
Generalised trisections in all dimensions
J. Hyam Rubinsteina and Stephan Tillmannb

aSchool of Mathematics and Statistics, The University of Melbourne, VIC, 3010, Australia; bSchool of Mathematics and Statistics, The University of Sydney, NSW 2006,
Australia

This manuscript was compiled on February 12, 2018

This paper describes a generalisation of Heegaard splittings of 3–
manifolds and trisections of 4–manifolds to all dimensions, using tri-
angulations as a key tool. In particular, every closed piecewise linear
n–manifold can be divided into k +1 n–dimensional 1–handlebodies,
where n = 2k + 1 or n = 2k, such that intersections of the han-
dlebodies have spines of small dimensions. Several applications,
constructions and generalisations of our approach are given.
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David Gay and Rob Kirby (1) introduced a beautiful de-
composition of an arbitrary smooth, oriented closed 4–

manifold, called trisection, into three handlebodies glued along
their boundaries as follows. Each handlebody is a boundary
connected sum of copies of S1 ×B3, and has boundary a con-
nected sum of copies of S1 × S2. The triple intersection of the
handlebodies is a closed orientable surface Σ, which divides
the boundary of each handlebody into two 3–dimensional
handlebodies (and hence is a Heegaard surface). These 3–
dimensional handlebodies are precisely the intersections of
pairs of the 4–dimensional handlebodies.

In dimensions ≤ 4, there is a bijective correspondence
between isotopy classes of smooth and piecewise linear struc-
tures (2, 3), but this breaks down in higher dimensions. This
paper generalises Gay and Kirby’s concept of a trisection to
higher dimensions in the piecewise linear category. All man-
ifolds, maps and triangulations are therefore assumed to be
piecewise linear unless stated otherwise. Our definition and
results apply to any compact smooth manifold by passing to
its unique piecewise linear structure (4).

1. Multisections

The definition of a multisection, which generalises both that
of a Heegaard splitting of a 3–manifold and that of a trisection
of a 4–manifold, focuses on properties of spines. Let N be a
compact manifold with non-empty boundary. The subpoly-
hedron P is a spine of N if P ⊂ int(N) and N PL collapses
onto P.

Definition 1 (Multisection of closed manifold). Let M be a
closed, connected, piecewise linear n–manifold. A multisection
of M is a collection of k + 1 piecewise linear submanifolds
Hi ⊂M, where 0 ≤ i ≤ k and n = 2k or n = 2k + 1, subject
to the following four conditions:

1. Each Hi has a single 0–handle and a finite number, gi,
of 1–handles, and is PL homeomorphic to a standard
piecewise linear n–dimensional 1–handlebody of genus gi.

2. The handlebodies Hi have pairwise disjoint interior, and
M =

⋃
i
Hi.

3. The intersection Hi1 ∩Hi2 ∩ . . . ∩Hir of any proper sub-
collection of the handlebodies is a compact submanifold

with boundary and of dimension n− r + 1. Moreover, it
has a spine of dimension r, except if n = 2k and r = k,
then there is a spine of dimension r − 1.

4. The intersection H0 ∩H1 ∩ . . . ∩Hk of all handlebodies
is a closed submanifold of Mn of dimension n − k, and
called the central submanifold.

It follows from our definitions that the first condition in the
above definition is equivalent to each Hi having spine a graph
with Euler characteristic 1− gi. Moreover, each intersection
Hi1 ∩Hi2 ∩ . . . ∩Hir is connected, where 1 ≤ r ≤ k + 1.

Nomenclature. A multisection of a 1–manifold is just the 1–
manifold. The study of multisections in dimension 2 is the
study of separating, simple, closed curves. A multisection
of a 3–manifold is a Heegaard splitting. A trisection in the
sense of Gay and Kirby (1) is a multisection of an orientable
4–manifold with the additional property that the handlebodies
Hj have the same genus. It is shown in (5) that a multisection
of an orientable 4–manifold can be modified to a trisection
in the sense of (1), by stabilising the handlebodies of lower
genus to achieve the same genus as the handlebody of highest
genus. We will therefore use the term trisection to apply to all
multisections in dimension four — if necessary, we will say that
they are balanced if all handlebodies have the same genus and
unbalanced otherwise. This allows us to talk about bisections
(n = 2, 3), trisections (n = 4, 5), quadrisections (n = 6, 7),
etc. without further qualification.

