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1. Introduction

Complex three dimensional flows in the atmosphere and oceans are modelled
assuming that the Earth’s surface is an approximate sphere. Then it is natural
to model the global atmospheric circulation on Earth (and large planets)
using the Navier-Stokes equations (NSE) on 2-dimensional sphere coupled to
classical thermodynamics [33]. This approach is relevant for geophysical flow
modeling.

Many authors have studied the deterministic NSEs on the unit sphere.
Notably, Il’in and Filatov [31, 29] considered the existence and uniqueness of
solutions to these equations and estimated the Hausdorff dimension of their
global attractors [30]. Temam and Wang [42] considered the inertial forms of
NSEs on sphere while Temam and Ziane [43], see also [4], proved that the
NSEs on a 2-dimensional sphere is a limit of NSEs defined on a spherical shell
[43]. In other directions, Cao, Rammaha and Titi [15] proved the Gevrey reg-
ularity of the solution and found an upper bound on the asymptotic degrees
of freedom for the long-time dynamics.

Concerning the numerical simulation of the deterministic NSEs on sphere,
Fengler and Freeden [24] obtained some impressive numerical results using the
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spectral method, while the numerical analysis of a pseudo- spectral method
for these equations has been carried out in Ganesh, Le Gia and Sloan in [26].

In our earlier paper [10] we analysed the Navier-Stokes equations on the
2-dimensional sphere with Gaussian random forcing. We proved the existence
and uniqueness of solutions and continuous dependence on data in various
topologies. We also studied qualitative properties of the stochastic NSEs on
the unit sphere in the context of random dynamical systems.

Building on those preliminary studies, in the current paper, we prove the
existence of random attractors for the stochastic NSEs on the 2-dimensional
unit sphere. Let us recall here that, given a probability space, a random at-
tractor is a compact random set, invariant for the associated random dynam-
ical system and attracting every bounded random set in its basis of attraction
(see Definition 4.3).

In the area of SPDEs the notions of random and pullback attractors
were introduced by Brzeźniak et al. in [7], and by Crauel and Flandoli in
[17]. These concepts have been later used to obtain crucial information on the
asymptotic behaviour of random (Brzeźniak et al. [7]), stochastic (Arnold [2],
Crauel and Flandoli [17], Crauel [18],Flandoli and Schmalfuss [25]) and non-
autonomous PDEs (Schmalfuss [37], Kloeden and Schmalfuss [32], Caraballo
et al. [14]).

We do not know if our system is dissipative inH1. Therefore, despite the
fact that the embedding H1 →֒ L2 is compact, the asymptotic compactness
approach seems to be the only method available in the L2-setting to yield
the existence of an attractor, hence of an invariant measure.

The paper is organised as follows. In Section 2, we recall the relevant
properties of the deterministic NSEs on the unit sphere, outline key function
spaces, and recall the weak formulation of these equations. In Section 3, we
define the stochastic NSEs on the sphere and review the key existence and
uniqueness results obtained in [10]. In Section 4 we prove the existence of
a random attractor of the stochastic NSEs on the 2-d sphere. The paper is
concluded with a simple proof of the existence of an invariant measure and
some comments on the question of its uniqueness.

In our paper a special attention is given to the noise with low space reg-
ularity. While many works on random attractors consider only finite dimen-
sional noise, we follow here the approach from Brzeźniak et al [8] and consider
an infinite dimensional driving Wiener process with minimal assumptions on
its Cameron-Martin space (known also as the Reproducing Kernel Hilbert
Space), see Remark 3.9 and the Introduction to [8] for motivation.

2. The Navier–Stokes equations on a rotating unit sphere

The sphere is a very special example of a compact Riemannian manifold with-
out boundary hence one could recall all the classical tools from differential
geometry developed for such manifolds. However we have decided to follow
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a different path of using the polar coordinates and defining all such objects
directly.

2.1. Preliminaries

Let S2 be a 2-dimensional unit sphere in R
3, i.e. S2 = {x = (x1, x2, x3) ∈ R

3 :
|x| = 1}. An arbitrary point x on S

2 can be parametrized by the spherical
coordinates

x = x̂(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

If x = x̂(θ, φ) as above, then the corresponding angles θ and φ will be denoted
by θ(x) and φ(x), or simply by θ and φ.

Let eθ = eθ(θ, φ) and eφ = eφ(θ, φ) be the standard unit tangent vectors
to S

2 at point x̂(θ, φ) ∈ S
2 in the spherical coordinates, that is

eθ = (cos θ cosφ, cos θ sinφ,− sin θ), eφ = (− sinφ, cosφ, 0).

Note that

eθ =
∂x̂(θ, φ)

∂θ
, eφ =

1

sin θ

∂x̂(θ, φ)

∂φ
,

where the second equality holds whenever sin θ 6= 0.
The surface gradient for a scalar function f on S

2 is given by

∇f =
∂f

∂θ
eθ +

1

sin θ

∂f

∂φ
eφ, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

For a tangential vector field u = (uθ, uφ), i.e. u = uθeθ + uφeφ, we put

divu =
1

sin θ

(
∂

∂θ
(uθ sin θ) +

∂

∂φ
uφ

)
.

The tangential velocity field u(x, t) = (uθ(x̂, t), uφ(x̂, t)) of a geophysical
fluid flow on a 2-dimensional rotating unit sphere S2 under the external force
f = (fθ, fφ) = fθeθ+fφeφ is governed by the Navier-Stokes equations (NSEs),
which takes the form [23, 40]

∂tu+∇uu− νLu+ ω × u+
1

ρ
∇p = f , divu = 0, u(x, 0) = u0. (2.1)

Here ν and ρ are two positive constants related to the physical quantities
called respectively the viscosity and the density of the fluid. The Coriolis
acceleration normal vector field is defined by

ω = 2Ωcos
(
θ(x)

)
x,

where x = x̂ (θ(x), φ(x)) and Ω is a given constant. Note that θ(x) =
cos−1(x3).

In what follows we will identify ω with the corresponding scalar function
ω defined by ω(x) = 2Ω cos

(
θ(x)

)
.

The operators ∇ and div are the surface gradient and divergence, re-
spectively. The convective acceleration∇uu is the nonlinear term in the equa-
tions. Here, the operator L is given by [40]

L = ∆ + 2Ric, (2.2)
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where ∆ is the Laplace-de Rham operator, see equality (2.14) below, and Ric
denotes the Ricci tensor of the two-dimensional sphere S

2. It is well known
that (see e.g. [45, page 75])

Ric =

[
1 0
0 sin2 θ

]
(2.3)

We remark that in papers in [15, 29, 31, 42] the authors consider NSEs with
L = ∆ but the analysis in our paper are still valid in that case.

Let us define the nonlinear term ∇ uu. By a proposition in [22] or [21,
Definition 3.31], if ũ and ṽ are vector fields defined in some neighbourhood
of the surface S

2 and tangent to S
2, i.e. ũ|S2 = u : S2 → TS2 and ṽ|S2 = v :

S
2 → TS2, then

(∇ vu)(x) = πx

( 3∑

i=1

ṽi(x)∂iũ(x)
)
= πx

(
(ṽ(x) · ∇̃)ũ(x)

)
, x ∈ S

2, (2.4)

where ∇̃ is the gradient in R
3 and, for x ∈ S

2,

πx : R3 ∋ y 7→ y − (x · y)x = −x× (x× y) ∈ TxS
2 (2.5)

is the orthogonal projection from R
3 onto the tangential space TxS

2 to S
2 at

x.
One should note that the above definition is independent of the choice of

extensions ũ and ṽ of the vector fields u and v. Indeed, if ˜̃u and ˜̃v is another
pair of such extensions, then since ˜̃u = ũ on S

2, for every point x ∈ S
2, the

restrictions to TxS
2 of the Frechet derivatives at of ˜̃u and ũ are equal. Since

˜̃u(x) = ũ(x) belongs to TxS
2 and since (ṽ(x) · ∇̃)ũ(x) = [dxũ](ṽ(x)) (and

analogously for the ˜̃ extensions, the claim follows.
Using the well known formula for the vector product in R

3:

a× (b× c) = (a · c)b− (a · b)c, a,b, c ∈ R
3

we easily infer that

(ũ · ∇̃)ũ = ∇̃
|ũ|2

2
− ũ× (∇̃ × ũ).

It follows that, using the notation above, that the restrictions to S
2 of ũ ×

(∇̃ × ũ) and ˜̃u× (∇̃ × ˜̃u) coincide.

Lemma 2.1. If u and v are tangential vector fields on S
2 and ũ and ṽ are

extensions of those to a neighbourhood of S2, i.e. ũ|S2 = u and ṽ|S2 = v, then
the following identity holds

πx(ũ× ṽ) = u× ((x · v)x) + (x · u)x× v for any x ∈ S
2. (2.6)

Proof. We can decompose ũ and ṽ into tangential and normal component as
follows

ũ = u+ u⊥ with u ∈ TxS
2, u⊥ = (u · x)x

ṽ = v + v⊥ with v ∈ TxS
2, v⊥ = (v · x)x
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Thus,

(ũ× ṽ) = u× v + u× v⊥ + u⊥ × v.

Since u×v is normal to TxS
2, πx(u×v) = 0. Hence the lemma is proved. �

Using (2.6) for the vector fields ũ and ṽ = ∇̃ × ũ, we have

πx(ũ× (∇̃ × ũ)) = u× ((x · (∇̃ × ũ))x) + (ũ · x)x× (∇̃ × ũ) (2.7)

With a tangential vector field u, since the normal component is zero,
(2.7) is reduced to

πx(ũ× (∇̃ × ũ)) = u× ((x · (∇̃ × ũ))x) (2.8)

So one can define, for a tangential vector field u

curlu := x · (∇̃ × ũ)|S2 . (2.9)

Given a tangential vector field v, with a slight abuse of notation, we write

v × curlu := v × x(curlu).

Hence from (2.8), (2.9) we obtain

πx[ũ× (∇̃ × ũ)](x) = [u(x)× x]curlu(x) x ∈ S
2,

and thus

∇ uu = ∇
|u|2

2
− u× curlu. (2.10)

Let us note that (x · (∇̃ × ũ))x is just the orthogonal projection of the

vector ∇̃ × ũ onto the normal component of TxS
2. Furthermore, with slight

abuse of notation,

x · (∇̃ × ũ) = x1(∂2u3 − ∂3u2) + x2(∂3u1 − ∂1u3) + x3(∂1u2 − ∂2u1)

= ∂1(x3u2 − x2u3) + ∂2(x1u3 − x3u1) + ∂3(x2u1 − x1u2)

= div(ũ× x) = −div(x× ũ).

