 3% (u) and 37 (u) are

central in the respective subalgebras of U(R) generated by the coefficients of the series
(5(u) and €;;(u), they are not central in the entire algebra U(R). O

3.2 Quasideterminants and quantum minors

Let A = [a;;] be an N x N matrix over a ring with 1. Denote by A% the matrix obtained
from A by deleting the i-th row and j-th column. Suppose that the matrix A% is invertible.
The ij-th quasideterminant of A is defined by the formula

|Aly; = ay —r] (A7) ¢,

where 7] is the row matrix obtained from the i-th row of A by deleting the element a;;,

and c} is the column matrix obtained from the j-th column of A by deleting the element
a;;; see [18], [19]. The quasideterminant |A|;; is also denoted by boxing the entry a;; in the
matrix A.

Throughout the rest of this section we will regard elements of the tensor product al-
gebra End (C?")®™ @ U(R) as operators on the space (C?")®™ with coefficients in U(R).
Accordingly, for such an element

§ : ai...am
X - ealbl ® e ® eambm ® Xb;bm
a;,b;

we will use a standard notation
Xoram =A(ag, .- am | X b1, by ) (3.14)

and its counterparts X |by,..., b, ) and (ag,...,a, | X.

Consider the algebra U(R) and for any 2 < 4, j < 2’ introduce the quasideterminant
1

(i) 05(u)
Cir(u) | €5 (u)

s;'; (u) =

‘ = 055 (w) — G (u) 655 (u) 7 35 (w).
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Let the power series £92(v) (quantum minors) with coefficients in U(R) be defined by
b1bs

(e (u) = (ay, ap | R(q2) L5 (u) L5 (ug®) | b, ba), (3.15)
where a;,b; € {1,...,2n} and we set
~ — g1 —_—
R(u) = % R(u). (3.16)

The following symmetry properties are straightforward to verify.

Lemma 3.6. (i) Ifar # dj and ay < a then (53532(u) = —q~ 522 (u).
(i) If by # by and by < by then (79132 (u) = —q {792 (u). 0
Lemma 3.7. For any 2 < i,j < 2’ we have
sy (u) = 655 (ug ™) 70 (ug ™). (3.17)
Moreover,
(45 (u), 6475 (0)] = 0 (3.18)
" q_lui —qUx 4 1i q_lqu —qU+ -1, n
us — vg i) £735(v) = T — CF5(v) 3 (w). (3.19)

Proof. By the definition of quantum minors,

1) = (L] Rlg LT () L5 (ug®) | 1,5) = 65 () (ua®) — a5 ()5 (ug®). (3.20)

The defining relations of the algebra U(R) give
(Loi| Rlu/v)Ly (w) Ly () [1,1) = (14| L5 (v) L5 (w)R(u/v) | 1, 1),
and so
u LU u _
(5 - D)FE@ED + (- g EEE = (S0— ") E0)1 .
In particular,
i (ug ™)y (u) = gy (ug™2) (i (). (3.21)
Relations (3.20) and (3.21) imply
CF 1 (ug™?) = 65 (ug )5 () — ¢ (ug )05 (u)
= i (ug?) L5 (u) — ¢~ 0 (ug ™) 055 (w) 5 (u) 7155 (w)
= i (ug )05 (w) — 65 (ug )0y (w) 05 (u) 7105 (u) = €55 (ug™?) s (w),

thus proving (3.17). To verify (3.19), note that by the Yang-Baxter equation (1.8) and
relations (3.5) and (3.6) we have

(1, 1,4 | Roa(ws /vs) Roo(us 4 */o2) L (w) Ruaa ") LT (0) L5 (v4) | 1,1, ) =
(L 1,d| Rusq™*)LF (0) £5 (v4°) L5 (w) Roa (s ¢ fvs) Rou(us /v5) | 1, 1, )
which gives (3.19). The calculation for (3.18) is quite similar. O
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We point out the following consequences of Lemma 3.7: for 2 < ¢,j < 2’ we have

(055 (u), siij (v)]=0 (3.22)
and

Ut — Y )+ Us — U+ +
—— ] ) = ———— 4 3.23
qus — ¢ Loz 1(u)s;(v) qus — q vy ( ) (13 (w). ( )

3.3 Homomorphism theorems

Now we aim to make a connection between the algebras U(R) associated with the Lie
algebras sp,,_, and sp,,,. Since the rank n will vary, we will indicate the dependence on

n by adding a subscript [n] to the R-matrices. Consider the algebra U(R [nfl]) and let the
indices of the generators Ef; [Fm| range over the sets 2 < i,j < 2" and m =0,1,..., where
1" =2n — i+ 1, as before.

+c/2 +c/2

Theorem 3.8. The mappings q = q and

(i () 055(u) '

<i§<2 .
G [ 2<i,j <2, (3.24)

define a homomorphism U(}_%[nfl]) — U(}_%[n]).

Proof. Consider the tensor product algebra End (C?*)**@U(R [n]). We begin with calcula-
tions of certain matrix elements of operators which are straightforward from the definition
of the R-matrix (3.1). We will use notation (3.16) and suppose that 2 < i,j < 2’. Then

-1

Sl \Hnl, o . ag—q o (g—ghHla—1)ag?
R CLR aq 1a271u7 = T 5 5 172a17] + ]-7172aj
13() 23( >| > aqg_q,2| > (aq2—1)(aq2—q )| >
. —1\2 2
TR il i L YRR
(aq* —1)(ag* — q72)
and
R RY ()R 1,01 A=l By 1 3.95
12 (¢77) (a)Rys (ag?) | 1,4,1,5) = aq — q-! 12 (@) [1,4,1, 7). (3.25)
Furthermore, we have
-1
D _[n] — . . aq — 4 3in _ . .
Ryl (¢ Ry (ag™)]1,4,1,j) = ——— R (™) | 1,i,1, ), (3.26)
R (¢RI () Ry (ag72)[1,1,1,1) =0 (3.27)

and
(¢ = 1)(ag™" —q)
C(a—1)(a€ g2 - 1)

X Zelxeaqa_f/ |1,d',1,a). (3.28)

a=2

Sl —o\ Bl —2v5 M — n|, —
R HRI(G DR (ag )| 1,1,1,1") = R (aHRY (¢7?)
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These observations together with the formula for matrix elements of Ez[z](a) given by

—[n] . . a , _ . .
Ry, (a)]1,4,1,5) = ‘—————:T{:(zgql % (1= 0y5)(1 = 630) + (1= S50 )q "0iy) | 1,4, 1, 5)

aq
+0isi(g =) [1,5,1,0) — (¢ — ¢ )diye Zé?aéjqa*ﬂ L,d',1,a)
a>j

q—q' qg ' - z

L L)+ 5 — 52] Zsaejq“ 711,d,1,a)
-1

' —q - ( —qaf!

+ W(Sijzslgqu T11,1,1,1) + ﬁ@],gl,%q T01,1,1,1 >}

lead to the relation

R ()R ()R (a2 Ray (a) | 1,4, 1, 5)

q_ nl, — n [n—1]
=—RH< RY () Ry,

a—1 @) 1,4,1,5). (3.29)

Now applying the Yang—Baxter equation (1.8) and relations (3.25) and (3.29) we deduce
the following matrix element formulas:

S, —o\Bnl, —ov 50 _o\ 5] [n] . .
R (g2 RE ()R (ag ) Roy (a) Ry (a) Ry (ag?) | 1,0, 1, )

aq - —q =), _ _ n—1 . .
=Y IR () RE (¢ )Ry V(@) 1,4,1,5) (3.30)

and
(1,i,1, 7 | Ry (aq®) Riy (a) Ry () RLy (ag ™) RE (672 RE (¢72)

ag’l —q . Sl Sl oy Bl -
= g L LR @RB (@RI (3.3
To complete the proof of the theorem, introduce the matrices
2/
M) = 3 ey ® (511 (u) € EndC* @ U(R™).

i,j=2
Our next step is to verify that the following relations hold in the algebra U(R [n]):

B (u/o)TF (w)DE () = T (DR /o),

g U+ = qU- H-1 e + — q u- —quy +o prlU e
——F R uq®/v)I'T (w)l'y (v — IS ()T (uw)R uq “/v).
L R g o () = L ) )R (g )
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The calculations are quite similar in both cases so we only give details for the first relation.