Existence. We recall the classical existence proof of Heegaard
splittings (see, for instance, (6)), which motivates our definition
in higher dimensions, and provides a model for the existence
proofs. Suppose that M is a triangulated, closed, connected
3–manifold, and there is a partition {P0, P1} of the set of all
vertices in the triangulation, such that

Significance Statement

Decomposing a manifold into handles was introduced by Smale,
from the study of the critical points of smooth real valued func-
tions. Here we study combinatorial functions from a manifold
to a simplex and use them to decompose the manifold into
simple building blocks. Given a description of a manifold as the
quotient space of a union of n–dimensional simplices, this note
constructs multisections, which describe an n–dimensional
manifold as a union of k + 1 n–dimensional handlebodies,
where n = 2k or 2k + 1. These handlebodies have disjoint in-
teriors and subcollections intersect in submanifolds with spines
of small dimension. The intersection of all the handlebodies is
the central submanifold Σ. This submanifold Σ can be chosen
to have a special structure called a CAT(0) cubing.
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(13) for each set Pk, every tetrahedron has a pair of vertices
in the set; and

(23) the union of all edges with both ends in Pk is a connected
graph Γk in M.

We can form regular neighbourhoods of each of these graphs
Γk, which are handlebodies H0, H1 respectively, such that the
handlebodies meet along their common boundary Σ, which is
a surface consisting entirely of quadrilateral disks, one in each
tetrahedron, separating the vertices in P0, P1 (see Figure 1).
Hence Σ is a Heegaard surface in M. A triangulation with the
desired properties is obtained as follows. Suppose |K| →M is
a triangulation ofM, and take the first barycentric subdivision
K′ of K. Let P0 be the set of all vertices of K and barycentres
of edges of K; and let P1 be the set of all barycentres of the
triangles and the tetrahedra of K. Then {P0, P1} is a partition
of the vertices of K′ satisfying (13) and (23). Moreover, the
vertices of the cubulated surface Σ have degrees 4 or 6, and
hence Σ is a non-positively curved cube complex (cf. (7)).

Examples of triangulations of manifolds that satisfy (13)
and (23), but are not barycentric subdivisions, are the standard
2–vertex triangulations of lens spaces (see (8)). See §4 for a
strategy to identify triangulations dual to multisections.

The partition {P0, P1} defines a piecewise linear map
φ : M → [0, 1] by φ(P0) = 0 and φ(P1) = 1. This is of-
ten called a height function and we refer to it as a partition
map. The pre-image φ−1( 1

2 ) is a Heegaard surface Σ for M
as described above. The inverse image of any point in the
interior of [0, 1] is a surface isotopic to Σ. The intersection of
this inverse image with any tetrahedron of T is a quadrilateral
disk (2–cube). The inverse image of either endpoint 0 or 1
is a graph and its intersection with any tetrahedron is an
edge (1-cube). The division of the closed interval (1–simplex)
into two half intervals is the dual decomposition into 1–cubes.
An analogous decomposition is exactly what we will use in
arbitrary odd dimensions.

In even dimensions, one encounters the problem that a
simplex has an odd number of vertices. In this case, one needs
to add an additional modification. This is given in detail in the
article (9) in this collection. Again, this approach generalises
to all even dimensions.

An outline of the general existence result can thus be given
as follows. The complete details can be found in (5).

Theorem 2. Every closed piecewise linear manifold has a
multisection.

Sketch of proof. Suppose M is a closed, connected,
piecewise linear manifold of dimension n. Our strategy is
to construct a piecewise linear map φ : M → σ, where σ is
a k–simplex for k satisfying n = 2k or n = 2k + 1, and to
obtain the multisection as the pull back of the dual cubical
structure of σ to M. Our map φ will have the property that
each vertex of σ pulls back to a connected graph, and each
top-dimensional cube pulls back to a regular neighbourhood
of this graph, a 1–handlebody.

We use triangulations to define φ. Since a piecewise linear
manifold admits a piecewise linear triangulation |K| → M
(where the link of each simplex in the simplicial complex K is
equivalent to a standard piecewise linear sphere) we can and
will assume that such a triangulation ofM is fixed. SinceM is
closed, there is a finite number of simplices in the triangulation,

Fig. 1. Partition map for n = 3

and φ is uniquely determined by a partition of the vertices
of the triangulation into k + 1 sets, and a bijection between
the sets in this partition and the vertices of σ. We call such a
map M → σ a partition map. To ensure that the dual cubical
structure of σ pulls back to submanifolds with the required
properties, we determine suitable combinatorial properties on
the triangulation. In the odd-dimensional case, we show in
(5) that the first barycentric subdivision of any triangulation
has a suitable partition. Moreover the r–dimensional spine of
the intersection of r handlebodies meets each top-dimensional
simplex in M in exactly one r–cube. In even dimensions, we
obtain an analogous result in (5) after performing bistellar
moves on this subdivision.

