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Abstract. The eigenspace theory of unitary reflection groups, initiated by Springer
and Lehrer, suggests that the following object is worthy of study: the poset of
eigenspaces of elements of a unitary reflection group, for a fixed eigenvalue, ordered
by the reverse of inclusion. We investigate topological properties of this poset. The
new results extend the well-known work of Orlik and Solomon on the lattice of
intersections of hyperplanes.

1. Introduction

Let V be a complex vector space of finite dimension, and G ⊆ GL(V ) a unitary
reflection group in V . Denote by A(G) the set of reflecting hyperplanes of all reflec-
tions in G, and MA(G) the hyperplane complement – that is, the smooth manifold
which remains when all the reflecting hyperplanes are removed from V . There is an
extensive literature studying the topology of MA(G) ( [1], [6], [26], [27], [20], [3]).

In particular, Orlik and Solomon [26, Corollary 5.7] showed that H∗(MA(G),C) is
determined (as a graded representation of G) by the poset L(A(G)) of intersections
of the hyperplanes in A(G).

It is well-known that the poset L(A(G)) is a geometric lattice. Hence it is Cohen-
Macaulay, and its reduced homology vanishes except in top dimension. The poset
L(A(G)) is also known to coincide with the poset of fixed point subspaces (or 1-
eigenspaces) of elements of G (see Theorem 2.10). Springer and Lehrer ( [35], [22],
[23]) developed a general theory of eigenspaces for unitary reflection groups. The
purpose of this paper is to study topological properties of generalisations of L(A(G))
for arbitrary eigenvalues.

Namely, let ζ be a complex root of unity, and g be an element of G. Define
V (g, ζ) ⊆ V to be the ζ-eigenspace of g. That is, V (g, ζ) := {v ∈ V | gv = ζv}. Let
SV
ζ (G) be the set {V (g, ζ) | g ∈ G}, partially ordered by the reverse of inclusion. More

generally, if γ ∈ NGL(V )(G) (the normaliser of G in GL(V )) and γG is a reflection
coset, we may define SV

ζ (γG) to be the set {V (x, ζ) | x ∈ γG}, partially ordered by
the reverse of inclusion. This is a linear analogue of the poset of p-subgroups of a
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group G first studied by Quillen [31]. The study of this poset was first suggested by
Lehrer (see [19, Appendix C, p.270]).

The main result of this paper is the following:

Theorem 1.1. Let G be a unitary reflection group acting on V . Then SV
ζ (G) is

Cohen-Macaulay over Z.

The proof of this result depends on the following theorem, whose proof appears
in [16] and [17]. The imprimitive reflection groups G(r, p, n) are defined in Section
2.5.

Theorem 1.2. Let G be any imprimitive unitary reflection group G(r, p, n), and γ
any element of NGL(V )(G) . The poset SV

ζ (γG) is Cohen-Macaulay over Z.

The proof of Theorem 1.2 is combinatiorial in flavour, relying on the establishment
of an isomorphism between the posets SV

ζ (γG) and certain subposets of Dowling
lattices. The ideas used are very different from the invariant theoretic methods used
in this paper, and for this reason the two papers have been separated.

The strategy for proving Theorem 1.1 is to reduce the statement to a computation
of the reduced homology of a small number of posets. All except two of these com-
putations are somewhat routine and were performed using MAGMA (see [5], [24])
and the GAP package Simplicial Homology (see [13], [12] for GAP and [10], [30] for
the Simplicial Homology package). The other two posets, associated with the com-
plexification of the real reflection group E8, are very large. Additional techniques in
computational algebraic topology were needed to compute their reduced homology.
A second paper [18] describing these technques and their applications, written jointly
with Mateusz Juda from the Jagiellonian University in Krakow, will appear shortly.

A third forthcoming paper [15] will consider an application of the main result in
this paper to the representation theory of unitary reflection groups.

2. Preliminaries

2.1. Notation. Throughout this paper, G will denote a group, and V a complex
vector space of dimension n. If H is a subgroup of G, write NG(H) for the normaliser
of H in G. If G ⊆ GL(V ) and x ∈ NGL(V )(G), denote the centraliser of x in G by
CG(x). If g ∈ GL(V ), write Fix g = {v ∈ V | gv = v} for the fixed-point subspace of
g. If A and B are two sets, the set of elements in A but not B is denoted A\B. If
x ∈ End(V ), let V (x, ζ) be the ζ-eigenspace of x acting on V .