(2.11)
We have the following well-defined operators [29].

Definition 2.2. Assume that u is a tangent vector field on S
2, and ψ a scalar

function on S
2. We define

[Curlψ](x) = −x×∇ψ(x), [curlu](x) = −[div (x×u)](x), x ∈ S
2 (2.12)

Moreover, given two tangential vector fields u and v, the tangential
vector field

[u(x)× x]curlv(x) , x ∈ S
2 (2.13)

will be denoted by u× curlv.

Often various authors introduce a notion of a normal vector field to S
2

which they then identify with a scalar function on S
2. We have found this to

be an unnecessary procedure.
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The surface diffusion operator acting on tangential vector fields on S
2 is

denoted by ∆ (known as the vector Laplace-Beltrami or Laplace-de Rham
operator) and is defined as

∆u = ∇divu− Curl curlu. (2.14)

Using (2.12), one can derive the following relations connecting the above
operators:

div Curlψ = 0, curl Curlψ = −∆ψ, ∆Curlψ = Curl∆ψ. (2.15)

In what follows we denote by dS the Lebesgue integration with respect to
the surface measure (or the volume measure when S

2 is seen as a Riemannian
manifold). In the spherical coordinates we have, locally, dS = sin θdθdφ. For
p ∈ [1,∞) we will use the notation Lp = Lp(S2) for the space Lp

(
S
2,R

)
of

p-integrable scalar functions on S
2 endowed with the norm

‖v‖Lp =

(∫

S2

|v(x)|p dS(x)

)1/p

.

For p = 2 the corresponding inner product is denoted by

(v1, v2) = (v1, v2)L2(S2) =

∫

S2

v1v2 dS.

We will denote by L
p = L

p(S2) the space Lp
(
S
2, TS2

)
of vector fields v :

S
2 → TS2 endowed with the norm

‖v‖Lp =

(∫

S2

|v(x)|p dS(x)

)1/p

,

where, for x ∈ S
2, |v(x)| stands for the length of v(x) in the tangent space

TxS
2. For p = 2 the corresponding inner product is denoted by

(v1,v2) = (v1,v2)L2 =

∫

S2

v1 · v2(S) dS.

Throughout the paper, the induced norm on L
2(S2) is denoted by ‖·‖ and for

other inner product spaces, say X with inner product (·, ·)X , the associated
norm is denoted by ‖ · ‖X .

We have the following identities for appropriate scalar and vector fields [29,
(2.4)-(2.6)]:

(∇ψ, v) = −(ψ, divv), (2.16)

(Curlψ, v) = (ψ, curlv), (2.17)

(Curl curlw, z) = (curlw, curl z). (2.18)

In (2.17), the L2(S2) inner product is used on the left hand side and the L2(S2)
inner product is used on the right hand side. Using the identity (2.16) the
unknown pressure can be eliminated from the first equation in (2.1) through
the weak formulation.
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2.2. The weak formulation

We now introduce Sobolev spaces Hs(S2) and H
s(S2) of scalar functions and

vector fields on S
2 respectively.

Let ψ be a scalar function and let u be a vector field on S
2, respectively.

For s ≥ 0 we define

‖ψ‖2Hs(S2) = ‖ψ‖2L2(S2) + ‖(−∆)s/2ψ‖2L2(S2), (2.19)

and
‖u‖2

Hs(S2) = ‖u‖2 + ‖(−∆ )s/2u‖2, (2.20)

where ∆ is the Laplace–Betrami and ∆ is the Laplace–de Rham operator on
the sphere. In particular, for s = 1,

‖u‖2
H1(S2) = ‖u‖2 + (u,−∆u)

= ‖u‖2 + ‖divu‖2 + ‖Curlu‖2, (2.21)

where we have used formulas (2.14),(2.16)–(2.18).
We note that for k = 0, 1, 2, . . . and θ ∈ (0, 1) the space Hk+θ(S2) can

be defined as the interpolation space between Hk(S2) and Hk+1(S2). We can
apply the same procedure for Hk+θ(S2).

One has the following Poincaré inequality [31, Lemma 2]

λ1‖u‖ ≤ ‖divu‖+ ‖Curlu‖, u ∈ H
1(S2), (2.22)

for some positive constant λ1.
The space of smooth (C∞) tangential fields on S

2 can be decomposed
into three components, one in the space of all divergence-free fields and the
others through the Hodge decomposition theorem [3, Theorem 1.72]:

C∞(TS2) = G ⊕ V ⊕H, (2.23)

where

G = {∇ψ : ψ ∈ C∞(S2)}, V = {Curlψ : ψ ∈ C∞(S2)}, (2.24)

while H is the finite-dimensional space of harmonic fields, i.e. H contains all
the vector fields v so that Curl (v) = div (v) = 0. Since the two dimensional
sphere is simply connected, H = {0} [38, page 80]. We introduce the following
spaces

H = closure of V in L
2(S2),

V = closure of V in H
1(S2).

We consider the linear Stokes problem

νCurl curlu− 2νRic(u) +∇p = f , divu = 0. (2.25)

By taking the inner product of the first equation of (2.25) with v ∈ V and
then using (2.18), we obtain

ν(curlu, curlv)− 2ν(Ric u,v) = (f ,v) ∀v ∈ V. (2.26)

Next, we define a bilinear form a : V × V → R by

a(u,v) := (curlu, curlv)− 2ν(Ric u,v), u,v ∈ V.
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In view of (2.21) and (2.3), the bilinear form a satisfies

a(u,v) ≤ ‖u‖H1‖v‖H1 ,

and hence it is continuous on V . So by the Riesz Lemma, there exists a unique
operator A : V → V ′, where V ′ is the dual of V , such that a(u,v) = (Au,v),
for u,v ∈ V . Using the Poincaré inequality (2.22), we also have a(u,u) ≥
α‖u‖2V , with α = λ1− 2ν, which means a is coercive in V whenever λ1 > 2ν.
In practice, usually one has λ1 ≫ 2ν. Hence by the Lax-Milgram theorem the
operator A : V → V ′ is an isomorphism. Furthermore, by using [39, Theorem
2.2.3], we conclude that the operator A is positive definite, self-adjoint in H
and D(A1/2) = V . Thus, the spectrum all A consists of an infinite sequence
0 < λ1 ≤ λ2 ≤ . . . ≤ λℓ → ∞, and there exists an orthogonal basis {wℓ}ℓ≥1

of H consisting of eigenvectors of A.

Hence for each positive integer ℓ = 1, 2, . . ., the eigenvectors of the
operator A corresponding to the eigenvalue λℓ are given by

Zℓ,m(θ, ϕ), m = −ℓ, . . . , ℓ. (2.27)

Since {Zℓ,m : ℓ = 1, . . . ;m = −ℓ, . . . , ℓ} is an orthonormal basis for H,
an arbitrary v ∈ H can be written as

v =
∞∑

ℓ=1

ℓ∑

m=−ℓ

v̂ℓ,mZℓ,m, v̂ℓ,m =

∫

S2

v · Zℓ,mdS = (v, Zℓ,m). (2.28)

Since V is densely and continuously embedded intoH andH can be identified
with its dual H ′, we have the following imbeddings:

V ⊂ H ∼= H ′ ⊂ V ′. (2.29)

We say that the spaces V,H and V ′ form a Gelfand triple.

Next we define an operator A in H as follows:
{

D(A) := {u ∈ V : Au ∈ H},
Au := Au, u ∈ D(A).

(2.30)

Let P be the Leray orthogonal projection from L
2(S2) onto H. It can be

shown [27] that D(A) = H
2(S2) ∩ V and A = −P (∆ + 2Ric), and A∗ = A.

It can also be shown that V = D(A1/2) and

‖u‖2V ∼ (Au,u), u ∈ D(A),

where A ∼ B indicates that there are two positive constants c1 and c2 such
that c1A ≤ B ≤ c2A.

Let us now recall how the fractional power of the Stokes operator A can
be defined in our concrete setting. It can be proven that

D(As/2) =

{
v ∈ H : v =

∞∑

ℓ=1

ℓ∑

m=−ℓ

v̂ℓ,mZℓ,m,
∞∑

ℓ=1

ℓ∑

m=−ℓ

λsℓ |v̂ℓ,m|2 <∞

}
,

(2.31)
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which is the divergence-free subset of the Sobolev space H
s(S2). For v ∈

D(As/2), we have

As/2v :=

∞∑

ℓ=1

ℓ∑

m=−ℓ

λ
s/2
ℓ v̂ℓ,mZℓ,m ∈ H. (2.32)

The Coriolis operator C1 : L2
(
S
2
)
→ L

2
(
S
2
)
, is defined by the formula

(C1v)(x) = (2Ω cos θ(x))x× v(x), x ∈ S
2.

Clearly, C1 is linear and bounded in L
2
(
S
2
)
. In the sequel we will need the

operator C = PC1 which is well defined and bounded in H. Furthermore,
for u ∈ H

(Cu,u) = (C1u,Pu) =

∫

S2

2Ω cos θ(x)
(
(x× u) · u(x)

)
dS(x) = 0. (2.33)

We consider the trilinear form b on V × V × V , defined as

b(v,w, z) = (∇ vw, z) =

∫

S2

∇ vw · z dS, v,w, z ∈ V. (2.34)

Using the following identity

2∇wv =− curl (w × v) +∇(w · v)− v divw+ (2.35)

w divv − v × curlw −w × curlv. (2.36)

and (2.17), for divergence free tangential vector fields v,w, z, the trilinear
form can be written as

b(v,w, z) =
1

2

∫

S2

[−v ×w · curl z+ curlv ×w · z− v × curlw · z] dS.

(2.37)
Moreover [29, Lemma 2.1]

b(v,w,w) = 0, b(v, z,w) = −b(v,w, z) v ∈ V,w, z ∈ H
1(S2).

(2.38)
We have the following inequality from [31, page 12]

‖u‖L4(S2) ≤ C‖u‖
1/2
L2(S2)‖u‖

1/2
V , u ∈ H

1(S2). (2.39)

Thus, using (2.14), (2.17), (2.30), and (2.37), a weak solution of the
Navier-Stokes equations (2.1) is a function u ∈ L2([0, T ];V ) with u(0) = u0

that satisfies the weak form of equation (2.1), i.e.