We say that a triangulation supports a multisection if there
is a partition of the vertices defining a partition map φ : M →
σ with the property that the pull back of the cubical structure
is a multisection. Special properties of triangulations may
imply special properties of the supported multisections and
vice versa. For instance, special properties of a Heegaard
splitting of a 3–manifold are shown in (10) to imply special
properties of the dual triangulation. The cornerstone of the
modern development of Heegaard splittings is the work of
Casson and Gordon (11), and it is a tantalising problem to
generalise this to higher dimensions.

2. Examples

An extended set of examples of trisections of 4–manifolds can
be found in (1), and of multisections of higher dimensional
manifolds in (5). The recent work of Gay (12), Meier, Schirmer
and Zupan (13–15) gives some applications and constructions
arising from trisections of 4–manifolds and relates them to
other structures.

We begin with the ‘standard’ tropical multisection of com-
plex projective space and then give new examples of multi-
sections of a large class of spherical space forms. A spherical
space form is a quotient space of a finite group of orthogonal
transformations acting freely on a sphere. They admit a Rie-
mannian metric of constant positive curvature. See (16) for
more information on spherical space forms.

The tropical picture of complex projective space. Consider
the map CPn → ∆n defined by

[ z0 : . . . : zn ] 7→ 1∑
|zk|

( |z0| , . . . , |zn| ).

The dual spine Πn in ∆n is the subcomplex of the first barycen-
tric subdivision of ∆n spanned by the 0–skeleton of the first
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barycentric subdivision minus the 0–skeleton of ∆n. This is
shown for n = 2, 3 in Figure 2. Decomposing along Πn gives
∆n a natural cubical structure with n + 1 n–cubes, and the
lower-dimensional cubes that we will focus on are the intersec-
tions of non-empty collections of these top-dimensional cubes.
Each n–cube pulls back to a 2n–ball in CPn, and the collec-
tion of these balls is a multisection. For example, if n = 2,
the 2–cubes pull back to 4–balls, each 1–cube pulls back to
S1 ×D2 and the 0–cube pulls back to S1 × S1.

Fig. 2. Dual cubical structure of the 2–simplex and the 3–simplex

Lens spaces. Lens spaces form an important special subclass
of spherical space forms.

A lens space L(m : k1, . . . kn) is obtained as the quotient
space of a free linear action of a finite cyclic group on S2n−1,
the unit sphere in Cn. To be more specific, the action of Zm

on S2n−1 is given by

(z1, . . . , zn) 7→ (z1e
2πik1
m , . . . , zne

2πikn
m ),

where ki,m are relatively prime positive integers, and
(z1, . . . zn) ∈ S2n−1.

Notice there is an associated S1–action on L(m : k1, . . . kn).
Here [z1, . . . , zn] 7→ [z1z, . . . , znz], where [z1, . . . , zn] denotes
the orbit of (z1, . . . , zn) under the action of Zm on S2n−1 and
z ∈ S1 ⊂ C.

Exceptional fibers Γj , 1 ≤ j ≤ n of this S1–action are
obtained as the sets of points [0, . . . , 0, zj , 0, . . . , 0], where only
one coordinate is non-zero. To find a natural multisection, we
use a Dirichlet construction, based on the loops Γj , 1 ≤ j ≤ n
as cores of the n handlebodies Hj , 1 ≤ j ≤ n, each of which
will then be of the form S1 ×B2n−2. Hence

Hj = {x ∈ L(m : k1, . . . kn) : d(x,Γj) ≤ d(x,Γl), ∀l 6= j},

where d is the standard locally spherical metric induced on
the lens space.

This construction is closely related to the tropical multi-
section of CPn in the previous section and the multisections
of RPn in (5). In particular, the central submanifold is again
the n–torus S1 × · · · × S1 given by

{[z1, z2, . . . zn] : |zj | =
1√
n
, 1 ≤ j ≤ n}.

This is an orbit of the action of the n–torus on the lens
space by coordinate multiplication. The spine of each non-
empty intersection of subsets of the handlebodies is a lower
dimensional torus, which is a singular orbit of this torus action.