2.2. Partially ordered sets. Let P denote a poset. In this paper, all posets will be
assumed to be finite. If a, b ∈ P , b covers a if a < c 6 b implies c = b. A lower order
ideal of P is a subset I ⊆ P such that if x ∈ I and y 6 x then y ∈ I. An upper order
ideal of P is a subset I such that if x ∈ I and y > x then y ∈ I. If x ∈ P , denote
by P6x the subposet of P consisting of elements less than or equal to x. Similarly
define P<x, P>x, P>x. Define the closed interval [x, y] := {z ∈ P | x 6 z 6 y}.
Similarly, define the open interval (x, y) := {z ∈ P | x < z < y}. If P has a unique
minimal element, denote this element 0̂. An atom x ∈ P is an element which covers
0̂. Similarly, if P has a unique maximal element, denote this element 1̂. A coatom
x ∈ P is an element which is covered by 1̂.
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A chain is a poset in which any two elements are comparable. Define the length of
a chain C to be |C| − 1, and write this number as l(C). The length of a poset P is
defined to be:

l(P ) := max{l(C) | C a chain in P}.
A poset P is ranked (or pure) of rank n if all maximal chains in P have the same

length n. The rank function r : P −→ N of a ranked poset P is defined inductively
by r(x) = 0 if x is a minimal element of P , and r(y) = r(x) + 1 if y covers x.

Denote the product of two posets P and Q by P × Q, and the join by P ∗ Q
(see [36, §3.2] for definitions).

The poset P is a join semilattice if x∨ y exists for all x, y ∈ P (which implies that
P has a unique maximum element 1̂). The poset P is a meet semilattice if x∧y exists
for all x, y ∈ P (which implies that P has a unique minimum element 0̂). If P is both
a join semilattice and a meet semilattice, then P is called a lattice.

A lattice L is said to be atomic if every element of L is the join of atoms (by
convention, the unique minimal element 0̂ is the join of the empty set of atoms). A
lattice L is semimodular if it is ranked, and if the associated rank function r of L
has the property that r(x ∨ y) + r(x ∧ y) 6 r(x) + r(y) for all x, y ∈ L. A lattice is
geometric if it is both atomic and semimodular.

2.3. Poset topology. For the basics of poset topology, see [39].
The order complex of a poset P , denoted ∆(P ), is the abstract simplicial complex

whose vertices are the elements of P and whose simplices are the chains of P .
The simplicial homology of P over a commutative ring A, denoted H(P,A), is the

simplical homology of the order complex ∆(P ). Where the ring A is clear, we may
denote this simply by H(P ). Similarly, reduced homology can be defined for P , and
is denoted H̃(P,A). The nth homology and reduced homology modules are denoted
Hn(P,A) and H̃n(P,A) respectively.

A poset is said to be connected (resp. contractible) if the associated simplicial
complex is connected (resp. contractible).

2.4. Cohen-Macaulay posets. The property of being Cohen-Macaulay has its ori-
gins in commutative algebra, in the context of Cohen-Macaulay rings. For more
details, see [39, Lecture 4].

Let C = (x0 < . . . < xi) be a chain of P . Define the link of C in P by

lkP (C) = {z ∈ P | z 6∈ C and {z} ∪ C is a chain of P}.
Clearly, lkP (C) = (< x0) ∗ (x0, x1) ∗ . . . ∗ (xn−1, xn) ∗ (> xn) when C 6= ∅, while

lkP (C) = P when C = ∅.
Then P is said to be Cohen-Macaulay over the ring A if for every chain C in P ,

including C = ∅,
H̃i(lkP (C),A) = 0 for i 6= l(lkP (C)).

Unless stated otherwise, ‘Cohen-Macaulay’ will mean ‘Cohen-Macaulay over A’.

Lemma 2.1. (Garst [14]) The poset P is Cohen-Macaulay over the ring A if and

only if H̃i(P,A) = 0 for i 6= l(P ), and lkP (x) is Cohen-Macaulay for all x ∈ P .
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It is known (see [33, Lemma 1.16], [39, Exercise 4.1.3]) that a Cohen-Macaulay
poset is ranked. The following proposition is also well-known (see [33, Proposition
1.14] or [17, Proposition 2.4.7] for a proof):

Proposition 2.2. [33, Proposition 1.14] Let P1, . . . , Pn be posets. Then P1 ∗ · · · ∗Pn

is Cohen-Macaulay over the field F if and only if P1, . . . , Pn are Cohen-Macaulay over
F.

In particular,

Corollary 2.3. Let P a = P ∗ {a}, where {a} is the poset with one element. Then P
is Cohen-Macaulay over F if and only if P a is Cohen-Macaulay over F. Similarly let
Pa = {a}∗P. Then P is Cohen-Macaulay over F if and only if Pa is Cohen-Macaulay
over F.

2.5. Unitary reflection groups and the Shephard-Todd classification. Let V
be a vector space over C of dimension n.

Definition 2.4. An element g ∈ GL(V ) is a reflection if the order of g is finite and
if dim(Fix g) = n − 1. If g is a reflection, the subspace Fix g is a hyperplane, called
the reflecting hyperplane of g.