The Yang Baxter equation and the defining relations for the algebra U(R [n]) give

R (3 VR (VR (VR (o) BE () £ () £5 () BY (0 £5(0) £5 (0?)

(% (% v

= RI)L5 (0) 3 (0g) R (07) £ () L3 (ua R (5 B ()Rl () s (=

Hence, assuming that 2 < ¢, 7, k,l < 2’ and applying (3.30) and (3.31) we get
(Lk LU Ry (S)RE LT () £5 (ug?) R0 L5 (0) £ (0g?) | 1,,1,5)
= (kL1 R a7) 25 (0) £ 0) B3 (0L () £5 (a5 (5) |14,

which is equivalent to

[n—1] [n 1]

Ry (u/v)l5 (W) (v) = Ty ()15 (u) R,

> e ®si;(u)

2<i,j<2’

(u/v),

as required. Finally, set

By Lemma 3.7,
S*(u) = £ (ug ) "' T (ug?)

and

-1 ~1

q Uy —qux 4 q "Ux —qU4 n

- = - Ty T =1 T -7t / .
Uy — U= 11(w) I'F(v) P (v) 417 (u)

The above relations for the matrices I'*(u) imply
—In—1 —[n—1
BV (w/0) S (u)SE(v) = SE(0)SEWER™ (ufv),
—[n—1 c —[n—1 c
R Y (ug*e /0)SE(u)SF (v) = SF () SE@) R (ug™ /v),

thus completing the proof.

).

)

]

The following is a generalization of Theorem 3.8 which is immediate from the Sylvester
theorem for quasideterminants [18], [28]; cf. the proof of its Yangian counterpart given in
[26, Thm 3.7]. Fix a positive integer m such that m < n. Suppose that the generators

Ezf(u) of the algebra U (R[n_m}) are labelled by the indices m +1 < i,j < (m + 1)" with

1" =2n — 14+ 1 as before.
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Theorem 3.9. The mapping

Ci(u) oo, (u) 05 (u)
&jy[(u) =eE (u) L e (u) gij(u) , m+1<i,j<(m+1), (3.32)
defines a homomorphism 1, : U(E[n—m]) N U(EM). -

As another application of the Sylvester theorem for quasideterminants, we get a con-
sistence property of the homomorphisms (3.32); cf. [26, Prop. 3.8] and [31, eq. (1.85)] for
its Yangian counterparts. We will write 1, = zﬁ?(;f ) to indicate the dependence of n. For a
parameter [ we have the corresponding homomorphism

n— —=[n—l-m
e U@

m

S U@R™Y

provided by (3.32). Then we have the equality of maps

U o gl = ¢, (3:33)

Suppose that {aq,...,ar} and {by,..., by} are subsets of {1,...,2n}, assuming that
ap < ag < --- < ap and by < by < -+ < by, such that a; # a} and b; # b for all i, j.
Introduce the corresponding type A quantum minors as the matrix elements (3.14):

o+ ;fjf_’,;}ik (u) = (a1, ..., a, |Ek—1,k(ﬁk—2,k§k—2,k—1) e (}_31,/& - '}_31,2)
x L) LT (ug?®) ... LE(ug® 2) | by, ..., by,

where }_%Z-j = }_%Z»j(qw*j )). They are given by the following formulas:

+ ai,..., a - —l(o) p£ + 2k—2
é bll ..... bkk (u) - Z (_q) ( )éao.(l)bl (u) tee Eaa(k)bk (uq )
ceSy

- Z (_qy(a)giba(k) (ug™™?)... 'gailba(l) (u),

ceSy

where (o) denotes the number of inversions of the permutation o € &;. The assumptions
on the indices a; and b; imply that certain relations for these quantum minors take the
same form as those for the quantum affine algebra U,(gl,,). Such relations for the latter can
be deduced by applying R-matrix calculations which are quite analogous to the Yangian
case; cf. [22], [28] and [31, Ch. 1]. In particular, for 1 < 7,5 < k we have

+ ay,az,...,
[0, (), €5 gt (v)] = 0,

k—1 u -k v k k—1 u -k v k
+q $q gj: (u)g:F a1,a2,...,a (U) _ $q +q E:F a1,az,..., ap (/U)g:l: <u>
1—k k—1 asb; b1,b2,....bg - 1—k k—1 b1,b2,....bx a;b; )
a=1 uq —U¥d a=1 Uxq — U+q
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Corollary 3.10. Under the assumptions of Theorem 3.9 we have
(€ (), (65 ()] = 0,

qus — q tog

U — V4
0 ()b (6F:(0)) = ————,, (6F: (V) )05 (),

ab( ) ( ]( )) quz — q_lv:l: ( ]( )) ab( )
foralll <a,b<mandm+1<i,7< (m+1).

Proof. Both formulas are verified with the use of the relations between the quasidetermi-
nants and quantum minors:

() o ) Gi(u)
i) e G CE ()| = O g T O g ).
i) o ) [
They are consequences of the type A relations; cf. the Yangian case in [26, Sec. 3]. ]

4 Gauss decomposition

We will apply the Gauss decompositions (1.15) to the generators matrices L*(u) and £*(u)

for the respective algebras U(R[) and U (}_%[n]). Each of these algebras is generated by
the coefficients of the matrix elements of the triangular and diagonal matrices which we
will refer to as the Gaussian generators. Our goal in this section is to produce necessary
relations satisfied by these generators to be able to get presentations of the R-matrix

algebras U(RI") and U (R[n]).

4.1 Gaussian generators

The entries of the matrices F'*(u), H*(u) and E*(u) which occur in the decompositions
(1.15) can be described by the universal quasideterminant formulas as follows [18], [19]:

lﬁ(“) li‘—1(“) li(“)
0=l ) B e 0
Giw) o ) | ()
whereas
lﬁ (w) ... litifl(u) li‘ (u)
B =W s ) W) ) (42)
Ew) ..o o (u) li(u)
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and

Gi(uw) ... li 1 (u) li(u)
=l ) ] O (43)
G o B [

for 1 < i < j < 2n. The same formulas hold for the expressions of the entries of the respec-
tive triangular matrices F*(u) and £*(u) and the diagonal matrices H* (u) = diag [hi (u)]
in terms of the formal series ézf(u), which arise from the Gauss decomposition

L5 (u) = F*(u) H* (u) £(u)

for the algebra U (}_%M). We will denote by ¢;;(u) and f;;(u) the entries of the respective
matrices £ (u) and F*(u) for i < j.

The following Laurent series with coefficients in the respective algebras U(RI™) and
UR [n]) will be used frequently:

X () = e (uy) — e (us),  Xi(u) = fi(us) = firi(uy), (4.4)
Xi+(u) = e;+1(u+) - ei_i+1(u—)7 (U) = f@—i—l Ju) — fz‘_+1,i(u+)- (4.5)

Proposition 4.1. Under the homomorphism U(R) — Hq(n) ®cige, q-<) U(R) provided by
Proposition 3.2 we have

e;:(u) — eiij(u),

hiE(u) > exp Z Baput® - b (u).
k=1

Proof. This is immediate from the formulas for the Gaussian generators. [

4.2 Images of the generators under the homomorphism ,,

Suppose that 0 < m < n. We will use the superscript [n—m] to indicate square submatrices

corresponding to rows and columns labelled by m + 1,m + 2, ..., (m + 1)". In particular,
we set
1 0 .. 0
+
1 ..
Fi[nfm} (U) _ fm+2 nj¢+1 ('U,) . . O ’
+ e . :
f(7’11—i—1)’m—1—1 (U’) te f(m—i—l)’ (m+2)’(u) 1
1 ei+1m+2(u) EE ei—&-l(m—i—l)’(u)

+
~ ~ Cm+2) (m1y ()
0 0 e 1
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and HEM(v) = diag [b 4 (u), ..., bfmﬂ),(u)}. Furthermore, introduce the products of
these matrices by

E:ﬁ:[n—m] (U) — ‘F:I:[n—m]<u> %ﬂ:[n—m] (U) gﬂ:[n—m] (U)