3. Structure results

Non-positively curved cubings from multisections. We work
with the combinatorial definition of a non-positively curved
cubing (see (7, §2.1)). A flag complex is a simplicial complex
with the property that each subgraph in the 1–skeleton that
is isomorphic to the 1–skeleton of a k–dimensional simplex
is in fact the 1–skeleton of a k–dimensional simplex. A cube
complex is non-positively curved if the link of each vertex is a
flag complex. Here, the link of a vertex in a cube complex is
the simplicial complex whose h–simplices are the corners of
(h+ 1)–cubes adjacent with the vertex. Basic facts are that
the barycentric subdivision of any complex is flag, and that
the link (in the sense of simplicial complexes) of any simplex
in a flag complex is a flag complex.

The partition map φ : M → σ can be used to pull back
the dual cubical structure of the target simplex. This gives
a natural cell decomposition of the submanifolds in a multi-
section, with cells of very simple combinatorial types. Each
multisection submanifold that is the intersection of r < k + 1
handlebodies has a spine with a cubing by r–cubes, and the
closed, central submanifold Σ = H0 ∩ H1 ∩ · · · ∩ Hk has a
cubing.

In (5) we show that φ can be chosen such that the cubing
of Σ satisfies the Gromov link conditions (17), and hence is
non-positively curved:

Theorem 3. Every piecewise linear manifold has a triangu-
lation supporting a multisection, such that the central subman-
ifold has a non-positively curved cubing.

Since a (2k + 1)–manifold has a central submanifold of
dimension k + 1, this result produces manifolds with non-
positively curved cubings in each dimension. We also remark
that our construction yields cubings with precisely one top-
dimensional cube in the central submanifold for each top-
dimensional simplex in the triangulation of the manifold.

Question 4. What conditions does a non-positively curved
cubed k–manifold need to satisfy so that it is PL–
homeomorphic to the central submanifold in a multisection of
a (2k + 1)–manifold or a 2k–manifold?

Uniqueness. There is a natural stabilisation procedure of mul-
tisections. In dimension 3, this increases the genus of both
3–dimensional handlebodies, whilst in higher dimensions, this
increases the genus of just one of the top-dimensional han-
dlebodies. The Reidemeister-Singer theorem (18, 19) states
that any two Heegaard splittings of a 3–manifold have a com-
mon stabilisation. Using in an essential way the uniqueness
up to isotopy of genus g Heegaard splittings of #k(S2 × S1)
due to Waldhausen (20), Gay and Kirby (1) show that any
two trisections of a 4–manifold have a common stabilisation
up to isotopy. This implies that any two multisections of a
4–manifold also have a common stabilisation up to isotopy.

Question 5. Under what conditions is there a common stabil-
isation for two given multisections of a manifold of dimension
at least five?

Our existence proof constructs multisections dual to tri-
angulations. Conversely, up to possibly stabilising the mul-
tisection, one can build triangulations dual to multisections.
However, stabilisation in higher dimensions adds summands of
S1 × Sn−k−1 to the central submanifold, and hence we expect
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the equivalence relation generated by stabilisation to be finer
than PL equivalence of the dual triangulations.

Recursive structure of multisections and generalisations. An
important part of multisections is their recursive structure. By
this we mean that inside a multisection of an n–dimensional
manifold, we see a stratification of the boundary of each
handlebody into lower dimensional manifolds. For example,
for a trisection where n = 4, 5, we see partition functions on
the boundaries of each handlebody, dividing the boundary into
two pieces. For a quadrisection, where n = 6, 7, the boundaries
of the handlebodies are divided into three pieces. However,
the top dimensional pieces are not necessarily handlebodies,
whereas all the pieces have spines of low dimension. So these
are not multisections in the sense defined above.

The same works in all dimensions. Namely for n–manifolds,
with n = 2k or n = 2k+ 1, the boundaries of the handlebodies
have natural divisions into k regions. Each of these regions
has a spine of dimension at most two. However, these regions
are not necessarily 1–handlebodies.

From the viewpoint of the complexity theory of
Martelli (21), such generalised multisections may be a fruitful
approach to the study of classes of examples. For instance,
a decomposition of a 4–manifold into 4–dimensional 1– or
2–handlebodies is a decomposition into 4–manifolds of com-
plexity 0.

We note a useful result giving a relationship between the
properties of having low dimensional spines and connectivity
of the intersection submanifolds. This requires the following
definition, which applies to all subdivisions of manifolds in the
recursive structure. Note that there is no relationship assumed
between n and k.