Definition 2.5. A unitary reflection group is a finite subgroup of GL(V ), which is
generated by reflections.

Any such group is a group of unitary reflections with respect to some hermitian
form, which explains the term unitary.

IfG is a unitary reflection group, theG-module V is called the natural (or reflection)
representation of G. If V is irreducible as a G-module, we say that G is an irreducible
unitary reflection group. The irreducible unitary reflection groups were first classified
by Shephard and Todd [34].

There is an infinite family G(r, p, n) of unitary reflection groups indexed by triples
of positive integers (r, p, n) such that p is a divisor of r. The group G(r, p, n) is defined
to be the subgroup of GLn(C) consisting of all n× n monomial matrices whose non-
zero entries are complex rth roots of unity such that the product of the non-zero
entries is an r

p
th root of unity.

In addition, there are 34 exceptional irreducible unitary reflection groups. This
includes (complexifications of) the six exceptional irreducible real reflection groups
(of types H3, H4, F4, E6, E7 andE8).

2.6. Invariant theory for unitary reflection groups. Let S denote the algebra
of polynomial functions on V , which may be identified with the symmetric algebra of
the dual space, S(V ∗). Then GL(V ) acts on S, and if G ⊆ GL(V ) is a finite group,
we denote by SG the subalgebra of all G-invariant functions. Both S and SG have a
natural grading by polynomial degree.

It is well-known that if G is a unitary reflection group then SG is free, and in fact
this property characterises unitary reflection groups among finite subgroups of GL(V )
(see [35, Theorem 2.4]).

Let F denote the ideal of S generated by the elements of SG with nonzero constant
term. The quotient S/F is called the coinvariant algebra of G and is denoted SG.
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The coinvariant algebra SG inherits a grading from S. It is known (see [19, Corollary
3.29 and Proposition 3.32] that dimSG = |G| and that the representation of G on SG

is the regular representation.
Let t be an indeterminate, and M any finite-dimensional G-module. Define the

fake degree of M to be the polynomial

fM(t) :=
∑

i

〈(SG)i,M〉ti =
r∑

j=1

tqj(M)

where 〈, 〉 denotes the usual intertwining number for complex representations of G.
The integers q1(M) 6 q2(M) 6 . . . 6 qr(M) are called the M -exponents of G. Since
SG affords the regular representation of G, r = dimM .

In the case M = V set fV (t) =
∑

j t
mj . The integers mi = qi(V ) are called

the exponents of G. It is known (see [19, Corollary 10.23]) that mi = di − 1, where
d1, . . . , dr are the degrees of the basic invariants of G.

When M = V ∗, the corresponding exponents m∗
i := qi(V

∗) are called the coexpo-
nents of G. Define the codegrees d∗i of G by d∗i := m∗

i − 1.
Let H be the space of G-harmonic polynomials – that is, those polynomials which

are annihilated by all G-invariant polynomial differential operators on S with no
constant term (see [19, §§9.5-6] for more details). Clearly H is graded by degree. It
is known ( [19, Corollary 9.37]) that H is a G-stable complement of F in S, so that
H may be identified with SG. If N = NGL(V )(G) then H is N -stable (as is SG), and
there is an isomorphism S = SG ⊗H of N -modules (see [19, Proposition 12.2]).

If M is any finite-dimensional G-module, define a grading on the G-module S⊗M
by defining the degree j component of S⊗M to be Sj ⊗M . The module (H⊗M∗)G

has a homogeneous linear basis u1, . . . , ur, where r = dimM , and the degree of ui is
qi(M). Such a basis is also an SG-basis of (S ⊗ M∗)G (see [19, Proposition 10.3]).
The elements u1, . . . , un are called covariants of G.

2.7. Parabolic subgroups.

Definition 2.6. Suppose G ⊆ GL(V ) is a unitary reflection group on V , and that U
is a subset of V . Denote by GU the subgroup

{g ∈ G | Fix(g) ⊇ U}.
These groups are called parabolic subgroups of G. This generalises the notion of a
parabolic subgroup for a real reflection group.

The following is known as Steinberg’s fixed point theorem ( [38, Theorem 1.5]).
For a more recent proof, see [21], and [19, §9.7].
Theorem 2.7. Let G be a finite reflection group. If v ∈ V , the stabiliser Gv = {g ∈
G | gv = v} is the reflection group generated by the reflections which fix v.

Corollary 2.8. [19, Corollary 9.51] Let U be any subset of V . The parabolic subgroup
GU of G which fixes U pointwise is the reflection group generated by the reflections
in G whose reflecting hyperplanes contain U .
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2.8. Hyperplane arrangements and posets of eigenspaces. For background on
hyperplane arrangements, see [29]. For a discussion of hyperplane arrangements in
the context of unitary reflection groups, see [28]. In the following section, let V be a
complex vector space of dimension n.