The entries of £~ (v) will be denoted by @i[n ™ ().
:I:[n—m

Proposition 4.2. The series {;; }(u) coincides with the image of the generator series

E;( ) of the extended quantum aﬁine algebra U(R = m}) under the homomorphism (3.32),

) = (G (w),  mA1<i,j < (m+ 1),
Proof. This follows by the same argument as for the Yangian case; see [26, Prop. 4.1]. O

Corollary 4.3. The following relations hold in U(}_%[n]):
- n—m] n—m n—m n—m n—m —[n— m]
Ry " (/o) L7 (w) £ 0) = £ ) L7 @) Ry /o), (46)

—[n—m)] n—m —[n—m —[n—m n—m - n—m]

Ry " (g o) £ (w) £, (0) = £, ) £ ]<u> Ryy "(u-foy). (47)
Proof. This is immediate from Proposition 4.2. ]
Proposition 4.4. Suppose that m+1 < j,k, Il < (m+1) and j # 1. Then the following
relations hold in U(R ): if 3 =1 then

n—m Uz — _LU n—m - u n—m
e (uyrn () = TE LT ](v)eil(u)—wﬁﬂ J0)eF,(v), (4.8)

+[n—m C]U—q UV +in—m (q_q ) +[n—m
s ()" () = ﬁé,@[ ) (w) = R T w)e ()

if 7 <l then
e, (), ()] = @ ooy oy (@2 VU ety ) (4.9)
Ur — Vs

£ ) )] = UL et e ) U el )

[e U);

if 7 > 1 then
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Proof. 1t is sufficient to verify the relations for m = 1; the general case will then follow by
the application of the homomorphism ),,. The calculations are similar for all the relations
so we only verify (4.9). By the defining relations,

Ur — Vg 4 (¢—q Hus 0
_UETYE ) TG )E g 0T
P 15 (W (v) + Tus — ¢ Ton 1 (W (v)
ve — v T T
= ———— (7 (v)l5; oF(v)e . (41
qur — q vt () 1;(“)‘1“ JE————— k;(“) (). (4.10)

Since (7, (v) = fz[nfl] (v) + i, (v) bT (v) ef,(v), we can write the left hand side of (4.10) as

Uy —v n—1
o e W ) +
:F

qus —q vy 035 ()i () b (v) ey (v)

(@—aDvs o, 7
+ qus — qilvxgkj(u)gll(fv)'

By the defining relations, we have

(¢ —q "ux
qug — qflijgfj(u)@l(v) + —éfj (u)ff (v)

qus — q v
Ug — Vg + (¢ —q us +
= —F = /()i (u) + ———0F (0)0F (u).
)+ L G e )

Hence, the left hand side of (4.10) equals

n— Uy — VUt
i —gios ETT0) + P ST (O )6 () )

qus — q lvx

-1
qa—q 7)u
I o) ) o)

Furthermore, using the relation
CE)E () = —E g ()0 () + LT gy
1;(“) 1(v) ———— 1(v) 13<U> + P 1;(“) i (u),
we can bring the left hand side of (4.10) to the form

Ut V% =
1

n— (¢ —q Duz 7
o B )+ FREEWGE) + o — R R @ ).

qus — q vy

For j <[ we have

- Uy — U+ + (¢ —q v =
Elj(u)fﬁ(v) = méﬁ(v)ﬁlj (U) + mﬁfj(v)ﬁu(u),
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so that the left hand side of (4.10) becomes
Ut = V% )t pFIn—1] Ur — V% Fln-1 \
—— G (u)l - 07
qus — g lvs 13('“) Kl (v) P Kl (v) 1;(“)

(¢—q " vs Fm1), \ e + (¢ —a Dus Fpm1, \x
— M7 7= T ¢ sy ¥ 4 T (v).
e — qLvy N (0) 675 (w)eq; (w) Quy — q-lvg M (v) 633 (w)efy (v)

Finally, Corollary 3.10 implies

Ut — V% )t Fln—1] Us — U+  )Fin-1], \p*
——— (i (u)l V) = ——F—/ v)l3 (u),
e A ) = )

Us — V% ko pFIn-1]
qus — q_LUZF 11( ) kj ( ) quz — q_lvj:

thus completing the proof of (4.9). O

G0 (w),

J

Quite similar arguments prove the following counterpart of Proposition 4.4 involving
the generator series fﬁ(u)
Proposition 4.5. Suppose that m + 1 < j,k, Il < (m+1) and j # k'. Then the following
relations hold in U(E[n]): if j =k then

-1
+ Fln—m] U+ — V5 Fln—m], et (¢ —q v Fln—m]
/7 == T /7 ! ~= 1 /7T ¢F 1A

f (U) jl (U) quy — q_IU; gl (U)f (U) + qus — q_1U$ gm(v) gl (U)v

J
-1
n—m u—v n—m q—4q v n—m
G 0) = ) ) + g )

J

if § < k then

—q! v n—m —q! U n—m
() 50 = L= o) = g ),

2, (), ey = 0 0 oy (TG g (gt

J u—v at u—1v it
if 7 > k then
-1
() ) = ) g ) i e ),
+ — Uz
-1
() 6 ) = g (o) i s ), .

4.3 Type A relations

Due to the observation made in Remark 3.1 and the quasideterminant formulas (4.1), (4.2)
and (4.3), some of the relations between the Gaussian generators will follow from those for

the quantum affine algebra Uq(a[n); see [8]. To reproduce them, set

L% () = ey ®@ Lk (u)

1,j=1
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and consider the R-matrix used in [8] which is given by

Z Cii @ €ji + —— qll Y ca®ey

i
T Tl PP C el 0 L < P P PR EY
qu—qil - ) Jt qu—qil = ) J

By comparing it with the R-matrix (3.1), we come to the relations in the algebra U(R [n]):
Ra(u/w) L3 (u) L5 (v) = L3 (0) L1 (w) Ra(u/v),
Ra(ug® /v) L1 (w) £y~ (v) = L5 (0) L3 () Ralug™ /v).

Hence we get the following relations for the Gaussian generators which were verified in [8],
where we use notation (4.5).

Proposition 4.6. For any 1 < 1,7 < n in the algebra U(R ) we have
by (w5 (v) = b7 ()b (w), b (Wb (v) = b (V)b (u),

T BT () = ), for i<

Moreover,

+ + ug — v + +

- X = X -

[Jz (U) 7 ('U) q(ei’o‘i)qu _ qi(ei’aj)’l) 7 (U)hz (U),

(i) g, — g—(€ia5)

+ o qug —q v

b (w)&; (v) = we — v X; (v)by (u),
and

(ug™" = ¢ XE () X (0) = () — ¢ T0) X (0) X (w),

27 ), 25 (0] = Gl = ) (3(20) B )10 () = 6(252) B () 0.
together with the Serre relations (2.15) for the series X (u). O

Remark 4.7. Consider the inverse matrices £*(u)™t = [éi( w)]i j=1,..2n. By the defining
relations (3.4) and (3.5), we have

L (u) L (0) R (ufv) = B (ufo) £ (0) 7 £E ()™
L5 (0) 'L () R (uge fv) = R (ug e /v) L5 () L] ()™

So we can get another family of generators of the algebra U (EM) which satisfy the defining

relations of Uq(aln). Namely, these relations are satisfied by the coefficients of the series

14 i( ) with 4, j = n/,...,1". In particular, by taking the inverse matrices, we get a Gauss
decomposmon for the matrlx [0 jE( )i j=n’,..1 from the Gauss decomposition of the matrix
L*(u). O
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4.4 Relations for the long root generators
In the particular case n = 1 the R-matrix (3.1) takes the form

2

—=[1] u—1

R = i Wt 5
=3 eu et 1

i=1

2 -2 2 -2
g —q )u 9 —4q
g €ii & €55 + ﬁem ® ea1 + Wem ® €12

and so it coincides with the R-matrix associated with qu(gT[Q); cf. (4.11). Therefore,
a set of relations involving the long root generators are implied by Corollary 4.3 and
Proposition 4.6.