Definition 6 (Generalised multisection of closed manifold).
Let M be a closed, connected, piecewise linear n–manifold. A
generalised multisection of M is a collection of k+ 1 piecewise
linear n–dimensional submanifolds Hi ⊂M, where 0 ≤ i ≤ k,
subject to the following three conditions:

1. Each Hi is non-empty and has a spine of codimension at
least two.

2. The submanifolds Hi have pairwise disjoint interior, and
M =

⋃
i
Hi.

3. The intersection Hi1 ∩ Hi2 ∩ . . . ∩ Hir of any proper
subcollection of the submanifolds (r ≤ k) is a compact
submanifold with boundary and of dimension n− r + 1.
Moreover, it has a spine of codimension at least two.

Proposition 7. Suppose that a closed connected manifold
M has a generalised multisection into submanifolds Hi for
0 ≤ i ≤ k. Then the intersection Hi1 ∩Hi2 ∩ . . . ∩Hir of any
collection of the submanifolds is non-empty and connected. In
particular, each Hi and the intersection H0 ∩H1 ∩ . . .∩Hk is
connected. Moreover, H0 ∩H1 ∩ . . . ∩Hk is a closed manifold
of dimension n− k.

Proof. The argument is by complete induction on k. To start
the induction, suppose M is a manifold of dimension n and
k = 1. Whence M = H0 ∪ H1. Each component X of H0
has a spine of codimension 2 and hence connected boundary.
Since M = H0 ∪ H1 and int(H0) ∩ int(H1) = ∅, we have
∂H0 = ∂H1. Therefore there is a component Y of H1 such

that ∂X = ∂Y. But then X ∪ Y is a closed n–manifold and
hence M = X ∪ Y. Moreover, X ∩ Y = ∂X is a non-empty,
closed and connected manifold of dimension n−1. This proves
the result for all manifoldsM and all generalised multisections
into two submanifolds.

Before giving the general induction step, we move to k = 2.
So assume M is a manifold of dimension n and that it has
a generalised multisection into three submanifolds. Whence
M = H0 ∪ H1 ∪ H2. Again, each component X of H0 has
connected boundary. If X∩H2 = ∅, then there is a component
Y of H1 such that ∂X = ∂Y. But then, as above, M = X ∪ Y.
This contradicts the fact that H2 6= ∅. Hence X ∩ H2 6= ∅,
and by symmetry X ∩H1 6= ∅. Now ∂X is a closed (n− 1)–
dimensional manifold and ∂X = (X ∩H1)∪ (X ∩H2). Each of
X∩H1 and X∩H2 is non-empty, (n−1)–dimensional and has
a spine of co-dimension at least two. Moreover, (X ∩H1) ∩
(X ∩H2) = X ∩H1 ∩H2, which has dimension n− 2, and so
X ∩H1 and X ∩H2 have disjoint interior. Hence by induction,
each of X ∩ H1, X ∩ H2 and X ∩ H1 ∩ H2 is non-empty,
connected and the latter is a closed manifold of dimension
n − 2. It follows that there is a unique component Y of H1
and a unique component Z of H2 such that X ∩H1 = X ∩ Y
and X ∩H2 = X ∩ Z. In particular, X ∩ Y ∩ Z is non-empty,
connected and closed. It follows that ∂Y = (X ∩ Y )∪ (Y ∩Z)
and ∂Z = (X ∩ Z) ∪ (Y ∩ Z). Whence X ∪ Y ∪ Z has empty
boundary and hence M = X ∪ Y ∪ Z. This finishes the proof
for k = 2.

Hence assume the conclusion holds for all manifolds and
all multisections into at most k0 submanifolds. Assume that
we are given a generalised multisection of an n–manifold M
with k0 + 1 submanifolds H0, . . . , Hk0 . Each component X0 of
H0 has ∂X0 connected. As above, we have

∂X0 = (X0 ∩H1) ∪ . . . ∪ (X0 ∩Hk0 ).

This is a generalised multisection of the closed manifold ∂X0
with at most k0 submanifolds. By the induction hypothesis, all
components in the above decomposition are connected, hence
there are unique components Xi of Hi such that X0 ∩Hi =
X0 ∩Xi, where we put Xi = ∅ if X0 ∩Hi = ∅. Whence

∂X0 = (X0 ∩X1) ∪ . . . ∪ (X0 ∩Xk0 ).