(∂tu,v)+b(u,u,v)+ν(curlu, curlv)−2ν(Ric u,v)+(Cu,v) = (f ,v), v ∈ V.
(2.40)

This weak formulation can be written in operator equation form on V ′, the
dual of V . Let f ∈ L2([0, T ];V ′) and u0 ∈ H. We want to find a function
u ∈ L2([0, T ];V ), with ∂tu ∈ L2([0, T ];V ′) such that

∂tu+ νAu+B(u,u) +Cu = f , u(0) = u0, (2.41)

where the bilinear form B : V × V → V ′ is defined by

(B(u,v),w) = b(u,v,w) w ∈ V. (2.42)
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With a slight abuse of notation, we also denote B(u) = B(u,u).
The following are some fundamental properties of the trilinear form b;

see [24]: There exists a constant C > 0 such that

|b(u,v,w)| ≤ C





‖u‖1/2‖u‖
1/2
V ‖v‖

1/2
V ‖Av‖1/2‖w‖, u ∈ V,v ∈ D(A),w ∈ H,

‖u‖1/2‖Au‖1/2‖v‖V ‖w‖, u ∈ D(A),v ∈ V,w ∈ H,

‖u‖1/2‖u‖
1/2
V ‖v‖V ‖w‖1/2‖w‖

1/2
V , u,v,w ∈ V.

(2.43)
We also need the following estimates:

Lemma 2.3. There exists a positive constant C such that

|b(u,v,w)| ≤ C‖u‖‖w‖(‖curlv‖L∞ + ‖v‖L∞), u ∈ H,v ∈ V,v ∈ H,
(2.44)

and

|b(u,v,w)| ≤ C‖u‖‖v‖V ‖w‖1/2‖Aw‖1/2, u ∈ H,v ∈ V,w ∈ D(A).
(2.45)

and

|b(u,v,w)| ≤ C‖u‖L4‖v‖V ‖w‖L4 , v ∈ V,u,w ∈ H
1(S2). (2.46)

In view of (2.46), b is a bounded trilinear map from L
4(S2)×V ×L

4(S2)
to R. Moreover, we have the following result:

Lemma 2.4. The trilinear map b : V × V × V → R has a unique extension to
a bounded trilinear map from L

4(S2) ∩H × L
4(S2)× V to R.

It can be seen from (2.46) that b is a bounded trilinear map from
L
4(S2) × V × L

4(S2) to R. It follows that B maps L
4(S2) ∩ H (and

so V ) into V ′ and

‖B(u)‖V ′ ≤ C1‖u‖
2
L4 ≤ C2‖u‖‖u‖V ≤ C3‖u‖

2
V , u ∈ V. (2.47)

3. The stochastic Navier–Stokes equations on a rotating unit
sphere

By adding a white noise term to (2.1) the stochastic NSEs on the sphere is

∂tu+∇uu− νLu+ ω × u+∇p = f + n(x, t), divu = 0, u(x, 0) = u0,

where we assume that u0 ∈ H, f ∈ V ′ and n(t, x) is a Gaussian random field
which is a white noise in time. In the same way as in the deterministic case
we apply the operator of projection onto the space of divergence free fields
and reformulate the above equation as an Itô type equation

du(t)+Au(t)dt+B(u(t),u(t))dt+Cu = fdt+GdW (t), u(0) = u0. (3.1)

Here f is the deterministic forcing term and u0 is the initial velocity. We
assume that W is a cylindrical Wiener process on a certain Hilbert space
K defined on a probability space (Ω,F ,P), see [35] and [12]. G is a linear
continuous operator from K to H. The space K, which is the RKHS of the



Stochastic Navier-Stokes on spheres 11

Wiener process, determines the spatial smoothness of the noise term, will
satisfy further assumptions to be specified later.

Roughly speaking, a solution to problem (3.1) is a process u(t), t ≥ 0,
which can be represented in the form

u(t) = v(t) + zα(t), t ≥ 0,

where zα(t), t ∈ R, is a stationary Ornstein–Uhlenbeck process with drift
−νA−C− αI, i.e. a stationary solution of

dzα + (νA+C+ α)zαdt = GdW (t), t ∈ R, (3.2)

and v(t), t ≥ 0, is the solution to the following problem (with v0 = u0 −
zα(0)):

∂tv = −νAv −B(v + zα,v + zα)−Cv + αzα + f , (3.3)

v(0) = v0. (3.4)

Definition 3.1. Suppose that z ∈ L4
loc([0,∞);L4(S2)), f ∈ V ′ and v0 ∈ H.

A vector field v ∈ C([0,∞);H) ∩ L2
loc([0,∞);V ′) ∩ L4

loc([0,∞);L4(S2)) is a
solution to problem (3.3)–(3.4) if and only if v(0) = v0 and (3.3) holds in
the weak sense, i.e. for any φ ∈ V ,

∂t(v, φ) = −ν(v,Aφ)− b(v + z,v + z, φ)− (Cv, φ) + (αz+ f , φ). (3.5)

We remark that for (3.5) to make sense, it is sufficient to assume that
v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

We have proved the following major theorems on the existence and
uniqueness of the solution of (3.3)− (3.4) in [10].

Theorem 3.2. [10, Theorem 3.1] Assume that α ≥ 0, z ∈ L4
loc([0,∞);L4(S2))∩

L2
loc([0,∞);V ′), v0 ∈ H and f ∈ V ′. Then then there exists a unique solution

v of problem (3.3)− (3.4).

Theorem 3.3. [10, Theorem 3.2] Assume that T > 0 is fixed. If u0n → u0 in
H,

zn → z in L4([0, T ];L4(S2)) ∩ L2(0, T ;V ′), fn → f in L2(0, T ;V ′).

then

v(·, zn, fn,u0n) → v(·, z, f ,u0) in C([0, T ];H) ∩ L2(0, T ;V ),

where v(t, z, f ,u0) is the solution of problem (3.3)−(3.4) and v(t, zn, fn,u0n)
is the solution of problem (3.3)−(3.4) with z, f ,u0 being replaced by zn, fn,u0n.
In particular, v(T, zn,u0n) → v(T, z,u0) in H.
Moreover, then the maps

H ∋ x 7→ v(·,x) ∈ L2([0, T ];V )

is continuous in the weak topologies of H and L2([0, T ];V ).

H ∋ x 7→ v(t,x) ∈ H, t ∈ [0, T ]

are continuous in the weak topologies of H. More precisely, if xn → x weakly
in H, then for any φ ∈ H, (v(·,xn), φ) → (v(·,x), φ) uniformly on [0, T ], as
n→ ∞.
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3.1. Preliminaries

Let us recall that for a real separable Hilbert space K and a real separable
Banach space X, a linear operator U : K → X is called γ-radonifying iff
γK ◦U−1 is σ-additive. Here γK is the canonical Gaussian cylindrical measure
on K. If a linear map U : K → X is γ−radonifying, then γK ◦ U−1 has a
unique extension to a Borel probability measure denoted by νU on X. By
R(K,X) we denote the Banach space of γ-radonifying operators from K to
X with the norm

‖U‖R(K,X) :=

(∫

X

|x|2XdνU (x)

)1/2

, U ∈ R(K,X).

From now on we will using freely notation introduced in the former
sections. It follows from [13, Theorem 2.3] that for a self adjoint operator
U ≥ cI in H, where c > 0, such that U−1 is compact, the operator U−s :
H → L

p(S2) is γ-radonifying iff

∫

S2

[
∑

ℓ

λ−2s
ℓ |eℓ(x)|

2

]p/2

dS(x) <∞, (3.6)

where {eℓ} is an orthonormal basis of H corresponding to U . This implies
the following result.

Lemma 3.4. Let ∆ denote the Laplace-de Rham operator on S. Then the
operator

(−∆ )−s : H → L
4(S2) is γ − radonifying iff s > 1/2. (3.7)

Proof. Let us recall that all the distinct eigenvalues of −∆ are given by a
sequence λℓ = ℓ(ℓ+1), ℓ = 0, 1, . . . and the corresponding eigenfunctions are
given by the divergence free vector spherical harmonics Yℓ,m for |m| ≤ ℓ,
ℓ ∈ N [44, page 216]. Let us recall also the addition theorem for vector
spherical harmonics [44, formula (81), page 221]

∑

|m|≤ℓ

|Yℓ,m(x)|2 =
2ℓ+ 1

4π
Pℓ(1), x ∈ S

2,

and the fact that Pℓ(1) = 1 with Pℓ being the Legendre polynomial of degree
ℓ. Therefore, (3.6) yields

∫

S2




∞∑

ℓ=0

(ℓ(ℓ+ 1))−2s
∑

|m|≤ℓ

|Yℓ,m(x)|2



4/2

dS(x) (3.8)

=

∫

S2

[
∞∑

ℓ=0

(ℓ(ℓ+ 1))−2s 2ℓ+ 1

4π
Pℓ(1)

]2

dS(x) <∞

if and only if s > 1
2 and the lemma follows. �
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Let
X = L

4(S2) ∩H

denote the Banach space endowed with the norm

‖x‖X = ‖x‖H + ‖x‖L4(S2).

Remark 3.5. It follows from Lemma 3.4 that the operator

A−s : H → L
4(S2) ∩H is γ − radonifying if s > 1/2. (3.9)

Let us recall, that X is an M -type 2 Banach space, see [6] for details.
The Stokes operator −A restricted to X is an infinitesimal generator of an
analytic semigroup. We will consider an operator in X defined by the formula

Â = νA+C, dom(Â) = dom(A),

where ν > 0, and C is the Coriolis operator. For the reader’s convenience we
recall a result presented in [10].

Proposition 3.6. [10, Proposition 5.2] The operator Â with the domain dom(Â) =

dom(A) generates an analytic C0-semigroup
(
e−tÂ

)
in X. Moreover, there

exist constants µ > 0, such that for any δ ≥ 0 there exists Mδ ≥ 1 such that

‖Â
δ
e−tÂ‖L(X,X) ≤Mδt

−δe−µt t > 0.

The next lemma is a special case of Lemma 5.1 in [10]

Lemma 3.7. Suppose, there exists a separable Hilbert space K ⊂ X such that

Â
−δ
X ⊂ K and the operator Â

−δ
: K → X is γ-radonifying for some δ > 0.