Proposition 4.8. The following relations hold in the algebra U(R[n]):

Fwbi(v) =07 ()b (u),  dij=nn+1,
bf

P (Wb (v) = b7 (b (w),  i=nn+1,
Ut — V¢ 4 ¥ _ U TV 7 +
uni N q_Qv hn (U) n+1(v) QQUI:F . q_gvi n+1 (U)bn (U)
Moreover,
+ + U — v + o hE
X =—X
n(u) n (U) QQU:F _ q_2U n (U)hn (U),
+ + Uz — 0 BT
n+1(u)Xn (U) = q72'LL . qzv‘)(n (U) n—l—l(u)?
:F
2 —2
— qgus —q "V ,,_
s ) = LEL L ) ),
-2 2
- q "u+ —qU ,,_
7:|L:+1(U)Xn (v) = we — v X, (v) 7:‘1:4—1(“)7
and

(u — qi(a"’o‘")v)Xf(u)Xf(v) = (qi(o‘"’o‘")u — v).)(ni(v)?(jE (u),

uC

26 ), X (0)] = (0 = a7 ((50) b3 ) 050 (0) = 62 0 (o) i (v)

4.5 Formulas for the series 2= (u) and 3*(u)

Recall that the series 2*(u) and 3% (u) were defined in Proposition 3.3. We will now indicate
the dependence on n by adding the corresponding superscript. Write relation (3.11) in the
form

DLEwE) D™ = £E(u) "5 ) (). (4.12)

Using the Gauss decomposition for £*(u) and taking the (2n,2n)-entry on both sides of
(4.12) we get
b (u€) = b (w) 15 " (w). (4.13)
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By Proposition 4.2, in the subalgebra generated by the coefficients of the series Eim(u) we

have
57 () = by (ug™) by (w).
Lemma 4.9. The following relations hold in the algebra U(R[n]):
etﬂ)w(u) = _efiH(qu%) and f?/:(i+1)/(u) = _fil,i(U§Q2i)' (4.14)
Proof. By Propositions 3.3 and 4.2, for any 1 < i < n — 1 we have
LER= () =Lt il ) = plnitl] pE i) (e 22y plo=itil)=1 (4.15)

where
D[n_H_l] = dlag[ qn—H—l’ -4, q_lv s 7q—n+l—1].

By taking the (i’,¢") and ((i + 1)’,7') entries on both sides of (4.15) we get

b (u€q™?) = b (u) 5= () (4.16)

and | |
—efiay (W) by ()7 35T () = g b (u€g™ ) ey (u€g™ ).

Due to (4.16), this formula can written as
— €y (W) b7 (u€q® %) = g b7 (u€q® %) 5, (u€g™ ™). (4.17)
Furthermore, by the results of [§],

q hzi(u) 9?,[7;+1(U) = e?,[z‘+1(uq2) hii<U>7
so that (4.17) is equivalent to
eiﬂ)/,y (u) hii(ufq%d) = efﬂl(ufqﬂ) hf(ufq%ﬁ)a (4.18)
thus proving the first relation in (4.14). The second relation is verified in a similar way. O

Proposition 4.10. In the algebras U(E[n]) and U(R™) we have the respective formulas:
351 (u Hh (uég™) Hbi (u€q™™2) b (u),

2w Hhi (uq™)™ Hhi (uEq™2) hiyya (u).
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Proof. The arguments for both formulas are quite similar so we only give the proof of the
first one. Taking the (2',2’)-entry on both sides of (4.15) and expressing the entries of the
matrices £FM(u)™! and £FM(u€)t in terms of the Gauss generators, we get

by (u€) + fau (u€) b7 (u€) ez (u€) = (b3 (w) ™" + ey (W) (W)~ g () ™) 5™ ) ().

As we pointed out in Remark 3.5, the coefficients of the series 3*["(u) are central in the

respective subalgebras generated by the coefficients of Ki ["]( ). Therefore, using (4.13), we
can rewrite the above relation as

b (w) ™5™ " (u) = b3 (u€) + o (u€) b (u) e (u€) — e 1 (u) bF (u€) 5 o (w).

Now apply Lemma 4.9 to obtain

b () ™15 " (u) = b3 (u€) + Fan (u€) i (w€) e5(u€) — eip(u€a®) by (u€) i (uéd®).
On the other hand, by the results of [8] we have

h1 (u) 912( ) =q 19?2@(1 ) hic(“)a fﬁ(u) f;tl(ucf) = q_lfgcl(“) hic(u)a
and .
(). Fa(w) = W)

u

(b3 (0)b7 (v) " = b3 (u) by () ).
This leads to the expression
b (u)~5* 1 (u) = b (ug®) by (uéq®) by (uf).

Since 3 U(u) = b3 (u)bh3 (uéq?), we get a recurrence formula

351 (u) = by (uéq®) b (ug) 5= (u)

thus completing the proof. ]

4.6 Drinfeld-type relations in the algebras U (E[n]) and U(RI)

We will now extend the sets of relations produced in Secs 4.3 and 4.4 to obtain all necessary
relations in the algebras U(R [n]) and U(RM) to be able to prove the Main Theorem.

Theorem 4.11. The following relations between the Gaussian generators hold in the al-
gebra U(E[n]). For the relations involving b (u) we have

b (u)h* (v) = b (v)bi (u),
bE(u)bF (v) = b7 (v)hZ (u),
b (u)hT (v) = qui—_lb*( v)hi (u) (4.19)

- (%

U+

qus — q‘lv

<
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fori < j and i #n, and

Uty — Ux + ¥ Uz — UVt "
S 5 u - T - .
q2uj: _ q—Q,U:F hn ( ) n+1( ) un:F — q—% n+1( )f) ( )

The relations involving b (u) and in(v) are

U — v+

b (u) X, (v) = —— X (Wb (w),

q(ﬁuaj)u —q (Ez,aj)vi

q—(ei,aj)ui _ q(eivaj)v

b (u) X (v) = X7 (v)b; (u)

Uy — 0

fori #n+ 1, together with
u —
mr (WX (v) = —F

n

£y (v) = LT v ()n%, (),

n+1 n Ugp — ¥ n
and .
+ —1 p+ + g U—qur 4
X =—X
n—i—l(u) n—l(v) n—i—l(u) q_2u . q2'U:|: n—l(v)7
-1
- - + -1 _ 9 u—qus ,,_
X =4 179y
n+1(u) n—l(v) n+1( ) quu_ q2’0$ n—l(v)7
while

w1 (WA (v) = X ()b (u),
w1 (WA (v) = X7 (V)b (w),

for 1 <i < n—2. For the relations involving X (u) we have
(g™ — g T X ) (o) = () — ) X ()X ()

and

[ (), X7 (0)] = b5 ai — a7 (3

)bi (v3) i (vy) — 5(

)h+( )_lh;:i-l(u-i-))

together with the Serre relations

> Z { } S () - A (@) X (0) X (Unn)) - A (un(y) = 0, (4.20)

eSS, =0

which hold for all @ # j and we set r =1 — A;;.
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Proof. We only need to verify the relations complementary to those produced in Secs 4.3
and 4.4. The additional relations are verified by very similar arguments to those used in
[8] and so we give only a few details illustrating the calculations which are more specific
to type C. We start with (4.19) and take j = n+ 1. By using Corollary 3.10, for ¢ < n we
deduce

T () (074 () + P, (0T (0)€ 01 (1)

qus — q v
= e (520 + OB @) ()0 (420

and

T pE (), 1 (06T (0) =

qus — g ug
Hence, the left hand side of (4.21) equals

o1 (0B ()b ().

qus — q vy

Usx — V¢ 4 U — V4 ¥ + 4.99
quL —qfl’l] b ( ) n+1( )+ qu$ . q717} n+1 n( )h ( )b ( ) nn—i—l(v)) ( : )
By Corollary 3.10,
Uty — + Fly) = —F T oF 0 hE(u
I ) = )

so that (4.22) can be written as

U+ —

qu4 — q_lv

b (W)hF, (v) + —— T fF ()b ()T (v)eF 1 (v).