Since the non-empty submanifold X0 ∩Xi ∩Xj is contained
in Xi ∩Xj , it follows by uniqueness that

∂Xi = (Xi ∩X0) ∪ (Xi ∩X1) ∪ . . . ∪ (Xi ∩Xk0 ),

where we omit Xi ∩Xi from the union. It follows that X0 ∪
X1 ∪ . . . ∪Xk0 has empty boundary, and hence equals M. In
particular, each Xi 6= ∅. This completes the proof.

4. Constructing multisections

We first explain how the symmetric representations of (22)
can be used to construct multisections. A number of appli-
cations of this approach are given in (5). Here we highlight
generalised multisections and twisted multisections. The in-
terested reader can find multisections of connected sums and
products, a Dirichlet construction and the case of manifolds
with non-empty boundary in (5).

As a second, new construction, we describe another type of
twisted multisections. These arise as generalisations of certain
one-sided Heegaard splittings.
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Constructing multisections using symmetric representations.
Given a triangulated n–manifold |K| →M with the property
that the degree of each (n− 2)–simplex is even, the authors
defined a symmetric representation π1(M) → Sym(n + 1)
in (22) as follows. Pick one n–simplex as a base, choose
a bijection between its corners and {1, . . . , n + 1} and then
reflect this labelling across its codimension-one faces to the
adjacent n–simplices. This induced labelling is propagated
further and if one returns to the base simplex, one obtains a
permutation of the vertex labels. Since the dual 1–skeleton
carries the fundamental group, it can be shown that this
gives a homomorphism π1(M)→ Sym(n+ 1). See (22, §2.3)
for the details. For example, the symmetric representation
associated to any barycentric subdivision is trivial, since the
labels correspond to the dimension of the simplex containing
that vertex in its interior, but there may be more efficient even
triangulations with this property.

The symmetric representation can also be used to propa-
gate partitions of the vertices of the base simplex; this is done
in (22, §2.5) for partitions into two sets, but extends to arbi-
trary partitions. One then obtains an induced representation,
usually into a symmetric group of larger degree. The aim in
(22) was to obtain information on the topology of a manifold
from a non-trivial symmetric representation arising from a
triangulation with few vertices. Our needs in this paper are
different: we wish to use the symmetric representations to
identify triangulations to which we can apply our constructions
without barycentric subdivision. So we either want the orbits
of the vertices under the symmetric representation to give a
partition satisfying the conditions in our constructions; or we
ask for partitions of the vertices with the property that the
induced representation is trivial.

The main properties to check for a given partition of the
vertices are that the graphs spanned by the partition sets are
connected, and, in even dimensions, that the dimension of the
spine drops when intersecting all but one of the handlebodies.

The following are two applications of this approach.

Generalised multisections. Suppose that M is a trian-
gulated n–manifold with an even triangulation with trivial
symmetric representation. As above, given any triangulation,
the first barycentric subdivision has this property. We can
define some special generalised multisections as follows.

Suppose that n = 3k + 2. Assume that we have partition
sets P0, P1, . . . Pk where the sets meet every n-simplex in
three vertices. We then map each n–simplex to the k–simplex
by mapping each partition set to a vertex of this k–simplex.
It is then easy to verify that we obtain a division of M into
k+1 regions, and each region has a 2–dimensional spine, given
by the union of all the 2–simplices in each n–simplex with all
vertices in the same partition set. In this case, the manifold
Σ which is the intersection of all the handlebodies, is closed
of dimension 2k + 2. Again we can arrange that the induced
cubing of Σ is non-positively curved and each intersection of
a proper subcollection has a spine of low dimension.

Another interesting example is to have two partition sets of
size k′, k? of the vertices of each n–simplex, so that k′ + k? =
n + 1. We assume that both k′ > 1, k? > 1. The induced
decomposition is a bisection into two regions with spines of
dimension k′, k?. Given a handle decomposition of M , this is
similar to a hypersurface which is the boundary of the region
containing all the i–handles for 0 ≤ i ≤ k′.

Finally a very specific example is a 6–manifold M with
three partition sets of respective sizes 2, 2, 3. This induces a
trisection of M into three regions, where two are handlebodies
and the third has a spine of dimension 2.

Twisted multisections. Suppose a closed PL n–manifold
has an even triangulation with a non-trivial symmetric rep-
resentation. Assume also that the symmetry preserves our
standard partition of the vertices, i.e. every symmetry map-
ping produces a permutation of the partition sets of vertices.
Then there is an associated ‘twisted’ multisection, which we
illustrate with a simple example—the general construction
then becomes clear.