Then ∫ ∞

0

‖e−tÂ‖R(K,X)dt <∞.

Let E denote the completion of X with respect to the image norm
‖v‖E = ‖A−δv‖X , v ∈ X. For ξ ∈ (0, 1/2) we set

Cξ
1/2(R, E) := {ω ∈ C(R, E) : ω(0) = 0, sup

t,s∈R

|ω(t)− ω(s)|E
|t− s|ξ(1 + |t|+ |s|)1/2

<∞}.

The space Cξ
1/2(R, E) equipped with the the norm

‖ω‖Cξ
1/2

(R,E) = sup
t 6=s∈R

|ω(t)− ω(s)|E
|t− s|ξ(1 + |t|+ |s|)1/2

is a nonseparable Banach space. However, the closure of {ω ∈ C∞
0 (R) : ω(0) =

0} in Cξ
1/2(R, E), denoted by Ω(ξ, E), is a separable Banach space.

Let us denote by C1/2(R, X) the space of all continuous functions ω :
R → X such that

‖ω‖C1/2(R,E) = sup
t∈R

|ω(t)|E
1 + |t|1/2

<∞.

The space C1/2(R, E) endowed with the norm ‖ · ‖C1/2(R,E) is a nonseparable
Banach space.
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We denote by F the Borel σ-algebra on Ω(ξ, E). One can show [5] that
for ξ ∈ (0, 1/2), there exists a Borel probability measure P on Ω(ξ, E) such
that the canonical process wt, t ∈ R, defined by

wt(ω) := ω(t), ω ∈ Ω(ξ, E), (3.10)

is a two-sided Wiener process. The Cameron-Martin (or Reproducing Kernel
Hilbert space) of the Gaussian measure L(w1) on E is equal to K. For t ∈ R,
let Ft := σ{ws : s ≤ t}. Since for each t ∈ R the map z ◦ it : E∗ →
L2(Ω(ξ, E),Ft,P), where it : Ω(ξ, E) ∋ γ 7→ γ(t) ∈ E, satisfies E|z ◦ it|

2 =
t|z|2K , there exists a unique extension of z ◦ it to a bounded linear map Wt :
K → L2(Ω(ξ, E),Ft,P). Moreover, the family (Wt)t∈R is an H-cylindrical
Wiener process on a filtered probability space (Ω(ξ, E),F,P), where F =(
Ft)t∈R in the sense of e.g. [12].

3.2. Ornstein-Uhlenbeck process

The following is our standing assumption.

Assumption 3.8. Suppose K ⊂ H ∩ L
4(S2) is a Hilbert space such that

A−δ : K → H ∩ L
4(S2) is γ-radonifying (3.11)

for some δ ∈ (0, 12 ),

Remark 3.9. It follows from Remark 3.5 that if K = D
(
As) with s > 0, then

Assumption 3.8 is satisfied. See also Remark 6.1 in [11].

On the space Ω(ξ, E) we consider a flow ϑ = (ϑt)t∈R defined by

ϑtω(·) = ω(·+ t)− ω(t), ω ∈ Ω(ξ, E), t ∈ R.

For ξ ∈ (δ, 1/2) and ω̃ ∈ Cξ
1/2(R, X) we define

ẑ(t) = ẑ(Â; ω̃)(t) =

∫ t

−∞

Â
1+δ

e−(t−r)Â(ω̃(t)− ω̃(r))dr, t ∈ R. (3.12)

By Proposition 3.6, for each δ > 0 there exists C = C(δ) > 0 such that

‖Â
δ
e−tÂ‖L(X,X) ≤ Ct−δe−µt, t ≥ 0. (3.13)

This was an assumption in [11, Proposition 6.2]. Rewriting that proposition
in a slightly more general form we have

Proposition 3.10. For any α ≥ 0, the operator −(Â + αI) is a generator of

an analytic semigroup {e−t(Â+αI)}t≥0 in X such that

‖Â
δ
e−t(Â+αI)‖L(X,X) ≤ Ct−δe−(µ+α)t, t ≥ 0.

If t ∈ R, then ẑ(t) defined in (3.12) is a well-defined element of X and for each

t ∈ R the mapping ω̃ 7→ ẑ(t) is continuous from Cξ
1/2(R, X) to X. Moreover,

the map ẑ : Cξ
1/2(R, X) → C1/2(R, X) is well defined, linear and bounded. In

particular, there exists a constant C <∞ such that for any ω̃ ∈ Cξ
1/2(R, X)

|ẑ(ω̃)(t)| ≤ C(1 + |t|1/2)‖ω̃‖C1/2(R,X). (3.14)
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The following results for the operator Â follow from Corollary 6.4, The-
orem 6.6 and Corollary 6.8 in from [11], respectively.

Corollary 3.11. For all −∞ < a < b <∞ and t ∈ R, for ω̃ ∈ Cξ
1/2(R, X) the

map
ω̃ 7→ (ẑ(ω̃)(t), ẑ(ω̃)) ∈ X × L4(a, b;X)

is continuous. Moreover, the above result is valid with the space Cξ
1/2(R, X)

being replaced by Ω(ξ,X).

Theorem 3.12. For any ω ∈ Cξ
1/2(R, X),

ẑ(ϑsω(t)) = ẑ(ω)(t+ s), t, s ∈ R.

In particular, for any ω ∈ Ω and all t, s ∈ R, ẑ(ϑsω)(0) = ẑ(ω)(s).

For ξ ∈ C1/2(R, X) we put

(τsζ) = ζ(t+ s), t, s ∈ R.

Thus, τs is a linear a bounded map from C1/2(R, X) into itself. Moreover,
the family (τs)s∈R is a C0 group on C1/2(R, X).

Using this notation Theorem 3.12 can be rewritten in the following way.

Corollary 3.13. For s ∈ R, τs ◦ ẑ = ẑ ◦ ϑs, i.e.

τs(ẑ(ω)) = ẑ(ϑs(ω)), ω ∈ Cξ
1/2(R, X).

We define

zα(ω) := ẑ(Â+ αI; (Â+ αI)−δω) ∈ C1/2(R, X),

i.e. for any t ≥ 0,

zα(ω)(t) :=

∫ t

−∞

(Â+ αI)1+δe−(t−r)(Â+αI) (3.15)

[(Â+ αI)−δω(t)− (Â+ αI)−δω(r)]dr

For ω ∈ C∞
0 (R) with ω(0) = 0, by the fundamental theorem of calculus,

we obtain

dzα(t)

dt
= −(Â+ αI)

∫ t

−∞

(Â+ αI)1+δe−(t−r)(Â+αI)

[(Â+ αI)−δω(t)− (Â+ αI)−δω(r)]dr + ω̇(t),

where ω̇(t) = dω(t)/dt. Hence zα(t) is the solution of the following equation

dzα(t)

dt
+ (Â+ αI)zα = ω̇(t), t ∈ R. (3.16)

It follows from Theorem 3.12 that

zα(ϑsω)(t) = zα(ω)(t+ s), ω ∈ Cξ
1/2(R, X), t, s ∈ R. (3.17)

Similar to our definition (3.10) of the Wiener process w(t), t ∈ R, we
can view the formula (3.15) as a definition of a process zα(t), t ∈ R, on the
probability space (Ω(ξ, E),F ,P). Equation (3.16) suggests that this process
is an Ornstein-Uhlenbeck process.
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Proposition 3.14. The process zα(t), t ∈ R, is a stationary Ornstein-Uhlenbeck
process. It is the solution of the equation

dzα(t) + (Â+ αI)zαdt = dw(t), t ∈ R,

i.e. for all t ∈ R, a.s.

zα(t) =

∫ t

−∞

e−(t−s)(Â+αI)dw(s), (3.18)

where the integral is the Itô integral on the M -type 2 Banach space X in the
sense of [6].

In particular, for some constant C depending on X,

E‖zα(t)‖
2
X ≤ C

∫ ∞

0

e−2αs‖e−sÂ‖2R(K,X)ds.

Moreover, E‖zα(t)‖
2
X tends to 0 as α→ ∞.

Proof. Stationarity of the process zα follows from equation (3.17). The equal-
ity (3.18) follows by finite-dimensional approximation.

From [6] we have

E‖zα(t)‖
2
X = E

∥∥∥∥
∫ t

−∞

e−(Â+αI)(t−s)dw(s)

∥∥∥∥
2

X

≤ C

∫ t

−∞

‖e−(Â+αI)(t−s)‖2R(K,X)ds (3.19)

≤ C

∫ ∞

0

e−2αs‖e−sÂ‖2R(K,X)ds. (3.20)

Using [10, Lemma 5.1] with Â = −∆ , V = −2νRic+C and observation
(3.7), we conclude that

∫ ∞

0

‖e−sÂ‖2R(K,X)ds <∞. (3.21)

Hence, we conclude that the last integral (3.20) is finite. Finally, the last
statement follows from (3.20) by applying the Lebesgue Dominated Conver-
gence Theorem. �

By Proposition 3.14, zα(t), t ∈ R, is a stationary and ergodic X-valued
process, hence by the Strong Law for Large Numbers (see Da Prato and
Zabczyk [36] for a similar argument),

lim
t→∞

1

t

∫ 0

−t

‖zα(s)‖
2
Xds = E‖zα(0)‖

2
X , P-a.s. on Cξ

1/2(R, X). (3.22)

It also follows from Proposition 3.14 that we can find α0 such that for
all α ≥ α0,

E‖zα(0)‖
2
X <

ν2λ1
6C2

, (3.23)

where λ1 is the constant appearing in the Poincaré inequality (2.22) and
C > 0 is a certain universal constant.
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Denote by Ωα(ξ, E) the set of those ω ∈ Ω(ξ, E) for which the equality
(3.22) holds true. It follows from Corollary 3.13 that this set is invariant with
respect to the flow ϑ, i.e. for all α ≥ 0 and all t ∈ R, ϑt(Ωα(ξ, E)) ⊂ Ωα(ξ, E).
Therefore, the same is true for a set

Ω̂(ξ, E) =

∞⋂

n=0

Ωn(ξ, E).

It follows that as a model for a metric dynamical system we can take either

the quadruple (Ω(ξ, E),F ,P, ϑ) or the quadruple (Ω̂(ξ, E), F̂ , P̂, ϑ̂), where

F̂ ,P̂, and ϑ̂ are respectively the natural restrictions of F ,P and ϑ to Ω̂(ξ, E).