A hyperplane of V is a subspace H of codimension 1 in V - that is, a linear hy-
perplane. A hyperplane arrangement A in V is a finite set of hyperplanes in V . A
subarrangement A′ of A is a subset of A. A hyperplane arrangement is essential if
∩H∈AH = {0}.
Definition 2.9. Let G be a unitary reflection group, and let A = A(G) be the set
of reflecting hyperplanes of G – i.e. the set of hyperplanes of V which are the fixed
point subspaces of elements in G. Define L(A(G)) to be the poset of intersections of
the hyperplanes in A. By convention, V ∈ L(A(G)) – it is the empty intersection of
elements of L(A(G)).

It is well known that L(A(G)) is a geometric lattice (see [29, Lemma 2.3]), and
hence (see [11, Theorem 4.1]) that it has vanishing reduced homology except in top
dimension.

Theorem 2.10. [29, Theorem 6.27] Let G ⊆ GL(V ) be a unitary reflection group.
Then:

(i) If g ∈ G, then Fix(g) ∈ L.
(ii) If X ∈ L(A(G)), then there exists g ∈ G with Fix(g) = X.

Thus the set of subspaces {Fix g | g ∈ G} coincides with L(A(G)).

2.9. Reflection cosets.

Definition 2.11. Suppose G is a unitary reflection group in V . Let γ be a linear
transformation of finite order in V , such that γG = Gγ. The coset γG is called a
reflection coset.

Write G̃ = 〈G, γ〉 for the group generated by G and γ. Note that G̃ is finite.
Let M be any finite-dimensional G-module. Recall from §2.6 that the module

(H ⊗ M∗)G has a homogeneous linear basis u1, . . . , ur, where r = dimM , and the
degree of ui is qi(M). In fact (see [19, Proposition 12.2(ii)]) such a basis may be chosen
such that for each i, γui = εi(M)ui for some complex root of unity εi(M) ∈ C

×.
Furthermore, the (multi)set of pairs (deg ui, εi(M)) depends only on the coset γG
and the module M , and not on the particular choice of γ [19, Proposition 12.2(iii)].
The multiset {εi(M)} is called the set of M-factors of γG. In the special caseM = V ,
the V -factors εi(V ) will be denoted εi and called factors. Analogously, in the special
case M = V ∗, the V ∗-factors εi(V

∗) will be denoted ε∗i and called cofactors.
Irreducible reflection cosets were discussed by Cohen in [9] and classified in [7],

where they are referred to as reflection data. Also see [19, Table D.5, p.278].
Let γG be a reflection coset in V . For ζ ∈ C

× a root of unity, define

A(ζ) = {i | εiζdi = 1},
where di is the degree of the basic invariant corresponding to εi. Let a(ζ) = |A(ζ)|.

The following are two key theorems of Springer-Lehrer theory:



TOPOLOGY OF EIGENSPACE POSETS FOR UNITARY REFLECTION GROUPS 7

Theorem 2.12. [19, Theorem 12.19] Let γG be a reflection coset in V , and ζ ∈ C
×

be a complex root of unity. Suppose E is maximal among ζ-eigenspaces corresponding
to elements of γG. Then:

(i) dimE = a(ζ),
(ii) any two maximal eigenspaces V (x, γ) are conjugate under the action of G.

Theorem 2.13. [19, Theorem 12.20] Let γG be a reflection coset in V , and for ζ ∈
C

×, let E = V (x, ζ) be a ζ-eigenspace, maximal among the ζ-eigenspaces of elements
of γG. Let N(E) = {g ∈ G | gE = E}, and C(E) = {g ∈ G | gv = v for all v ∈ E}.
Then N(E)/C(E) acts as a unitary reflection group on E, whose hyperplanes are the
intersections with E of the hyperplanes of G.

There is also a theory of regular elements for reflection cosets. As with reflection
groups, the element x ∈ γG is ζ-regular if V (x, ζ) contains a G-regular vector. If
x ∈ γG is ζ-regular for some ζ, then x is said to be regular. The following results will
be important later:

Proposition 2.14. [19, Proposition 12.21] Let γG be a reflection coset and let M

be a G̃-module of dimension r, where G̃ = 〈G, γ〉. If x is a regular element of γG,
then the eigenvalues of x on M are {εi(M∗)ζqi(M

∗) | i = 1, . . . , r}.
In particular,

Corollary 2.15. Let M = V , with the notation as in Proposition 2.14. If x is a
regular element of γG, then the eigenvalues of x acting on V are {ε∗i ζm

∗

i | i = 1, . . . r},
where the m∗

i are the coexponents of G, and the ε∗i are the cofactors defined above.