qus — ¢ 'vg
Using Corollary 3.10 once again, we find

b ()BT ()61 (0) = ———— BT (0)eT 1, (V)b ()

qus — q tug qus — q tuy

fori=1,2,...,n— 1, and so the left hand side of (4.21) takes the form

e gty )+ S OO (DBEC)

which implies (4.19) with j =n + 1.
The relations involving b, (v) and X;*(u) with i = 1,2,...,n — 2 are implied by the
following:

e;ﬁ'ﬂ(u) irl(v) bn-i—l(U) “H(u), ez'i,ﬂ-l(u) 7T+1(U) = hiﬁ-l(q})eii,z#l(u)a (4.23)
)

ﬁilz(u) n+1(v> bn+1(“)f1+1z(u> fi—l,i(u)ha:f—i-l(v) = $+1(U>fzj5rlz(u>
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We will verify the second relation in (4.23). Corollary 3.10 implies

mhi (u)ei,i+1(u>< 1 (V) + i, (0)b5 (v) nn+1(U))

= ————— (071 (V) + ()BT ()e], 1 (0)) b (w)ey (u). (4.24)
quy — q U+

Moreover, by Corollary 3.10, we have the following relations:

Uy —

S pE (et (W), (05T (0) = — T fE (0)hF(0)hE (w)e iy (u),

qus = ¢ 'v qus —q Ty
U+ V¢ + Uz N
mb ( )zz—l—l( )b$( ) qu¥—q_1v h¥< )b ( )zz—l—l(u)
g T (0) = ST 0T (0D (W)€ ()

Thus, the left hand side of (4.24) equals

U+

T (1) + T (00T (V)6 (B (W)e ()

qus — q o qus — q s
and so,
U+ — Y% (+ ¥ __Ux T Ux +
qus — q_l’U b ( ) zz—i—l(u)hn-i-l(v) quz — q_IU n+1( )b ( ) zz—l—l(u)

Using now (4.19) with j = n + 1 we get the second relation in (4.23).

The remaining cases of the type C-specific relations involving X (u) and Ijj[(v) are
deduced with the use of Remark 4.7, Lemma 4.9 and Corollary 3.10. In particular, Re-
mark 4.7 and the corresponding type A relations in [8] imply

B () (B () = T Ve - Oy

u—v u—v
By Lemma 4.9, we can write this relation as

-1 -1
+ + qu—4q 'V 4 o la—q v o —4
075 () e (og 05 ) = T T (o)~ e (g,
which leads to the relations involving X (u) and b, (v).

Now turn to the relations between the series X (u). For i < n — 1 we have

e’i’-{—l(u)eirﬁrl(z}) = einﬂ(“)ﬁ,&ﬂ(“% efiﬂ(u)einﬂ(q}) = e?TnJrl(U)efEi—i-l(u)v
fi—lz(u)f'rjl:—&—ln(v) = f'rjz:—&—l,n(v)fi-l,i(u)v ﬁj—lz(uﬁz—i—ln( ) = fn+1 n(v)fz—i-l ().

This is verified with the same use of Corollary 3.10 as above. Therefore, for all i <n — 1
we get XF(u)XF(v) = XF(v)AF(u). For the relation involving XF | (u) and XF(v) it will
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be sufficient to consider the case n = 2 and then apply Theorem 3.9. We find from the
defining relations (3.5) and (3.6) that the expression

-1
s — Y q—q )u
qu:[_ q—lev (5 (u)035(v) + q(ui — q_)lvi 05 (u) 0 (v) (4.25)
+ F
equals
(ug —ve)g ugz — g Mve) o + (¢ —q ve - N
(qus — ¢~ 'va) (us — q,%i)f%(”)gu(“) + Qs — q1vs {3, (v) i3 (u)
(q - q_l)(u:F B U:E)U:tq_3 ¥ + (q - q_l)(u:F — vi)viq_‘l T n

(qu= — q oy) (us — q_ﬁvi>€21(v)€14(u) + Qs — 03 ) (g — q_%i)ﬁm('z))ﬁm(u)

(¢ —q )(ug —v)q 'ug n
— 03, (0) 0 (u).
(qu$ _q_lvz‘:)<u¥ _q_GU:I:> 24( ) 11( )
On the other hand, applying the formula for ¢3;(v) arising from the Gauss decomposition,
we can write (4.25) as

qut+ — q71v$

quy+ — q711}¥
(=g us
+ ————— 0 (u)l5(v).
I ()
By using the defining relations between the series £];(u) and ¢, (v) we can bring (4.25) to
the form

(i (w)b (v)efy(v) + (i (u)F5; (v)b3 (v)efs (v)

U — Y )+ Us — V% +
———— (5 (w)bhf (v)egy(v) + ————0F, (v) 5 (w)e s (v
e s RN IR + T S () (0)

(¢ —q Hus +
+ 05 (v)l (w)ef3 (v).
p——— 52(v)651 (u)efs(v)

Further, by using the defining relations between (3 (u) and ¢, (v) we can write (4.25) as
—————— 055 (u)bg (v)egs(v) + faq (V) G5 (w) 5 (V) + —————bF (v) 657 (u)ef3(v).
e T () () + PR + LT ) )T )

As a next step, apply the relations between ¢,(u) and £153(v) to write the sum

-1
Up —v q—q )u
e b e (o) + L ) ) (o)

qus — g lug qus — g luy
as

(U = v2)q " (uz — g""vs) + (g—q e DV (0
(qus — ¢ 'vy)(us — ¢ Svy) b3 (v)eds(v)0(u) + PR by (v)l5(u)
(¢ —q (s —vi)vkg? OVWE (u
(quz — ¢ o) (us — q_%i)hQ (v) €3 (u)
(=g (s —vi)q ug New (010 (4
(qus — ¢ o) (us — q_Gvi)h;F( Jeaa (V)61 (w).

_|_
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Using (4.8), we get the relations:

Jus

()b (v) = Mhl (u)h3 (v) et (u) + @Lbl (u)b3 (v)eF(v)

quy — ¢ tog LN (¢ —q ug qus —q 'vg +
= ———ThF(v)bh7 (u)er (u) + b b (u)efy(v).
Ly b)) + L Ly e o)

Hence, since the series b (u) and b (v) are invertible, and [ (u), ef3(v)] = 0, we come to
the relation

-1 —1
+ F (q_q )U’:F F (q_q )u:F F F
eo(u)ess(V) + ——————e¢f3(V) + ———————¢)5(V)eg3(V 4.26
BER () + i) + e )R (4.26)

_ -1 _ 4 o
- ((ql;:i _qu_)l(iﬁ:)(g;i _qq_g;ﬂ;)) e2$3(v)eli2 (u) + —q(Z$ _qq_):;i €1i3<u)
_ g1 _ —4 1 _ 1

(;Z:F —q q)l(ljf) (Uii—)t]i%vi) “is(u) - (Q(Z:F —q q)l(jf)(u:ijqq;z;i) O3 () eda(0)br (u)

Similar arguments imply the relations

U VR % (o) (v) = U (W T ) e

quy — q oy (qu¥ _ q—lvi)(qu — q‘%i)
(q — qil)(uq: — Ui)viqu’
(qug — ¢ tvg)(ug — q_Gvi)h 3 (v )hl (u >e13( )

_ g g D U e e ().

(qus — g o) (us — qf%i)

Due to the relation

=TT pEwbF(v) = —F—E T (0)bhE(u),

qus — ¢ tug qus — g lvy

we come to

b (w)efy(v) = LU =00 = ey

6
Ux — ¢ "Vt

# ety — LT o i )eo)

+—q %vg F— 4 Ovs

Together with the expression in (4.26), this gives
1

+ T —
€15(U)Cy3 (V) =
12( ) 23( ) qgu:’: . quvi

(¢ = ¢ *)vxeiz(u) + (ug — va)ed(v)eis(u)
- (‘12 - q72)u$e1¥2<v)82$3(v) - (q2 - q72)u$e1¥3<v))

(7 — ¢~ uz(ug — v) _ o2eF (v
(@usr — q2v1) (qus — g~1v1) (efh(v)edz(v) + efz(v) — ¢°edy(v)).