Proposition 3.15. The quadruple (Ω̂(ξ, E), F̂ , P̂, ϑ̂) is a metric DS. For each

ω ∈ Ω̂(ξ, E) the limit in (3.22) exists.

4. Attractors for random dynamical systems generated by the
stochastic NSEs on the sphere

4.1. Preliminaries

A measurable dynamical system (DS) is a triple

T = (Ω,F , ϑ),

where (Ω,F) is a measurable space and ϑ : R × Ω ∋ (t, ω) 7→ ϑtω ∈ Ω is a
measurable map such that for all t, s ∈ R, ϑt+s = ϑt ◦ ϑs. A metric DS is a
quadruple

T = (Ω,F ,P, ϑ),

where (Ω,F ,P) is a probability space and (Ω,F , ϑ) is a measurable DS such
that for each t ∈ R, ϑt : Ω → Ω preserves P.

Suppose also that (X, d) is a Polish space (i.e. complete separable metric
space) and B is its Borel σ−field. Let R+ = [0,∞).

Definition 4.1. Given a metric DS T and a Polish space X, a map ϕ : R+ ×
Ω × X(t, ω, x) 7→ ϕ(t, ω)x ∈ X is called a measurable random dynamical
system (RDS) (on X over T) iff

(i) ϕ is (B(R+)⊗F ⊗ B,B)-measurable.
(ii) ϕ(t + s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω) for all s, t ∈ R

+ and ϕ(0, ω) = id, for
all ω ∈ Ω. (Cocycle property)

An RDS ϕ is said to be continuous or differentiable iff for all (t, ω) ∈
R

+ × Ω, ϕ(t, ·, ω) : X → X is continuous or differentiable, respectively. Sim-
ilarly, an RDS ϕ is said to be time continuous iff for all ω ∈ Ω and for all
x ∈ X, ϕ(·, x, ω) : R+ → X is continuous.

For two nonempty sets A,B ⊂ X, we put

d(A,B) = sup
x∈A

d(x,B) and ρ(A,B) = max{d(A,B), d(B,A)}.

In fact, ρ restricted to the family CB of all nonempty closed subsets on X
is a metric, and it is called the Hausdorff metric. From now on, let X be the
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σ-field on CB generated by open sets with respect to the Hausdorff metric ρ;
see [16].

A set-valued map C : Ω → CB is said to be measurable iff C is (F ,X )-
measurable. Such a map is often called a closed random set.

For a given closed random set B, the Ω-limit set of B is defined to be
the set

Ω(B,ω) = ΩB(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, ϑ−tω)B(ϑ−tω). (4.1)

Definition 4.2. A closed random set K(ω) is said to (a) attract, (b) absorb,
(c) ρ-attract another closed random set B(ω) iff for all ω ∈ Ω, respectively,

(a) limt→∞ d(ϕ(t, ϑ−tω)B(ϑ−tω),K(ω)) = 0;
(b) there exists a time tB(ω) such that

ϕ(t, ϑ−tω)B(ϑ−tω) ⊂ K(ω) for all t ≥ tB(ω).

(c)
lim
t→∞

ρ(ϕ(t, ϑ−tω)B(ϑ−tω),K(ω)) = 0.

We denote by Fu the σ−algebra of universally measurable sets associ-
ated to the measurable space (Ω,F). As far as we are aware, the following
definition appeared for the first time as Definition 3.4 in the fundamental
work by Fladoli and Schmalfuss [25], see also [8].

Definition 4.3. A random set A : Ω → CB(X) is a random D-attractor iff

(i) A is a compact random set,
(ii) A is ϕ-invariant, i.e., P-a.s.

ϕ(t, ω)A(ω) = A(ϑtω)

(iii) A is D-attracting, in the sense that, for all D ∈ D it holds

lim
t→∞

d(ϕ(t, ϑ−tω)D(ϑ−tω), A(ω)) = 0.

Definition 4.4. We say that an RDS ϑ-cocycle ϕ defined on a separable Ba-
nach space X is D-asymptotically compact iff for each D ∈ D, for every
ω ∈ Ω, for any positive sequence (tn) such that tn → ∞ and for any sequence
{xn} such that

xn ∈ D(ϑ−tnω), for all n ∈ N,

the set {ϕ(tn, ϑ−tnω)xn : n ∈ N} is relatively compact in X.

Now we need to state a result on the existence of a random D-attractor,
see Theorem 2.8 in [8] and references therein.

Theorem 4.5. Assume that T = (Ω,F ,P, ϑ) is a metric DS, X is a Polish
space, D is a nonempty class of closed and bounded random sets on X and ϕ
is a continuous, D-asymptotically compact RDS on X (over T). Assume that
there exists a D-absorbing closed and bounded random set B on X, i.e. for
any given D ∈ D there exists t(D) ≥ 0 such that ϕ(t, ϑtω)D(ϑ−tω) ⊂ B(ω)
for all t ≥ t(D). Then, there exists D-attractor A given by

A(ω) = ΩB(ω), ω ∈ Ω, (4.2)
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with

ΩB(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, ϑ−tω,B(ϑ−tω)), ω ∈ Ω.

which is Fu-measurable1.

Remark 4.6. If D contains every bounded and closed nonempty deterministic
subsets of X, then as a consequence of this theorem, of Theorem 2.1 in [20],
and of Corollary 5.8 in [19] we obtain that the random attractor A is given
by

A(ω) =
⋃

C⊂X

ΩC(ω) P− a.s , (4.3)

where the union in (4.3) is made for all bounded and closed nonempty deter-
ministic subsets C of X.

4.2. Random dynamical systems generated by the NSEs

We fix δ < 1/2 and ξ ∈ (δ, 1/2) and put Ω = Ω(ξ, E). Then we define a map
ϕ = ϕα : R+ × Ω×H → H by

ϕ : R+ × Ω×H ∋ (t, ω,x) 7→ v(t, z(ω),x− z(ω)(0)) + z(ω)(t) ∈ H, (4.4)

where v(t, ω,v0) = zα(t, ω,v0) is the solution to problem (3.3-3.4). Because
z(ω) ∈ C1/2(R, X), z(ω)(0) is a well-defined element of H and hence ϕ is well
defined. Furthermore, we have the main result of this section.

Theorem 4.7. The couple (ϕ, ϑ) is a random dynamical system.

Proof. All properties with the exception of the cocycle one of a random dy-
namical system follow from Theorem 3.3. Hence we only need to show that
for any x ∈ H,

ϕ(t+ s, ω)x = ϕ(t, ϑsω)ϕ(s, ω)x, t, s ∈ R
+.

The proof can be completed by applying similar techniques to those used in
[11, Theorem 6.15] in the case of the stochastic Navier-Stokes equations in a
2-dimensional unbounded domain. �

Suppose that Assumption 3.8 is satisfied. If us ∈ H, s ∈ R, f ∈ V ′ and
Wt, t ∈ R is a two-sided Wiener process introduced after (3.10) such that
the Cameron-Martin (or Reproducing Kernel Hilbert) space of the Gaussian
measure L(w1) is equal to K. A process u(t), t ≥ 0, with trajectories in
C([s,∞);H) ∩ L2

loc([s,∞);V ) ∩ L2
loc([s,∞);L4(S2)) is a solution to problem

(3.1) iff u(s) = us and for any φ ∈ V , t > s,

(u(t), φ) = (u(s), φ)− ν

∫ t

s

(Au(r), φ)dr −

∫ t

s

b(u(r),u(r), φ)dr

−

∫ t

s

(Cu(r), φ)dr +

∫ t

s

(f , φ)dr +

∫ t

s

〈φ, dWr〉.

(4.5)

1By Fu we understand the σ-algebra of universally measurable sets associated to the
measurable space (Ω,F), see the monograph [18] by Crauel.
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Proposition 4.8. In the framework as above, suppose that u(t) = zα(t) +
vα(t), t ≥ s, where vα is the unique solution to problem (3.3)–(3.4) with
initial data u0 − zα(s) at time s. If the process u(t), t ≥ s, has trajectories
in C([s,∞);H) ∩ L2

loc([s,∞);V ) ∩ L2
loc([s,∞);L4(S2)), then it is a solution

to problem (3.1). Vice-versa, if a process u(t), t ≥ s, with trajectories in
C([s,∞);H) ∩ L2

loc([s,∞);V ) ∩ L2
loc([s,∞);L4(S2)) is a solution to problem

(3.1), then for any α ≥ 0, a process vα(t), t ≥ s, defined by zα(t) = u(t) −
vα(t), t ≥ s, is a solution to (3.3) on [s,∞).

Our previous results yield the existence and the uniqueness of solutions
to problem (3.1) as well as its continuous dependence on the data (in par-
ticular on the initial value u0 and the force f). Moreover, if we define, for
x ∈ H, ω ∈ Ω, and t ≥ s,

u(t, s;ω,u0) := ϕ(t− s;ϑsω)u0 = v(t, s;ω,u0 − z(s)) + z(t), (4.6)

then for each s ∈ R and each u0 ∈ H, the process u(t), t ≥ s, is a solution
to problem (3.1).

Before presenting the main results of this section, let us recall the weak
continuity of the RDS generated by stochastic NSEs on the sphere as stated
in the last part of Theorem 3.3.

We have the Poincaré inequalities

‖u‖2V ≥ λ1‖u‖
2, for all u ∈ V,

‖Au‖2 ≥ λ1‖u‖
2, for all u ∈ D(A) ∩ V.

(4.7)

For any u,v ∈ V , we define a new scalar product [·, ·] : V × V → R

by the formula [u,v] = ν(u,v)V − ν λ1

2 (u,v). Clearly, [·, ·] is bilinear and
symmetric. From (2.22), we can prove that [·, ·] define an inner product in V
with the norm [·] = [·, ·]1/2, which is equivalent to the norm ‖ · ‖V .