For a reflection group it is trivial that the element 1 ∈ G is regular. For a reflection
coset the existence of a regular element is not obvious, and indeed if G acts reducibly
on V , γ could be chosen so that there are no γG-regular vectors in V . See [19, Remark
12.24]. However, the following was proved in [4, Corollary 7.3], and independently
in [25, Theorem 3.4]:

Theorem 2.16. If γG is a reflection coset and G acts irreducibly on V , then there
is a ζ-regular element in γG for some ζ ∈ C

×.

2.10. Posets of eigenspaces. The following definition contains the central object
of study in this paper:

Definition 2.17. Let γG be a reflection coset in V = C
n, and ζ ∈ C

× be a complex
root of unity. Define SV

ζ (γG) to be the set {V (x, ζ) | x ∈ γG}, partially ordered by
the reverse of inclusion.

It will be seen (Corollary 3.3) that the poset SV
ζ (γG) always has a unique maximal

element 1̂, and that it may or may not have a unique minimal element 0̂ as well (for
example, the full space V ). Thus the associated simplicial complex is a cone, which
is contractible. Hence its homology is uninteresting, and we have reason to study the
following poset:

Definition 2.18. Define S̃V
ζ (γG) to be the subposet of SV

ζ (γG) obtained by removing
the unique maximal element, as well as the unique minimal element if it exists.
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3. General structure theorems for Sζ
V (γG)

This section examines the structure of the posets SV
ζ (γG) for arbitrary unitary

reflection groups G and γ ∈ NGL(V )(G). With the idea of showing that the posets
SV
ζ (γG) are Cohen-Macaulay in mind, we consider closed intervals in SV

ζ (γG). The
key is the following theorem:

Theorem 3.1. Let γG be a reflection coset in V . Let E = V (γg, ζ) ∈ SV
ζ (γG). Then

the following three posets are identical (as sets of subspaces of V ):

(i) {V (γh, ζ) ∈ SV
ζ (γG) | h ∈ G, V (γh, ζ) ⊆ E};

(ii) {V (γh, ζ) ∩ E | h ∈ G};
(iii) {E ∩ FixV (x) | x ∈ G}.

In addition, if E is maximal among the ζ-eigenspaces of elements of γG, then there
is a fourth poset

(iv) SE
1 (N(E)/C(E))

equal to each of the above.

Before embarking on the proof of this theorem, we point out some important corol-
laries:

Corollary 3.2. With notation as above, suppose E1, E2 ∈ SV
ζ (γG). Then E1 ∩E2 ∈

SV
ζ (γG). In particular, SV

ζ (γG) is a join semilattice.

Proof of Corollary 3.2. Assuming that the posets (i) and (ii) are equal, it follows
that the intersection of any two ζ-eigenspaces is again a ζ-eigenspace. Hence any two
elements of SV

ζ (γG) have a least upper bound, and so SV
ζ (γG) is a join semilattice. �

Corollary 3.3. With notation as above, the poset SV
ζ (γG) always has a unique max-

imal element 1̂.

Proof of Corollary 3.3. By repeated application of Corollary 3.2,
⋂

E∈SV
ζ
(γG) E is an

eigenspace, and by definition it is contained within every element E ∈ SV
ζ (γG). �

Remark 3.4. As a result of Corollary 3.3, the first poset mentioned in Theorem 3.1
can be written [E, 1̂].

Corollary 3.5. Suppose E = V (γg, ζ) ∈ SV
ζ (γG). The interval [E, 1̂] is a geometric

lattice.

Proof of Corollary 3.5. The eigenspace E = V (γg, ζ) is contained in some maximal
eigenspace E ′. Hence by Theorem 3.1(iv), [E, 1̂] is a principal upper order ideal of
SE′

1 (N(E ′)/C(E ′)). The latter is known to be a geometric lattice by Proposition 2.10
and [29, Lemma 2.3]. Since closed intervals of geometric lattices are also geometric
lattices (see [37, Lecture 3]), the result follows. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. The equality of (iii) and (iv) follows easily from Theorem 2.13.
Hence we concentrate on the equality of (i), (ii) and (iii).
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(ii) = (iii). First we show that, for any element h ∈ G, V (γh, ζ) ∩ E = E ∩
FixV (γgh

−1γ−1). Note that γgh−1γ−1 ∈ G since γ normalises G.
If v ∈ V (γh, ζ) ∩ E then γgv = ζv and γhv = ζv. So v = (γg)(γh)−1v =

(γgh−1γ−1)v. Hence v ∈ FixV (γgh
−1γ−1). Conversely, if v ∈ E ∩ FixV (γgh

−1γ−1)
then γgv = ζv, and γgh−1γ−1v = v.Hence (γh)−1v = h−1γ−1v = (γg)−1(γgh−1γ−1)v =
(γg)−1v = ζ−1v. Thus (γh)v = ζv, and so v ∈ V (γh, ζ). This proves that V (γh, ζ) ∩
E = E ∩ FixV (γgh

−1γ−1), and therefore that (ii) ⊆ (iii). To prove the reverse inclu-
sion, if x is any element of G, let h = γ−1x−1γg. Substituting into the formula just
proved, we have V (γh, ζ)∩E = E ∩ FixV (x). Thus the reverse inclusion is true, and
(ii) = (iii).