34



Multiply both sides by qus+ — ¢ 'vg and set qus = ¢~ vy to see that the second summand
vanishes. Finally, by applying Theorem 3.9, we come to the relation

(Pus — quUi)fol,n(u)einJﬂ(v)

= (ug — Ui)e§n+1(v)effl,n(u) + (q2 - (172)Ui9ffl,n+1<u>
- (q2 —q )uﬂFen 1 n(U)einH(U) - (‘12 - q72)u$er¥zfl,n+1(v>'
Quite similar calculations lead to its counterparts:

+

(q2u - q72’0) enfl,n (U) eTiL,nJrl (U)

= (1= )l W)k, (1) + (¢ — g7 2vet sy ()

—(¢® — ¢ uep_y (v)er (V) — (¢ — ¢ P )ueir_y 41 (v),

(us — U?)finﬂ(“)ﬁﬂ,n(”)
= (q2ui - qf%ﬂF) iﬂ,n(“)finfl(u) + (q2 - q72)v¥ffz+l,nfl(v>

- (q2 —q )UﬂanH (V) infl<v) - <92 - qiz)uiffﬂ,nfl(U)
and

(u— v)finfl(u)fi:+1,n<v) = (‘1214 - q_2v>ff§+1,n(”)fin71<u> + (q2 - q_Q)UﬁlL:Jrl,nfl(U)
- (q2 - q_Q)Ufian(U)finq(v) - (92 - q_2)uff+1,n71(u)‘
As a consequence, we have thus verified the relations
(ug® — g 20) " X () X (v) = (u — 0) T AT (0) X2 ().
Now suppose that ¢ < n — 1 and verify the relations
ez:",:i—&-l(u)f?z:—i-l,n(v) fn+1 (V) ;tz+1(u)a efi+1(“)fi+1,n(”) = 'rqz:—i-l,n(U)e?,:i—',-l(u)? (4.27)
ﬁt—i-l,i(u)ei:,n—i-l(v) = erzlL:,n—i-l(v)fz::—l,i(u)v f?ff—l,i(u>ejz:,n+1(v> = einﬂ(”)fﬁl,i(u)-

We only do the second relation in (4.27) as the arguments are quite similar. If i <n — 2
then Corollary 3.10 gives

=gt O 0 (R, (0BT () = ST (0BT B (e ()
and S o
i g o O @BT) = P SR ()BT ()b ()
Therefore,

hf(“)eiﬂ( >n+1n( v)hi(v) = hi( )n+1n< v)b(v)e zz—l—l(u)
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Since [hF(v), ¢j;,,(u)] = 0, the required relation follows. Now let i =n — 1. Due to (4.8),
we have

-1
ot (OF (OO (0) = T (00T ()6 (0

P U e B )e (0
F +

and
¢t L (WhE(v) = ufﬁ( et () + U ey )

Hence
e (WFE 1, (00 (V) = FF L (0)er ., (W) (v),

so that the second relation in (4.27) is verified. Thus, by applying Proposition 4.8 we thus
derive all cases for the commutator formula for the series X;"(u) and & (v).

To complete the proof of the theorem, we will now verify the Serre relations (4.20). By
Proposition 4.1, these relations have the same form for the algebras U(R) and U(R). We
will work with the algebra U(R) and introduce its elements xjtm and a;; forv=1,...,n
and m,l € Z with [ # 0 by the formulas

wf(u) = (¢ — ¢ ") X (ug),
Yi(u) = by (ug') hy (ug') ™,
V5 h

(u) = hiiyy (ug) b (ug’) ™,

fori=1,...,n—1, and

T (u> ( n Qn ) 1X7jz[(uqn+1)7

Un(w) = oy (ug™™) hy (ug™™) 7
h

wer (ug" ) oy (ug™ ) 7

©n(u)

and the expansions (1.3), (1.4) and (1.16), where k; = h‘z_(] hi 1 and hij denotes the constant
term of the series (4.1). In terms of the elements a: . the Serre relations take the form

§ § + + .+ + _
|: :| 7’ kw(l) : aji)kﬂ'(l)ajjzs xizkw(l+1) e xi’kﬂ'(r) - O’ (428)

€S, [=0

for any integers ki,..., k., s. We will keep the indices ¢ # j fixed and denote the left
hand side in (4.28) by z%(ki,...,k.;s). We will adapt an argument used in the Yan-
gian context by Levendorski [30] to the quantum affine algebra case. We will prove the
relation 2% (ky,...,k.;s) = 0 by using an induction argument on the number of nonzero
entries among the entries of the tuples (ki,...,k.;s). The induction base is the relation
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2%(0,...,0;0) = 0. It holds because of the well-known equivalence between the Drinfeld—
Jimbo definition of the the quantized enveloping algebra U, (sp,,,) and its R-matrix presen-
tation; see [33]. In our notation, the algebra U,(sp,,) can be identified with the subalgebra
of the quantum affine algebra U,(sp,,) obtained by restricting the range of the indices
of the generators to the set {1,...,n}, as defined in Section 2.1, whereas its R-matrix
presentation is the subalgebra of U(R) generated by the zero mode elements l?; [0] with
1 <4,5 < 2n; see Section 3.

The induction step will be based on the identities in the algebra U(R) which are implied
by the previously verified relations,

uq(aivo‘j):':c/z — :| +1
x

pilu) 2 (v) = | o) i)

uq:FC/2 — Uq(aivo‘j)

and
qu(aivaj)qzc/Q — U

Vi(u) 2 (v) = [ )rle@) Wi(u).

By taking the coefficients of powers of v and v we derive that

Uq:Fc/Z _ Uq(a“aj

FAule it
[aivk’ x;%m] = i% q:'ZIk' /Qx;lkarm'

The rest of the argument is quite similar to [30]; it amounts to calculating the commutators
[ahk,xi(kl,...,kp,O,...,O;s)] and [aj,k,xi(kl,...,kp,O,...,O;s)}

for a given 0 < p < r. By the induction hypothesis, both commutators are zero which
leads to a system of two linear equations with a nonzero determinant. Therefore, all
elements of the form z*(ky, ..., ky1,0,...,0;5) are also equal to zero. This proves that
2 (ky, ...,k 8) =0, as required. O

Now recall the extended quantum affine algebra U;Xt(ﬁAp%) as introduced in Defini-
tion 2.1. By using Theorem 4.11 and Proposition 4.1 connecting the Gaussian generators

of the algebras U(R) and U(R), we come to the following homomorphism theorem.

Theorem 4.12. The mapping

X (uw) = e g (uy) — e (us), for i=1,...,n,
Xz_(u) = Z'—:l,i(u_) - fijrl,i(u-‘r)) fO’f’ 1= 17 -,

+ + -
hi (u) = hi(u), for j=1,...,n+1.

defines a homomorphism DR : US(sp,,) — U(R).

We will show in the next section that the homomorphism DR provided by Theorem 4.12
is in fact an isomorphism. To this end, we will construct an inverse map by employing the
universal R-matrix for the algebra U,(5p,,) in a way similar to the type A case; see [15].
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5 The universal R-matrix and inverse map

We will use explicit formulas for the universal R-matrix for the algebra U,(g) obtained by
Khoroshkin and Tolstoy [27] and Damiani [6, 7].

Recall the Cartan matrix for g = sp,,, defined in (1.1) and consider the diagonal matrix
C = diag[ry, 72, ..., r,] with r; = (o, ;)/2. Then the matrix B = [B,;] := C'A is symmet-
ric with By; = (cu, o). We will use the notation B = [B;;] for the inverse matrix B~'. We
will also need the g-deformed matrix B(q) = [Bj;(q)] with Bi;(q) = [By], and its inverse

B(q) = [Bij(q)]; see (1.2). It is clear that both matrices B and B(q) are symmetric. The
entries of B are given by

n/4 for i=j=n,
By =<j/2 for i=mn>j, (5.1)
Ji for n>1i>j,
while for any integer k£ we have
[n]q’“

3, [J]—qk for i=n>j, (5.2)
[2] rns)
[2] k10 [F] g

L [2]qk(n+l)

for n>12>j.