Lemma 4.9. Suppose that v is a solution to problem (3.3) on the time interval
[a,∞) with z ∈ L4

loc(R
+,L4(S2)) ∩ L2

loc(R
+, V ′) and α ≥ 0. Denote g(t) =

αz(t)−B(z(t), z(t)), t ∈ [a,∞). Then, for any t ≥ τ ≥ a,

‖v(t)‖2 ≤ ‖v(τ)‖2e−νλ1(t−τ)+ 3C2

ν

∫ t
τ
‖z(s)‖2

L4
)ds

+
3

ν

∫ t

τ

(‖g(s)‖2V ′ + ‖f‖2)e−νλ1(t−τ)+ 3C2

ν

∫ t
s
‖z(ξ)‖2

L4
)dξds

(4.8)

‖v(t)‖2 = ‖v(τ)‖2e−νλ1(t−τ)

+ 2

∫ t

τ

e−νλ1(t−s)(b(v(s), z(s),v(t)) + 〈g(s),v(s)〉+ 〈f ,v(s)〉 − [v(s)]2)ds

(4.9)

Proof. By [41, Lemma III.1.2], we have 1
2∂t‖v(t)‖ = (v(t),v(t)). Hence

1

2

d

dt
‖v‖2 = ν(Av,v)− (Cv,v)− (B(v,v),v)− (B(z,v),v)

− (B(v, z),v) + 〈g,v〉+ 〈f ,v〉

= ν‖v‖2V − b(v, z,v) + 〈g,v〉+ 〈f ,v〉.

(4.10)
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From (2.46) and invoking the Young inequality, we have

|b(v, z,v)| ≤ C‖v‖L4‖v‖V ‖z‖L4

≤
ν

6
‖v‖2V +

3C2

2ν
‖v‖2‖z‖2

L4 ,

and

|〈g,v〉+ 〈f ,v〉| ≤ ‖g‖V ′‖v‖V + ‖f‖V ′‖v‖V

≤
ν

3
‖v‖2 +

3

2ν
‖g‖2V ′ +

3

2ν
‖f‖2V ′ .

Hence from (4.10) and (4.7), we get

d

dt
‖v(t)‖2 ≤ −ν‖v(t)‖2 +

3C2

ν
‖z(t)‖2

L4‖v(t)‖2 +
3

ν
‖g(t)‖2V ′ +

3

ν
‖f‖2V ′

≤

(
−νλ1 +

3C2

ν
‖z(t)‖2

L4

)
‖v(t)‖2 +

3

ν
‖g(t)‖2V ′ +

3

ν
‖f‖2V ′ .

Next, using the Gronwall Lemma, we arrive at (4.8).

By adding and subtracting ν λ1

2 ‖v(t)‖2 from (4.10) we find that

d

dt
‖v(t)‖2 + νλ1‖v(t)‖

2 + 2[v(t)]2 (4.11)

= 2b(v(t), z(t),v(t)) + 2〈g(t),v(t)〉+ 2〈f(t),v(t)〉. (4.12)

Hence (4.9) follows by the variation of constants formula. �

Lemma 4.10. Under the above assumptions, for each ω ∈ Ω(ξ, E),

lim
t→−∞

‖z(ω)(t)‖2eνλ1t+
∫ 0
t

3C2

ν ‖z(ω)(s)‖2
L4

ds = 0.

Lemma 4.11. Under the above assumptions, for each ω ∈ Ω(ξ, E),

∫ 0

−∞

[1 + ‖z(ω)(t)‖2
L4 + ‖z(ω)(t)‖4

L4 ]eνλ1t+
∫ 0
t

3C2

ν ‖z(ω)(s)‖2
L4

ds <∞.

Definition 4.12. A function r : Ω → (0,∞) belongs to the class R if and only
if

lim sup
t→∞

r(ϑ−tω)
2e−νλ1t+

∫ 0
t

3C2

ν ‖z(ω)(s)‖2
L4

ds = 0,

where C > 0 is the constant appearing in (3.23).

We denote by DR the class of all closed and bounded random sets D on
H such that the function ω 7→ r(D(ω)) := sup{‖x‖H : x ∈ D(ω)} belongs to
the class R.
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Proposition 4.13. Define functions ri : Ω → (0,∞), i = 1, 2, 3, 4, 5 by the
following formulae, for ω ∈ Ω,

r21(ω) := ‖z(ω)(0)‖2H ,

r22(ω) := sup
s≤0

‖z(ω)(s)‖2He
νλ1s+

3C2

ν

∫ 0
s
‖z(ω)(r)‖2

L4
dr

r23(ω) :=

∫ 0

−∞

‖z(ω)(s)‖2He
νλ1s+

3C2

ν

∫ 0
s
‖z(ω)(r)‖2

L4
dr ds

r24(ω) :=

∫ 0

−∞

‖z(ω)(s)‖4
L4eνλ1s+

3C2

ν

∫ 0
s
‖z(ω)(r)‖2

L4
dr ds

r25(ω) :=

∫ 0

−∞

eνλ1s+
3C2

ν

∫ 0
s
‖z(ω)(r)‖2

L4
dr ds.

Then all these functions belong to the class R.

Proof. Since by Theorem 3.12, z(ϑ−tω)(s) = z(ω)(s− t), we have

r22(ϑ−tω) = sup
s≤0

‖z(ϑ−tω)(s)‖
2eνλ1s+

3C2

ν

∫ 0
s
‖z(ϑ−tω)(r)‖2

L4
dr

= sup
s≤0

‖z(ω)(s− t)‖2eνλ1s+
3C2

ν

∫ 0
s
‖z(ω)(r−t)‖2

L4
dr

= sup
s≤0

‖z(ω)(s− t)‖2eνλ1(s−t)+ 3C2

ν

∫
−t
s−t

‖z(ω)(r)‖2
L4

dreνλ1t

= sup
σ≤−t

‖z(ω)(σ)‖2eνλ1σ+
3C2

ν

∫
−t
σ

‖z(ω)(r)‖2
L4

dreνλ1t

Hence, multiplying the above by e−νλ1te
3C2

ν

∫ 0
−t

‖z(ω)(r)‖2
L4

dr we get

r22(ϑ−tω)e
−νλ1t+

3C2

ν

∫ 0
−t

‖z(ω)(r)‖2
L4

dr ≤ sup
σ≤−t

‖z(ω)(σ)‖2eνλ1σ+
3C2

ν

∫ 0
σ
‖z(ω)(r)‖2

L4
dr.

This, together with Lemma 4.10 concludes the proof in the case of function
r2. In the case of r1, we have

r21(ϑ−tω)e
−νλ1t+

3C2

ν

∫ 0
−t

‖z(ω)(r)‖2
L4

dr = ‖z(ω)(−t)‖2e−νλ1t+
3C2

ν

∫ 0
−t

‖z(ω)(r)‖2
L4

dr.

Thus, by Lemma 4.10 we infer that r1 also belongs to the class R. The argu-
ment in the case of function r3 is similar but for the sake of the completeness
we include it here. From the first part of the proof we infer that

r23(ϑ−tω)e
−νλ1t+

3C2

ν

∫ 0
−t

‖z(ω)(r)‖2
L4

dr ≤

∫ −t

−∞

‖z(ω)(σ)‖2eνλ1σ+
3C2

ν

∫ 0
σ
‖z(ω)(r)‖2

L4
dr dσ.

Since by Lemma 4.11
∫ 0

−∞
‖z(ω)(σ)‖2eνλ1σ+

3C2

ν

∫ 0
σ
‖z(ω)(r)‖2

L4
dr dσ is finite, by

the Lebesgue Monotone Convergence Theorem we conclude that
∫ −t

−∞

‖z(ω)(σ)‖2eνλ1σ+
3C2

ν

∫ 0
σ
‖z(ω)(r)‖2

L4
dr dσ → 0 as t→ ∞.

The proof in the other cases is analogous. �
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We have the following trivial results.

Proposition 4.14. The class R is closed with respect to sum, multiplication
by a constant and if r ∈ R, 0 ≤ r̄ ≤ r, then r̄ ∈ R. The class R is closed
with respect to sum, multiplication by a constant and if r ∈ R, 0 ≤ r̄ ≤ r,
then r̄ ∈ R.

Now we are ready to state and prove the main result of this paper. A
result of similar type for the Navier–Stokes equations on some 2-dimensional
unbounded domain has been discussed in [8].

Theorem 4.15. Consider the metric DS T =
(
Ω̂(ξ,E), F̂ , P̂, ϑ̂

)
from Propo-

sition 3.15, and the RDS ϕ on H over T generated by the stochastic Navier-
Stokes equations on the 2-dimensional unit sphere with additive noise (3.1)
satisfying Assumption 3.8. Then the following properties hold.

(i) there exists a DR-absorbing set B ∈ DR;
(ii) the RDS ϕ is DR-asymptotically compact;
(iii) the family A of sets defined by A(ω) = ΩB(ω) for all ω ∈ Ω, is the

minimal DR-attractor for ϕ, is F̂-measurable, and

A(ω) =
⋃

C⊂H

ΩC(ω) P̂− a.s., (4.13)

where the union in (4.13) is made for all bounded and closed nonempty de-
terministic subsets C of H.

Proof. In view of Theorem 4.5 and Remark 4.6, it is enough to show (i) and
(ii). The proof of (ii) will be done in the next proposition.
Proof of (i)

With a fixed ω ∈ Ω, let D(ω) be a random set from the class DR with
radius rD(ω), i.e. rD(ω) := sup{|x|H : x ∈ D(ω)}.

For given s ≤ 0 and x ∈ H, let v be the solution of (3.3) on time
interval [s,∞) with the initial condition v(s) = x − z(s). By applying (4.8)
with t = 0, τ = s ≤ 0, we get

‖v(0)‖2 ≤ 2‖x‖2eνλ1s+
3C2

ν

∫ 0
s
‖z(r)‖2

L4
dr + 2‖z(s)‖2eνλ1s+

3C2

ν

∫ 0
s
‖z(r)‖2

L4
dr

+
3

ν

∫ 0

s

{‖g(t)‖2V′ + ‖f‖2V′}eνλ1t+
3C2

ν

∫ 0
t
‖z(r)‖2

L4
dr dt. (4.14)

Set, for ω ∈ Ω,

r11(ω)
2 = 2 + sup

s≤0

{
2‖z(s)‖2eνλ1s+

3C2

ν

∫ 0
s
‖z(r)‖2

L4
dr

+
3

ν

∫ 0

s

{‖g(t)‖2V′ + ‖f‖2V′}eνλ1t+
3C2

ν

∫ 0
t
‖z(r)‖2

L4
dr dt

}
, (4.15)

and
r12(ω) = ‖z(0)(ω)‖H . (4.16)

Using Lemma 4.11 and Proposition 4.13 we conclude that both r11 and
r12 belong to R and that r13 := r11 + r12 belongs to R as well. Therefore,
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the random set B defined by B(ω) := {u ∈ H : ‖u‖ ≤ r13(ω)} belongs to the
family DR.