By definition, (i) ⊆ (ii). Hence the theorem will be proved if we can show that
(iii) ⊆ (i). In other words, we must prove

Proposition 3.6. Let V be a complex vector space, and γG a reflection coset in V .
Suppose that E = V (γ, ζ) ∈ SV

ζ (γG), and X ∈ L(G). Then E ∩ X = V (γh, ζ) for
some h ∈ G.

Note that we can assume without loss of generality that E = V (γ, ζ) rather than
V (γg, ζ) by replacing γ with γg, since if γ ∈ NGL(V )(G) then γg ∈ NGL(V )(G) also.

Consider the following three propositions:

Proposition 3.7. Let V be a complex vector space, and γG any reflection coset in
V. Suppose that E = V (γ, ζ) ∈ SV

ζ (γG) and X ∈ L(G) such that γX = X. Then
E ∩X = V (γh, ζ) for some h ∈ G.

Note that we are not assuming that E is maximal.

Proposition 3.8. Let V be a complex vector space, and γG any reflection coset in
V , where G acts essentially on V (i.e. ∩H∈AG

H = {0}). Then there exists h ∈ G
such that V (γh, ζ) = {0}.
Proposition 3.9. Let V be a complex vector space, and γG any reflection coset in
V , where G acts essentially on V (i.e. ∩H∈AG

H = {0}). Then there exists h ∈ G
such that V (γh, 1) = {0}.

The key to proving Theorem 3.1 is the following reduction theorem:

Theorem 3.10. We have the implications (3.9) ⇒ (3.8) ⇒ (3.7) ⇒ (3.6).

Proof of Theorem 3.10. (3.7) ⇒ (3.6). Let E and X be as in Proposition 3.6. Define
X ′ :=

⋂∞
i=0 γ

iX. Note that this intersection is actually finite as γ has finite order. For
each i, γiX ∈ L(G), since γ normalises G. Thus X ′ ∈ L(G), and so by Proposition
2.10(ii), X ′ = FixV (y) for some y ∈ G.

Clearly γX ′ = X ′. Applying Proposition 3.7 to X ′, E ∩ X ′ = V (γh, ζ) for some
h ∈ G.

Now E ∩X ′ = E ∩ (∩∞
i=0γ

iX) = ∩∞
i=0(E ∩ γiX). Also,

E ∩ γiX = γ−i(E ∩ γiX) (since γ acts by scalar multiplication on E)

= γ−iE ∩X

= E ∩X.
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Hence V (γh, ζ) = E ∩X ′ =
⋂∞

i=1(E ∩ γiX) =
⋂∞

i=1(E ∩X) = E ∩X, as required.
(3.8) ⇒ (3.7). Let E and X be as in Proposition 3.7. Now GX acts as a reflection

group on V by Steinberg’s fixed point theorem (Corollary 2.8), and it acts essentially
on V/X. Since γX = X we have γ ∈ NGL(V )(GX). Hence γGX is a reflection coset
in V/X.

Applying Proposition 3.8 to γGX , there is some h ∈ GX such that (V/X)(γh, ζ) =
{0}. In other words, V (γh, ζ) ⊆ X. Also if v ∈ V (γh, ζ) and h ∈ GX , then

γv = γ(hv) = (γh)v = ζv.

Hence V (γh, ζ) ⊆ E. Thus V (γh, ζ) ⊆ E ∩X. Conversely, E ∩X ⊆ V (γh, ζ), so
E ∩X = V (γh, ζ).

(3.9) ⇒ (3.8). If γG is a reflection coset in V , then so is ζ−1γG. Applying
Proposition 3.9 to ζ−1γG, there exists h ∈ G such that V (ζ−1γh, 1) = {0}. But
V (γh, ζ) = V (ζ−1γh, 1), as required. �

We now focus on the proof of Proposition 3.9. The first task is to reduce Proposition
3.9 to the case where G is an irreducible reflection group. Consider the following two
Propositions:

Proposition 3.11. Proposition 3.9 holds when V is irreducible as a G̃-module, where

G̃ = 〈G, γ〉.

Proposition 3.12. Proposition 3.9 holds when V is irreducible as a G-module.

Clearly (3.9) ⇒ (3.11) ⇒ (3.12). The reverse implications are also true:

Theorem 3.13. We have the implications (3.12) ⇒ (3.11) ⇒ (3.9).