Assume M is a 5–manifold that admits an even triangu-
lation with a symmetric representation with image Z3. Also
assume this symmetry is a permutation of the form (012)(345)
of the labelling of the vertices. In this case, we choose as
partition sets {0, 3}, {1, 4}, {2, 5}. Then these are permuted
under the action of the symmetric mapping. The edges joining
these three pairs of vertex sets form a connected graph Γ.

A regular neighbourhood of Γ then forms a single handle-
body H whose boundary is glued to itself to form M . The
handlebody H lifts to three handlebodies in a regular 3–fold
covering space M̃ of M and these give a standard trisection
of M̃ . The covering transformation group Z3 permutes the
handlebodies and preserves the central submanifold. If the
initial triangulation is flag, then the lifted triangulation is
flag and hence the central submanifold has a non-positively
curved cubing on which the covering transformation group
acts isometrically. Hence the quotient, which embeds in ∂H,
also has a non-positively curved cubing.

Twisted multisections of some other spherical space forms.
We define a natural generalisation of the one-sided Heegaard
splittings of 3-dimensional spherical space forms which have
fundamental groups that are either dihedral or binary dihe-
dral by cyclic groups, discussed in (23). Such splittings are
given by embedded Klein bottles with complements open solid
tori. One-sided Heegaard splittings are examples of twisted
multisections in dimension 3.

Consider the unit sphere S4n−1 in Hn, where H is the
quaternions. Let G be a suitable direct product of a finite
subgroup of the unit quaternions that is dihedral or binary
dihedral and a relatively prime order cyclic subgroup. In
particular we require that joint left and right multiplication
respectively of these factors of G on the unit quaternions
defines a free action.

Now use the above to define a diagonal action of G on
the n quaternionic factors in S4n−1 ⊂ Hn. We claim there is
a twisted multisection of the spherical space form S4n−1/G,
consisting of n copies of S1 ×B4n−2 glued together.

An easy way to see how this multisection is constructed is
to pass to the 2–fold cover of S4n−1/G by a lens space, using
a normal cyclic subgroup of G of index 2. The multisection of
this lens space as described in the previous subsection is easily
seen to be invariant under the covering transformation. In
fact, this covering involution interchanges pairs of exceptional
fibers, and hence in the quotient space there are n loops which
are projections of the 2n exceptional fibers.

The multisection of the lens space is obtained by a Dirichlet
construction from the exceptional fibers and hence all the
components, i.e intersections of families of neighbourhoods
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of exceptional fibers, are invariant or interchanged under the
involution. So it is easy to verify that there is an induced
twisted multisection of S4n−1/G as claimed.

5. Category of (k + 1)–coloured structures

A manifold M admits a (k + 1)–colouring if it has a trian-
gulation where the vertices are partitioned into k + 1 sets
P0, P1, . . . Pk so that every top dimensional simplex has either
one or two vertices in each set Pi.

If two manifolds M,N have triangulations which both ad-
mit (k + 1)–colourings, then a colour preserving mapping
φ : M → N is a simplicial map which takes the partition
sets P0, P1, . . . Pk of the vertices of M to the partition sets
P ′0, P

′
1, . . . P

′
k of the vertices of N .

There is clearly a category of (k + 1)–coloured structures
defined this way. Note that the basic construction of a multisec-
tion arises from a colour preserving mapping φ : M → σ where
σ is the (k + 1)–simplex with the trivial partition consisting
of one vertex in each partition set.

We can also specialise to (k+ 1)–coloured structures which
induce multisections. The corresponding colour preserving

map then takes the multisection of the domain to the multi-
section of the range.

Waldhausen (24) showed that given any degree one mapping
φ between 3–manifolds M,N and a Heegaard splitting Σ for
N , the map φ can be homotoped so that φ−1(Σ) is a Heegaard
splitting for M . Moreover after the homotopy, the map φ
can be put into a standard form. This implies there are 2–
coloured triangulations of both M,N and a colour preserving
map between them in the homotopy class of φ.

Question 8. Given a degree one mapping φ between 4–
manifolds, M,N and a trisection of N is there a trisection of
M so that φ can be homotoped to a map taking one trisection
to the other? In particular, is there a colour preserving map
from M to N with respect to 3–coloured triangulations of
M,N , where the 3–coloured triangulation of N induces the
given trisection of N?