Now we will show that B absorbs D. Let ω ∈ Ω be fixed. Since rD ∈ R

there exists tD(ω) ≥ 0, such that

rD(ϑ−tω)
2e−νλ1t+

3C2

ν

∫ 0
−t

‖z(ω)(s)‖2
L4

ds ≤ 1, for t ≥ tD(ω).

Thus, if x ∈ D(ϑ−tω) and s ≥ tD(ω), then by (4.14), ‖v(0, s;ω,x− z(s))‖ ≤
r11(ω). Thus we infer that

‖u(0, s;ω,x)‖ ≤ ‖v(0, s;ω,x− z(s))‖+ ‖z(0)(ω)‖ ≤ r13(ω).

In other words, u(0, s;ω,x) ∈ B(ω), for all s ≥ tD(ω). This proves that B
absorbs D. �

Proposition 4.16. Assume that for each random set D belonging to DR, there
exists a random set B belonging to DR such that B absorbs D. Then the RDS
ϕ is DR-asymptotically compact.

Let us recall that the RDS ϕ is independent of the auxiliary parameter
α ∈ N. For reasons that will become clear later, we choose α such that

E‖zα(0)‖
2
L4 ≤ ν2λ1

6C2 , where zα(t), t ∈ R, is the Ornstein-Uhlenbeck process
from subsection 3.2, C > 0 is a certain universal constant, λ1 is the constant
from (4.7) and ν > 0 is the viscosity. It follows from Proposition 3.14 that
such a choice is possible.

The proof of the proposition is adapted from [8], in which a RDS gen-
erated by NSEs on some 2-dimensional unbounded domain was considered.
The proposition generalises the asymptotically compactness of the RDS in
[11, Proposition 8.1] to the DR- asymptotically compactness of the RDS.

Proof. Suppose that B is a closed random set from the classDR andK ∈ DR

is a close random set which absorbs B. We fix ω ∈ Ω. Let us take an increasing
sequence of positive numbers (tn)

∞
n=1 such that tn → ∞ and an H-valued

sequence (xn)n such that xn ∈ B(ϑ−tnω), for all n ∈ N.
Step I. Reduction. Since K(ω) absorbs B, for n ∈ N sufficiently large,

ϕ(tn, ϑ−tnω)B ⊂ K(ω). Since K(ω) is closed and bounded, and hence weakly
compact, without loss of generality we may assume that ϕ(tn, ϑ−tnω)B ⊂
K(ω) for all n ∈ N and, for some y0 ∈ K(ω),

ϕ(tn, ϑ−tnω)xn → y0 weakly in H. (4.17)

Since z(0) ∈ H, we also have

ϕ(tn, ϑ−tnω)xn − z(0) → y0 − z(0) weakly in H.

In particular,

‖y0 − z(0)‖ ≤ lim inf
n→∞

‖ϕ(tn, ϑ−tnω)xn − z(0)‖. (4.18)

We claim that it is enough to prove that for some subsequence {n′} ⊂ N

‖y0 − z(0)‖ ≥ lim sup
n′→∞

‖ϕ(tn′ , ϑ−tn′
ω)xn′ − z(0)‖. (4.19)
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Indeed, since H is a Hilbert space, (4.18) in conjunction with (4.19) imply
that

ϕ(tn, ϑ−tnω)xn − z(0) → y0 − z(0) strongly in H

which implies that

ϕ(tn, ϑ−tnω)xn → y0 strongly in H.

Therefore, in order to show that {ϕ(tn, ϑ−tnω)xn}n is relatively compact in
H we need to prove that (4.19) holds true.

Step II. Construction of a negative trajectory, i.e. a sequence (yn)
0
n=−∞

such that yn ∈ K(ϑnω), n ∈ Z
−, and yk = ϕ(k − n, ϑnω)yn, n < k ≤ 0.

Since K(ϑ−1ω) absorbs B, there exists a constant N1(ω) ∈ N, such that

{ϕ(−1 + tn, ϑ1−tnϑ−1ω)xn : n ≥ N1(ω)} ⊂ K(ϑ−1ω).

Hence we can find a subsequence {n′} ⊂ N and y−1 ∈ K(ϑ−1ω) such that

ϕ(−1 + tn′ , ϑ−tn′
ω)xn′ → y−1 weakly in H. (4.20)

We observe that the cocycle property, with t = 1, s = tn′ − 1, and ω being
replaced by ϑ−tn′

ω, reads as follows:

ϕ(tn′ , ϑ−tn′
ω) = ϕ(1, ϑ−1ω)ϕ(−1 + tn′ , ϑtn′

ω).

Hence, by the last part of Theorem 3.3, from (4.17) and (4.20) we infer
that ϕ(1, ϑ−1ω)y−1 = y0. By induction, for each k = 1, 2, . . . , we can con-
struct a subsequence {n(k)} ⊂ {n(k−1)} and y−k ∈ K(ϑ−kω), such that
ϕ(1, ϑ−kω)y−k = y−k+1 and

ϕ(−k + tn(k) , ϑ−t
n(k)

ω)xn(k) → y−k weakly in H, as n(k) → ∞. (4.21)

As above, the cocycle property with t = k, s = tn(k) and ω being
replaced by ϑ−t

n(k)
ω yields

ϕ(tn(k) , ϑ−t
n(k)

ω) = ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω), k ∈ N. (4.22)

Hence, from (4.21) and by applying the last part of Theorem 3.3, we get

y0 = w− lim
n(k)→∞

ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k)

= w− lim
n(k)→∞

ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k)

= ϕ(k, ϑ−kω)(w− lim
n(k)→∞

ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k))

= ϕ(k, ϑ−kω)y−k,

(4.23)

where w-lim denotes the limit in the weak topology on H. The same proof
yields a more general property:

ϕ(j, ϑ−kω)y−k = y−k+j if 0 ≤ j ≤ k.

Before continuing with the proof, let us point out that (4.23) means
precisely that y0 = u(0,−k;ω,y−k), where u is defined in (4.6).
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Step III. Proof of (4.19). From now on, unless explicitly stated, we fix
k ∈ N, and we will consider problem (3.1) on the time interval [−k, 0]. From
(4.6) and (4.22), with t = 0 and s = −k, we have

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

= ‖ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(0)‖2

= ‖v(0,−k;ω, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k))‖2.

(4.24)

Let v be the solution to (3.3) on [−k,∞) with z = zα(·, ω) and the
initial condition at time −k: v(−k) = ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k). In

other words,

v(s) = v
(
s,−k;ω, ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k)

)
, s ≥ −k.

From (4.24) and (4.9) with t = 0 and τ = −k we infer that

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2 = e−νλ1k‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2

+ 2

∫ 0

−k

eνλ1s(b(v(s), z(s),v(s)) + 〈g(s),v(s)〉+ 〈f ,v(s)〉 − [v(s)]2)ds.

(4.25)

It is enough to find a nonnegative function h ∈ L1(−∞, 0) such that

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k)−z(0)‖2 ≤

∫ −k

−∞

h(s)ds+‖y0−z(0)‖2. (4.26)

For, if we define the diagonal process (mj)
∞
j=1 by mj = j(j), j ∈ N, then for

each k ∈ N, the sequence (mj)
∞
j=k is a subsequence of the sequence (n(k))

and hence by (4.26), lim supj ‖ϕ(tmj
, ϑ−tmj

ω)xmj
− z(0)‖2 ≤

∫ −k

−∞
h(s)ds +

‖y0 − z(0)‖2. Taking the k → ∞ limit in the last inequality we infer that

lim sup
j

‖ϕ(tmj
, ϑ−tmj

ω)xmj
− z(0)‖2 ≤ ‖y0 − z(0)‖2,

which proves claim (4.19).

Step IV. Proof of (4.26). We begin with estimating the first term on the
RHS of (4.25). If −tn(k) < −k, then by (4.6) and (4.8) we infer that

‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2

= ‖v(−k,−tn(k) ;ϑ−kω,xn(k) − z(−tn(k))‖2e−νλ1k

≤ e−νλ1k
{
‖xn(k) − z(−tn(k))‖2e

−νλ1(tn(k)−k)+ 3C2

ν

∫
−k
−t

n(k)
‖z(s)‖2

L4
ds

+
3

ν

∫ −k

−t
n(k)

[‖g(s)‖2V ′ + ‖f‖2V ′ ]e−νλ1(−k−s)+ 3C2

ν

∫
−k
s

‖z(ζ)‖2
L4

dζ
}

≤ 2In(k) + 2IIn(k) +
3

ν
IIIn(k) +

3

ν
IVn(k) ,

(4.27)
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where

In(k) = ‖xn(k)‖2e
−νλ1tn(k)+

3C2

ν

∫
−k
−t

n(k)
‖z(s)‖2

L4
ds

IIn(k) = ‖z(tn(k))‖2e
−νλ1tn(k)+

3C2

ν

∫
−k
−t

n(k)
‖z(s)‖2

L4
ds

IIIn(k) =

∫ −k

−t
n(k)

‖g(s)‖2V ′e−νλ1s+
3C2

ν

∫
−k
s

‖z(ζ)‖2
L4

dζ

IVn(k) =

∫ −k

−t
n(k)

‖f(s)‖2V ′e−νλ1s+
3C2

ν

∫
−k
s

‖z(ζ)‖2
L4

dζ

First we will find a nonnegative function h ∈ L1(−∞, 0) such that

lim sup
n(k)→∞

‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2e−νλ1k ≤

∫ −k

−∞

h(s)ds, k ∈ N.

(4.28)
This will be accomplished as soon as we prove the following four lemmas.

Lemma 4.17. lim supn(k)→∞ In(k) = 0.

Lemma 4.18. lim supn(k)→∞ IIn(k) = 0.

Lemma 4.19.
∫ 0

−∞
‖g(s)‖2V ′e−νλ1s+

3C2

ν

∫ 0
s
‖z(ζ)‖2

L4
dζ <∞.

Lemma 4.20.
∫ 0

−∞
e−νλ1s+

3C2

ν

∫ 0
s
‖z(ζ)‖2

L4
dζ <∞.

Proof of Lemma 4.17. We recall that for α ∈ N, z(t) = zα(t), t ∈ R, being
the Ornstein-Uhlenbeck process from subsection 3.2, one has

E‖z(0)‖2X = E‖zα(0)‖
2
X <

ν2λ1
6C2

.