Proof of Theorem 3.13. (3.11)⇒ (3.9). Suppose V =
⊕k

i=1 Vi is a decomposition of V

into irreducible G̃-modules. Then G = G1×G2×. . .×Gk and γ = γ1⊕γ2⊕. . . . . .⊕γk,
where Gi acts on Vi as a reflection group and trivially on Vj for j 6= i, and γi normalises
Gi.

Note that A(G) = ∪k
i=1A(Gi).

Thus
⋂

H∈∪A(Gj),j 6=i H ⊇ Vi (and by hypothesis equals Vi).

It follows that
⋂

H∈A(Gi)
H =

⊕
j 6=i Vj, and hence that

⋂
H∈A(Gi)

(H ∩ Vi) = {0}.
Hence (Gi, γi, Vi) satisfies the conditions of Proposition 3.11. So by assumption

there exists elements xi ∈ Gi such that Vi(γixi, 1) = {0}.
Hence V (γx, 1) = {0}, where x = x1 ⊕ x2 ⊕ . . .⊕ xk, and Proposition 3.9 follows.

(3.12) ⇒ (3.11). Assume that V is irreducible as a G̃-module. Then G = G1 ×
G2 × . . . × Gk, V = V1 ⊕ V2 ⊕ . . . ⊕ Vk, and all (Gi, Vi) are isomorphic, irreducible,
and permuted cyclically by γ. Thus γk fixes all the Vi and in particular normalises
Gi for each i. (See [3, Proposition 6.9] for further details.)

This means that Vi = γi−1V1, i = 1, 2, . . . , k and γkV1 = V1. Thus we may write an
arbitrary element v ∈ V uniquely as v = v1 + γv2 + . . .+ γk−1vk where vi ∈ V1 for all
i.
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Then

γv = γ(v1 ⊕ γv2 ⊕ . . .⊕ γk−1vk)

= γkvk ⊕ γv1 ⊕ . . .⊕ γk−1vk−1.

Thus v is fixed by γ if and only if v1 = v2 = . . . = vk and γ
kv1 = v1.

Now by Proposition 3.12 applied to (V1, γ
k, G1), there exists y ∈ G1 such that

FixV1
(γky) = V1(γ

ky, 1) = {0}.
We may write x ∈ G uniquely as x = (x1,

γx2, . . . ,
γk−1

xk), where xi ∈ G1 for all i,
and the left superscript denotes conjugation.

Then

(γx)v = γ(xv)

= γ(x1v1 ⊕ γx2v2 ⊕ . . .⊕ γk−1xkvk)

= γkxkvk ⊕ γx1v1 ⊕ . . .⊕ γk−1xk−1vk−1.

This equals v = v1 ⊕ γv2 ⊕ . . .⊕ γk−1vk if and only if

γkxkvk = v1, x1v1 = v2, x2v2 = v3, . . . , xk−1vk−1 = vk.

That is,

vk = xk−1vk−1 = xk−1xk−2vk−2 = . . . = xk−1xk−2 . . . x2v2 = xk−1xk−2 . . . x1v1.

Therefore γkxk . . . x1v1 = v1.
To summarise, we have proved that if v ∈ FixV (γx) = V (γx, 1), then γkxkxk−1 . . . x1v1 =

v1.
Now take x = (y, 1, 1, . . . , 1). Then if (γx)v = v, we must have (γky)v1 = v1,

whence by assumption v1 = 0. But then vi = 0 for all i, and so v = 0. Hence
V (γx, 1) = {0}, as required. �

Therefore, in view of Theorems 3.10 and 3.13, Theorem 3.1 will follow from Propo-
sition 3.12.

Before proving Proposition 3.12, we record a lemma which will be useful later:

Lemma 3.14. With notation as above, V (γx, ζ) and V (γkxkxk−1 . . . x1, ζ
k) are iso-

morphic as vector spaces.

Proof. As in the proof of Theorem 3.13,

(γx)v = γ(xv)

= γ(x1v1 ⊕ γx2v2 ⊕ . . .⊕ γk−1xkvk)

= γkxkvk ⊕ γx1v1 ⊕ . . .⊕ γk−1xk−1vk−1.

This equals ζv = ζv1 ⊕ ζγv2 ⊕ . . .⊕ ζγk−1vk if and only if

γkxkvk = ζv1, x1v1 = ζv2, x2v2 = ζv3, . . . , xk−1vk−1 = ζvk.

That is,

vk = ζ−1xk−1vk−1 = ζ−2xk−1xk−2vk−2 = . . . = ζ−(k−2)xk−1xk−2 . . . x2v2 = ζ−(k−1)xk−1xk−2 . . . x1v1.
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Therefore γkxk . . . x1v1 = ζkv1. That is, v1 ∈ V (γkxkxk−1 . . . x1, ζ
k). On the other

hand, the above equations make it clear that if v = v1+γv2+ . . .+γk−1vk ∈ V (γx, ζ)
then v2, . . . , vk are uniquely determined by v1. Thus the map which sends v to v1 is
a vector space isomorphism. �

We now prove Proposition 3.12.