With the presentation of the algebra U,(g) used in Section 2.1, consider the extended
algebra U,(g) which is obtained by adjoining an additional element d with the relations

[d7 kl] - 07 [d7 EOLI] - 5i,0Eai7 [d7 Faz] - _57:,0Fa7;'
For a formal variable u define an automorphism D, of the algebra U,(§) ® C[u, u™'] by

Dy(E,) =u"E,,  Du(F,)=u"°F,,  Dy(k)=k,  Dy(d)=d

i

The universal R-matriz is an element R € U,(g) ® U,(g) of a completed tensor product
satisfying certain conditions; see Drinfeld [11]. The conditions imply that this element is
a solution of the Yang—Baxter equation

%12%13%23 = 9&{23%1?)%12 .

The explicit formula for R uses the h-adic settings so we will regard the quantum affine
algebra over C|[[h]] and set g = exp(h) € C[[R]]. Introduce elements hy, ..., h, by setting
k; = exp(hh;). According to [7], the universal R-matrix admits a triangular decomposition

R=R"RRK, (5.3)
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where

V= H Hequi((qi_l — i) Eotks @ Fairs),

OJEA+ k>0
V= H H XDy, ((qz_l - qi)E—a+k5 X F—a—i—k&),
O’GA+ k>0
and )
KC =T g (e®d+dze) T = exp(—hBijh; @ h;).

We will work with the parameter-dependent R-matrix defined by
R(u) — (Du ® ld) %qc®d+d®c.
It satisfies the Yang—Baxter equation in the form

ng(U)ng (UUQ_CQ )Rgg ("U) = Rgg(v)ng(U’U(]CQ )ng (U) (54)

where ¢; =1 ® c® 1; cf. [17].

A straightforward calculation verifies the following formulas for the vector representa-
tion of the quantum affine algebra. As before, we denote by e;; € End C*" the standard
matrix units.

Proposition 5.1. The mappings ¢=°/? — 1,
af g e, — g TR

it (i+1)"
2n+2—1)k
Ty q ez i+l — ¢ ~ ) €(i+1) i

[Ka:

A — ——— ’ (q—z‘k(q—keiﬂ,iﬂ _ qkeii) + q—(2n+2—i)k<

q_kew — qke(i—i-l)’(z‘—f—l)’))
fori=1,....n—1, and

(n+1)k

T 4 Cnt+1,ns
Ir:k = q_(n—H)ken,n—i—la
k —(n N
Qnk [ ]]{: (q (n1)k (q 2k6n+1,n+1 - q2k6nn))
define a representation my : Uy(§p,,) — End 'V of the algebra U,(sp,,) on the vector space
vV =C*. U

It follows from the results of [17] that the R-matrix defined in (1.7) coincides with the
image of the universal R-matrix:

R(u) = (my ® my) R(u).

Introduce the L-operators in U,(5p,,) by the formulas

n

)
L*(u) = (id @ 7)) Ra1 (ug”?),
( ) = (id ® my) 7212(1flq’c/2)’1

39



Recall the series 2% (u) defined in (2.17). Their coefficients are central in the algebra
qu"t(sAp%); see Proposition 2.2. Therefore, the Yang—Baxter equation (5.4) implies the
relations for the L-operators:

R(u/v)Li (u) L (v) = LE (o) LE (w) R(u/),
R(uy fv-) L¥ (u)LE (v) = L (0) L (u) R(u_ vy,

where we set

Lt H’Z —2m—1 +<u£f2m72>71’ (55)
L™ (u) = L™ (u) H T2 (we ) (5.6)

Note that although these formulas for the entries of the matrices L*(u) involve a completion
of the center of the algebra Ug* (5P, ), it will turn out that the coefficients of the series in
+1 actually belong to U qe"t (5p,,,). Thus, we may conclude that the mapping

RD : L*(u) — L*(u) (5.7)

defines a homomorphism RD from the algebra U(R) to a completed algebra U (sp,,,),
where we use the same notation for the corresponding elements of the algebras.

Returning to the universal R-matrix, observe that formula (5.3) implies the correspond-
ing decomposition of the matrix R(u):

R(u) = R (u)R° (u)R<"(u), (5.8)
where
R™(u IIIIWM 4" — @)U Eniis @ Foaips),
a€A+ k>0
R<0 T_ H H equz - QZ)U E—a+k6 ® F—a+k6) T
a€AL k>0
and

(g ) —q) ko~ . e
o =exn (330 T g, Bl 0 P o ) T
et ¢ l—q [k]q

By using the vector representation 7y defined in Proposition 5.1, introduce the matrices
F*(u), E*(u) and H* (u) by setting

Ft(u) = (id ®@ mv) R3{ (ug/?)
= (id®7my) H Hequi ((C]fl — )", s ® Ea-l—k(S)a

a€Ay k=0
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Et(u) = (id ® my) Ry (ug®/?)
(id ® v ( H H expy, ( @)U P ks © E_airs) T21>

acAL k>0

and
H"(u) = (id ® 7y)

n -1 -1
% —%)\q; — 4 ko~ c —kc c
(exp(Z Z ( 1)( j i) Biy(d")uk ¥ ?a; 1" @ ¢* /2a¢,k>T21>

k>0 i,j=1 =4 [Klq

o

x H z* (ué™ 2m— 1 (u572m72)71.
The decomposition (5.8) implies the corresponding decomposition for the matrix L™ (u):
LT (u) = Fr(uw)H' (u)E™(u).

Recall the Drinfeld generators xfk of the algebra U,(sp,,), as defined in the Introduc-
tion, and combine them into the formal series

>0 - k + >0 __ + k
= E ,xz—ku ) i (u)™" = E Ty U

k>0 k>0
=Yt wf (W) = afu
k>0 k>0
Furthermore, set
fiHw) = (g7 = @)xy (ureqg™)?", ef (u) = (¢;" — @)wf (u—q™")™",
fi(w) = (g — g)zy (u_q™)=’, e; (u) = (¢ — @)w; (u_q™)=°
fori=1,...,n—1, and
() = (g, = qn)z, (up g " TD)>0, e (u) = (g," — qn)a) (u_g™ )0,
fo (W) = (g — a, ")z, (u_g™ ") =0, e, (u) = (q," = qn)z) (u_q™ )0

Proposition 5.2. The matriz F*(u) is lower unitriangular and has the form
fif () 1 O

Ft(u) = n (u) 1
— i (uEP)y 1

i —fi (uéqg®) 11
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Proof. By the construction of the root vectors F,, s and the formulas for the representation
7y, we only need to evaluate the image of the product

[T exp, (67" — 4)(ug”>)* Fuyis © Eapiis)
k>0

for simple roots a; with ¢ = 1,...,n. Due to the isomorphism of Sec. 2.1, we can rewrite
it in terms of Drinfeld generators as

[Texp,, (0" = @) (g, @),
k>0

Suppose first that i < n — 1. Using the formulas for the action of the generators a:jk from
Proposition 5.1, we get

(id@my) [[exp, (67" — @) (ug*) z;_, @ ) (5.9)
k>0
= H exp,, (7" — @) (usq ™)'z, @ e — (¢ — Qi)(u+q_(2n+2_i))kx;—k ® e (i+1y)-

k>0
Expanding the g-exponent, we can write this expression in the form
L+ (g —a) Yy y(urg )V @eini— (67 —a) Dz (urg P> ) @ ey
k=0 k=0
=1+ (¢! =)oy (g ™) @ esens — (07" = a)a7 (wag™ )0 @ ey
which coincides with 1 + f;7(u) ® €1, — fi7 (u€¢*) ® e 41y, as required. A similar

calculation shows that expression (5.9) with ¢ = n simplifies to 1 + f,;7(u) ® €p51.4. O

As in Sec. 2.2, we will assume that the algebra U;Xt (5p,,,) is extended by adjoining the

+1/2
square roots k 2,

Lemma 5.3. The image (id ® my)(T%) is the diagonal matriz

diag[kl...kn,lkm koo ko1 KY2 KV,

K20 kL kYR kTR kTR RSV

Proof. By definition, we have

(id @ my ) (To1) = exp( — hz Z Bayhy, @ 7y (ha))
b=1 a=1

n n—1

= eXp( - hz Z Babhb & (€a+1,a+1 — €a,a — €(a+1),(at1) + ea’,a’))

b=1 a=1

X eXp( — 2712 Bnbhb ® (en+1,n+1 - en,n))

b=1
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which equals

n n—1 n
exp (h (Bab - Ba—l,b)hj & €q,a + hz Buphy ® €11
b=1 a=2 b=1
n n—1 n
- ﬁz (Bap — Ba—l,b)hb X €qrar + hz Biyhy ® ey 1
b=1 a=2 b=1