ACKNOWLEDGMENTS. The authors are partially supported
under the Australian Research Council’s Discovery funding scheme
(project number DP160104502). Tillmann thanks the DFG Collab-
orative Center SFB/TRR 109, where parts of this work have been
carried out, for its hospitality.

1. Gay D, Kirby R (2016) Trisecting 4-manifolds. Geom. Topol. 20(6):3097–3132.
2. Cairns SS (1944) Introduction of a Riemannian geometry on a triangulable 4-manifold. Ann.

of Math. (2) 45:218–219.
3. Cairns SS (1961) The manifold smoothing problem. Bull. Amer. Math. Soc. 67:237–238.
4. Whitehead JHC (1940) On C1-complexes. Ann. of Math. (2) 41:809–824.
5. Hyam Rubinstein J, Tillmann S (2016) Multisections of piecewise linear manifolds. ArXiv

e-prints.
6. Hempel J (2004) 3-manifolds. (AMS Chelsea Publishing, Providence, RI), pp. xii+195. Reprint

of the 1976 original.
7. Wise DT (2012) From riches to raags: 3-manifolds, right-angled Artin groups, and cubical

geometry, CBMS Regional Conference Series in Mathematics. (Published for the Conference
Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society,
Providence, RI) Vol. 117, pp. xiv+141.

8. Seifert H, Threlfall W (1980) A textbook of topology. Transl. by Michael A. Goldman. Seifert, H.:
Topology of 3-dimensional fibered spaces. Transl. by Wolfgang Heil. Ed. by Joan S. Birman
and Julian Eisner. (Pure and Applied Mathematics, 89. New York etc.: Academic Press, A
Subsidiary of Harcourt Brace Jovanovich, Publishers. XVI, 437 p. $ 39.50 (1980).).

9. Bell M, Hass J, Rubinstein JH, Tillmann S (2017) Computing trisections of 4-manifolds.
preprint.

10. Hodgson CD, Rubinstein JH, Segerman H, Tillmann S (2015) Triangulations of 3-manifolds
with essential edges. Ann. Fac. Sci. Toulouse Math. (6) 24(5):1103–1145.

11. Casson AJ, Gordon CM (1987) Reducing Heegaard splittings. Topology Appl. 27(3):275–283.
12. Gay DT (2016) Trisections of Lefschetz pencils. Algebr. Geom. Topol. 16(6):3523–3531.

13. Meier J, Schirmer T, Zupan A (2016) Classification of trisections and the generalized property
R conjecture. Proc. Amer. Math. Soc. 144(11):4983–4997.

14. Meier J, Zupan A (2017) Genus-two trisections are standard. Geom. Topol. 21(3):1583–1630.
15. Meier J, Zupan A (2017) Bridge trisections of knotted surfaces in S4 . Trans. Amer. Math.

Soc. 369(10):7343–7386.
16. Wolf JA (2011) Spaces of constant curvature. (AMS Chelsea Publishing, Providence, RI),

Sixth edition, pp. xviii+424.
17. Gromov M (1987) Hyperbolic groups in Essays in group theory, Math. Sci. Res. Inst. Publ.

(Springer, New York) Vol. 8, pp. 75–263.
18. Reidemeister K (1933) Zur dreidimensionalen Topologie. Abh. Math. Sem. Univ. Hamburg

9(1):189–194.
19. Singer J (1933) Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer.

Math. Soc. 35(1):88–111.
20. Waldhausen F (1968) Heegaard-Zerlegungen der 3-Sphäre. Topology 7:195–203.
21. Martelli B (2010) Complexity of PL manifolds. Algebr. Geom. Topol. 10(2):1107–1164.
22. Rubinstein JH, Tillmann S (2015) Even triangulations of n-dimensional pseudo-manifolds.

Algebr. Geom. Topol. 15(5):2949–2984.
23. Rubinstein JH (1979) On 3-manifolds that have finite fundamental group and contain Klein

bottles. Trans. Amer. Math. Soc. 251:129–137.
24. Waldhausen F (1970) On mappings of handlebodies and of Heegaard splittings in Topology

of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969). (Markham, Chicago, Ill.), pp.
205–211.

6 To appear in PNAS


	Multisections
	Nomenclature
	Existence

	Examples
	The tropical picture of complex projective space
	Lens spaces

	Structure results
	Non-positively curved cubings from multisections
	Uniqueness
	Recursive structure of multisections and generalisations

	Constructing multisections
	Constructing multisections using symmetric representations
	Twisted multisections of some other spherical space forms

	Category of (k+1)–coloured structures