Let us recall that the space Ω̂(ξ, E) was constructed in such a way that

lim
n(k)→∞

1

−k − (−tn(k))

∫ −k

t
n(k)

‖zα(s)‖
2
Xds = E‖z(0)‖2X <∞.

Therefore, since the embedding X →֒ L
4(S2) is a contraction, we have for

n(k) sufficiently large,

3C2

ν

∫ −k

t
n(k)

‖zα(s)‖
2
L4ds <

νλ1
2

(tn(k) − k). (4.29)

Since the set B is bounded in H, there exists ρ1 > 0 such that for all n(k),
‖xn(k)‖ ≤ ρ1. Hence

lim sup
n(k)→∞

‖xn(k)‖2e
−νλ1tn(k)+

3C2

ν

∫
−k
−t

n(k)
‖z(s)‖2

L4
ds

≤ lim sup
n(k)→∞

ρ21e
−

νλ1
2 (t

n(k)−k) = 0.

(4.30)
�



28 Z. Brzeźniak, B. Goldys and Q. T. Le Gia

Proof of Lemma 4.20. We denote by p(s) = νλ1s+
3C2

ν

∫ 0

s
‖z(s)‖2

L4 . As in the

proof of Lemma 4.17 we have, for s ≤ s0, p(s) <
νλ1

2 s. Hence
∫ 0

−∞
ep(s)ds <

∞, as required. �

Proof of Lemma 4.18. Because of (3.14), we can find ρ2 ≥ 0 and s0 < 0, such
that,

max

(
‖z(s)‖

|s|
,
‖z(s)‖V ′

|s|
,
‖z(s)‖L4

|s|

)
≤ ρ2, for s ≤ s0. (4.31)

Hence by (4.29) we infer that

lim sup
n(k)→∞

‖z(−tn(k))‖2e

∫
−k
−t

n(k)
(−νλ1+

3C2

ν ‖z(s)‖2)ds

≤ lim sup
n(k)→∞

‖z(−tn(k))‖2

|tn(k) |2
lim sup
n(k)→∞

|tn(k) |2e−
νλ1
2 (t

n(k)−k) ≤ 0.

(4.32)

This concludes the proof of Lemma 4.18. �

Proof of Lemma 4.19. Since ‖g(s)‖2V ′ = ‖αz(s)+2B(z(s))‖2V ′ ≤ 2α2‖z(s)‖2V ′+
2C‖z(s)‖4

L4 , we only need to show that the integrals
∫ 0

−∞

‖z(s)‖4
L4eνλ1s+

3C2

ν

∫ 0
s
‖z(ζ)‖2

L4
dζds and

∫ 0

−∞

‖z(s)‖2V ′eνλ1s+
3C2

ν

∫ 0
s
‖z(ζ)‖2

L4
dζds

are finite.
It is enough to consider the case of ‖z(s)‖4

L4 since the proof will be
similar for the remaining case. Reasoning as in (4.29), we can find t0 ≥ 0
such that for t ≥ t0,

∫ −t0

−t

(
−νλ1 +

3C2

ν
‖z(ζ)‖2

L4

)
dζ ≤ −

νλ1
2

(t− t0).

Taking into account the inequality (4.31), we have ‖z(t)‖ ≤ ρ2(1+ |t|), t ∈ R.

Therefore, with ρ3 := exp(
∫ 0

−t0
(−νλ1 +

3C2

ν ‖z(ζ)‖2
L4)dζ, we have

∫ −t0

−∞

‖z(s)‖4
L4e

∫ 0
s
(νλ1+

3C2

ν ‖z(ζ)‖2
L4

)dζds

= ρ3

∫ −t0

−∞

‖z(s)‖4
L4e

∫
−t0
s

(νλ1+
3C2

ν ‖z(ζ)‖2
L4

)dζds

≤ ρ42ρ3e
νλ1t0/2

∫ t0

−∞

|s|4eνλ1s/2ds <∞.

By the continuity of all relevant functions, we can let t0 → 0 to get the
result. �

Therefore, the proof of (4.28) is concluded, and it only remains to finish
the proof of (4.26). Let us denote by

vn(k)(s) = v(s,−k;ω, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)), s ∈ (−k, 0),

vk(s) = v(s,−k;ω,y−k − z(−k)), s ∈ (−k, 0).
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From (4.21) and the last part of Theorem 3.3 we infer that

vn(k) → vk weakly in L2(−k, 0;V ). (4.33)

Since eνλ1·g, eνλ1·f ∈ L2(−k, 0;V ′), we get

lim
n(k)→∞

∫ 0

−k

eνλ1s〈g(s),vn(k)(s)〉ds =

∫ 0

−k

eνλ1s〈g(s),vk(s)〉ds (4.34)

and

lim
n(k)→∞

∫ 0

−k

eνλ1s〈f ,vn(k)(s)〉ds =

∫ 0

−k

eνλ1s〈f ,vk(s)〉ds. (4.35)

On the other hand, using the same methods as those in the proof of
Theorem 3.2, there exists a subsequence of {vn(k)}, which, for the sake of
simplicity of notation, is denoted as the old one which satisfies

vn(k) → vk strongly in L2(−k, 0;L2
loc(S

2)). (4.36)

Next, since z(t) is an L
4-valued process, so is eνλ1tz(t). Thus by [10,

Corollary 4.1], (4.33) and (4.36), we infer that

lim
n(k)→∞

∫ 0

−k

eνλ1sb(vn(k)(s), z(s),vn(k)(s))ds

=

∫ 0

−k

eνλ1sb(vk(s), z(s),vk(s))ds.

(4.37)

Moreover, since the norms [·] and ‖ · ‖V are equivalent on V , and since

for any s ∈ (−k, 0], e−νkλ1 ≤ eνλ1s ≤ 1, (
∫ 0

−k
eνλ1s[·]2ds)1/2 is a norm in

L2(−k, 0;V ) equivalent to the standard one. Hence, from (4.33) we obtain,

∫ 0

k

eνλ1s[vk(s)]
2ds ≤ lim inf

n(k)→∞

∫ 0

−k

eνλ1s[vn(k)(s)]2ds.

In other words,

lim sup
n(k)→∞

(
−

∫ 0

−k

eνλ1s[vn(k)(s)]2ds

)
≤ −

∫ 0

−k

eνλ1s[vk(s)]
2ds. (4.38)

From (4.25), (4.28), (4.37) and (4.38) we infer that

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

≤

∫ −k

−∞

h(s)ds+ 2

∫ 0

−k

eνλ1s
{
b(vk(s), z(s),vk(s))

+ 〈g(s),vk(s)〉+ 〈f ,vk(s)〉 − [vk(s)]
2
}
ds

(4.39)
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On the other hand, from (4.23) and (4.9), we have

‖y0 − z(0)‖2 = ‖ϕ(k, ϑ−kω)yk − z(0)‖2 = ‖v(0,−k;ω,yk − z(−k))‖2

= ‖yk − z(−k)‖2e−νλ1k + 2

∫ 0

−k

eνλ1s
{
〈g(s),vk(s)〉

+ b(vk(s), z(s),vk(s)) + 〈f ,vk(s)〉 − [vk(s)]
2
}
ds.

(4.40)
Hence, by combining (4.39) with (4.40), we get

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

≤

∫ −k

−∞

h(s)ds+ ‖y0 − z(0)‖2 − ‖yk − z(−k)‖2e−νλ1k

≤

∫ −k

−∞

h(s)ds+ ‖y0 − z(0)‖2,

which proves (4.26), and hence the proof of Proposition 4.16 is finished. �

5. Invariant measure

In this section we consider the existence of an invariant measure. The main
result in this section, i.e. Theorem 5.2 is a direct consequence of Corollary
4.4 [17] and our Theorem 4.15about the existence of an attractor for the RDS
generated by the stochastic Navier-Stokes equations (3.1).

Let ϕ be the RDS corresponding to the SNSEs (3.1) and defined in (4.4).
We define the transition operator Pt by a standard formula. For g ∈ Bb(H),
we put

Ptg(x) =

∫

Ω

[g(ϕ(t, ω,x))] dP(ω), x ∈ H. (5.1)

As in [11, Proposition 3.8] we have the following result whose proof is simply
a repetition of the proof from [11]

Proposition 5.1. The family (Pt)t≥0 is Feller, i.e. Ptg ∈ Cb(H) if g ∈ Cb(H).
Moreover, for any g ∈ Cb(X), Ptg(x) → g(x) as tց 0.

Following [17] one can prove that ϕ is a Markov RDS, i.e. Pt+s =
PtPs for all t, s ≥ 0. Hence by [11, Corollary 3.10] which says that a time-
continuous and continuous asymptotically compact, Markov RDS ϕ admits
a Feller invariant probability measure µ, i.e. a Borel probability measure µ

P ∗
t µ = µ, t ≥ 0, (5.2)

where

P ∗
t µ(Γ) =

∫

H

Pt(x,Γ)µ(dx), Γ ∈ B(H),

and Pt(x, ·) is the transition probability, Pt(x,Γ) = Pt1Γ(x), x ∈ H.
A Feller invariant probability measure for a Markov RDS ϕ on H is, by
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definition, an invariant probability measure for the semigroup (Pt)t≥0 defined
by (5.1). Therefore, we obtain the following result.

Theorem 5.2. There exists an invariant measure for the stochastic NSE (3.1).

Remark 5.3. We believe that the uniqueness of an invariant measure for non-
degenerate noise will follow from the classical procedure and as in [9]. If the
noise is degenerate and spatially smooth, it seems that the results from a re-
cent paper by Hairer and Mattingly [28] should be applicable in our setting.
In particular, [28, Theorem 8.4], which gives a sufficient conditions for unique-
ness in terms of controllability, should be applicable. Details will be published
elsewhere. One should point out that these authors use the ”vorticity” formu-
lation and their initial data belongs to the L2 space. This corresponds to our
approach with the initial data belonging to the finite enstrophy space H1.
However, we work in the space of finite energy, which seems to be physically
more natural. On the other hand, verifying the sufficient conditions could be
more challenging. For the NSE without the Coriolis force this problems has
been investigated in [1]. Corresponding NSE with the Coriolis force study is
postponed till the next publication.
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compressibles. J. Mécanique 17, no. 1, 107145 (1978)
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[12] Z. Brzeźniak and S. Peszat, Stochastic two dimensional Euler equations. Ann.
Probab., 20:1796–1832, 2001.
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