3l

+ h (2Bnb - Bn—l,b)hj X €nn — hz<2Bnb — Bn—l,b)hj X en’,n’)-
b=1

T
X

The claim now follows by applying formula (5.1) for the entries BU For instance, the
(1, 1)-entry of the diagonal matrix is found by

exp( ZBlbhb>—exp< Zhb+h hy) ) Hkbklﬂ,

and the remaining entries are obtained by the same calculation. ]

Proposition 5.4. The matriz E™(u) is upper unitriangular and has the form

1 e (u) i
1 eq (u) *
1 ef(u)
Et(u) = .
1 —eg(uéq?)
O 1 —ey (uq®)
b 1 —
Proof. Tt is sufficient to evaluate the image of the product
Ty H exp,, (¢ = 0:)2° " P F k6 © E_gyins) Ton
k>0
with respect to id ® 7y for simple roots a; with ¢+ = 1,... n. Using the isomorphism of

Sec. 2.1, we can rewrite the internal product in terms of Drinfeld generators as

Hequz(<q —qi)(z 6/2) q " z ki ®chk T, )

k>0

The remaining calculation is performed in the same way as in the proof of Proposition 5.2

with the use of Proposition 5.1, Lemma 5.3 and the relations kzxj[kk; 1 - q;t Aij :cjik O
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In the next proposition we use the series z*(u) introduced in (2.17). Their coefficients
belong to the center of the algebra Uy xt(sp,,); see Proposition 2.2. For a positive integer

m with m < n we will denote by z [” ml(u) the respective series for the subalgebra of
qu"t(sAp%), whose generators are all elements ka, h;.%k and ¢? such that i,j > m + 1;

see Definition 2.1. We also denote by £~ the parameter ¢ for this subalgebra so that
f[n—m} — q—2n+2m—2.

Proposition 5.5. The matriz H (u) is diagonal and has the form
H (u) = diag [ (u), ..., by} (u), 2" P w) bty (ug®) 7 2P P ) A (ugt™) .
Proof. By definition,

(g —a)g —a) k- ‘ ke/2 o ke
tlu) = exp(Z Z ’ - == Bi;(¢")u " /2aj,—kq k2@ g /Qﬂv(ai,k)>

k>0 i,j=1 ¢4 [Klq
% (id ® 7rV)(T21) H Z+(u5_2m_1)z+(u5_2m_2)_1.
m=0

Using the formulas for 7y (a; %) from Proposition 5.1, we can write the first factor as the
exponent of the expression

n n—1
YD (45— a7 )Biy(dutag
>0 j=1 i=1
® (q_(i_l)kez‘z’ — ¢ %1 — € Ve + g ey iy
+ Z Z - q] ( )(q +q )U aj,—k ® (q_(n_l)ken,n - q_(n+3)ken+1,n+1) .
k>0 j=1

Consider the (1, 1)-entry (the coefficient of e; ;) in the first factor in the formula for H* (u).
Using formula (5.2) for By j(¢*) we get

exp < Z Z —q;") (qk)ukaj7,k>

k>0 j=1
(n+1)k

qjk‘{'gikquk k —1y 4 k
_exp<zz 14t U Clj,—k) eXp(Z(%—q )1+§ A an,_k>.

k>0 j=1 k>0

By expanding the fractions into power series, we can write this expression as

n—1 oo

exp(Z Z Z(q - qfl)(_l)m(ffmkqjk + ffmk*kquk)ukaj,fo

k>0 j=1 m=0



Using the definition (1.4) of the series @;(u) and setting ¢;(u) = k;p;(u), we can bring the
expression to the form

co n—1

H r_[ M) (uE P )y (uE A g ) T g (uE P2 )

ﬁ @ u§—2m TL-‘rl) 1~ (ué-—Qm 1 n+1)

m=0

Setting A (u) = t; 1 (u) with t; = hi, and applying Proposition 2.3, we can write this as

H H U£ 2m 2]) (u€72m 1 2] H H u672mq2j72)71]~1;r(u672m71q2j72)
x L] o (w7 7 il (w2 2) < B (u).
m=0

Now use definition (2.17) of the series 2*(u) to conclude that

o0

eXp(ZZ 6= a7 BuglaVebash) = T (e 7 H (e 2) x B ()

k>0 j=1 m=0

Furthermore, Lemma 5.3 implies that the (1, 1)-entry of the matrix (id®my )(73;) equals
H;:ll k; x ki/> = t7*. This proves that the (1,1)-entry of the matrix H+(u) is hi (u).

It is clear that the matrix H*(u) is diagonal, and we perform quite similar calculations
to evaluate the (i,7)-entries for i = 2,...,2n. For instance, if i = 2,...,n — 1 then formula
(5.2) for B;j(¢") implies that the exponent

exp( 33 (0 - OB (¢) — 0 Bi(6h)) b

k>0 j=1

can be written in terms of the series @;(u) as

oo i—1
HH@j(U&-izmqj)il(ﬁj(ué-iqu ]) (u£ 2m— 1q )u%(gﬁm 1q*J) 1
m=0 j=1
oo n—1
« H H@j(ug—Zm -1~ <u§—2m lq—j) (u§—2m lqj> j(u§—2m—2q—j)—1
m=0 j=i

X H @n(ug—qun—l—l)—lgén(ug—Zm—lqn—&-l).
m=0
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Using the relations @;(u) = b (ug?) "*hl (ug’) ™" and @, (u) = by (ug™t) 1AL, (ug™t) L,
we can write this expression in the form

ﬁ <i‘[ u€—2m 2] H ug—quZj—Q)—l % E:(ug—%n—l)—l)
m= 7=1

3

e’} n—1 n
< T (T A (a1 q2) ™ T Ay (a2 72) s By (w2 ) ) < B ()
m=0 j=1 j=1

which equals

H Z+<u572m71)712+(u572m72) % fzj(u)

m=0
Furthermore, by Lemma 5.3, the coefficient of e;; in the image (id®my )(T21) coincides with
H;:il kiky? = t; 1. This shows that for i = 2,...,n—1 the (i, i)-entry of the matrix H;" (u)
is b (u). We omit the calculations in the remaining cases which are quite similar. ]

Now turn to the matrix L~ (u). By definition (5.6) of L™ (u), we have
L™ (u) = F~(u)H™ (u)E~ (u),
where
E™(u) = (id ®@ my)R™(ui") ™,
F(w) = (id @ m )R (),

and
[oe)

H™(u) = (id @ my)(R%(u;") ™! Hz (w&™ D (ug?™m?),

Proposition 5.6. The matriz E~(u) is upper unitriangular and has the form

[1 e (u) T
1 es (u) *
E(u) = 1 e;‘ (u)
1 —ey (ugq?)
O 1 —eq (uéq?)
i 1 i
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The matriz F~(u) is lower unitriangular and has the form

The matriz H (u) is diagonal and has the form

H™ (u) = diag [hl_(u), ooy by (w), P (u) h;_l(ufp])_l, o,z (u)hf(ué’[n])_l}.

’'n

Proof. As a first step, use the same arguments as in the proofs of Propositions 5.2, 5.4 and
5.5 to evaluate the matrices

E (u)'=(d® WV)RJ“(u;l), F(u)?'=(d® ﬂv)’R_(u_T_l),

and .
H ()™ = (id@my)(R*(uy") [] =~ (ue™ ) =~ (ug™ )7,
m=0
The required expressions are then obtained by inverting the respective matrices. ]

Taking into account Propositions 5.2, 5.4, 5.5 and 5.6 we arrive at the following result.
Corollary 5.7. The homomorphism
RD :U(R) — quXt(sAan)

defined in (5.7) is the inverse map to the homomorphism DR defined in Theorem 4.12.
Hence the algebra U(R) is isomorphic to U (spy,). O

Corollary 5.7 together with the results of Secs 2.2 and 4.5 complete the proof of the
Main Theorem.
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