Proof of Proposition 3.12. The proof starts with a further reduction:

Lemma 3.15. If γ induces an inner automorphism of G, then Proposition 3.12 holds.

Proof of Lemma 3.15. By hypothesis, there exists h ∈ G such that γh is central in
〈G, γ〉 and hence is scalar. If γh 6= 1 then FixV (γh) = {0}, while if γh = 1, then
γ ∈ G and γG = G. In the latter case, since G 6= {1}, there exists at least one
reflecting hyperplane and so {0} = ∩αHa = FixV (g) for some g ∈ G (by Proposition
2.10). �

In [19, Table D.5, p.278], there is a list of reflection cosets (G, γ0). Any reflection
coset (G, γ) satisfying the conditions of Proposition 3.12, in which γ does not induce
an inner automorphism, has the form (G, γ) = (G,αγ0), where (G, γ0) appears in this
table, and α ∈ C

×. (See also [7, Proposition 3.13]). We check Proposition 3.12 for
all such cosets case by case. That is, it is necessary to show that the reflection coset
(αγ0)G contains an element x such that FixV (x) = {0}, where α ∈ C

×.
The proof relies on the following lemma:

Lemma 3.16. Suppose αγ0G is a reflection coset in V which satisfies the conditions
of Proposition 3.12. If there exists x ∈ αγ0G which acts on V in such a way that
none of its eigenvalues is equal to 1, then FixV (x) = {0}.
Proof of Lemma 3.16. This is immediate from the definition of an eigenvalue. �

We now proceed to check that Lemma 3.16 holds for all reflection cosets satisfying
the conditions of Proposition 3.12. Let ξm denote a fixed primitive m-th root of unity.

Case 1: G = G(m, p, n), γ = diag(ξ em
p
, 1, . . . , 1), where e | p and ξ em

p
is a fixed

primitive em
p
-th root of unity. Note that [19, Table D.5, p.278] treats the cases m 6= p

andm = p separately. For the purposes of this argument they can be treated together.
In this case αγ = diag(αξ em

p
, α, . . . , α). The eigenvalues of αγ acting on V are

αξ em
p
andα. Hence if α 6= 1, ξ−1

em
p

by Lemma 3.16 there is nothing more to prove.

If α = 1 we may assume that e 6= 1 (and hence p,m 6= 1, as e | p), since if e = 1,
αγ induces an inner automorphism. Thus ξ em

p
6= 1.

If n is even define y ∈ G by y1,2 = y2,1 = 1, yi,i = (ξm)
(−1)i+1

if i > 3, yi,j = 0
otherwise. Then y ∈ G and x := αγy is defined by x1,2 = ξ em

p
, x2,1 = 1, xi,i =

(ξm)
(−1)i+1

if i > 3, xi,j = 0 otherwise. It is easy to check that FixV (x) = {0}.
If n is odd define y ∈ G by y := diag(1, ξm, ξ

−1
m , . . . , ξm, ξ

−1
m ). Then x := αγy is

equal to diag(ξ em
p
, ξm, ξ

−1
m , . . . , ξm, ξ

−1
m ) and FixV (x) = {0}.

If on the other hand α = ξ−1
em
p

then αγ = diag(1, ξ−1
em
p
, . . . , ξ−1

em
p
). Again we may

assume that e 6= 1 as otherwise αγ induces an inner automorphism. Define y ∈ G
by y1,2 = y2,1 = 1, yi,i = 1 if i > 3, yi,j = 0 otherwise. Then x ∈ αγG is defined by



TOPOLOGY OF EIGENSPACE POSETS FOR UNITARY REFLECTION GROUPS 13

x1,2 = ξ−1
em
p
, x2,1 = 1, xi,i = ξ−1

em
p

if i > 3, xi,j = 0 otherwise. Once again, it is easy to

check that FixV (x) = {0}. This completes the proof of Lemma 3.16 for Case 1.
The proof of Proposition 3.12 in the remaining cases relies on Corollary 2.15, The-

orem 2.16, and the following lemma:

Lemma 3.17. If γG is a reflection coset, α, ζ ∈ C
×, and x ∈ γG then:

(i) x is ζ-regular for γG if and only if αx is αζ-regular for αγG
(ii) {ζ | ζ is regular for αγG} = {αζ | ζ is regular for γG}.

Proof of Lemma 3.17. (i) The element x ∈ γG is ζ-regular

⇔ V (x, ζ) contains a regular vector v

⇔ V (αx, αζ) contains a regular vector v

⇔ αx ∈ αγG is αζ-regular for αγG.

(ii) The eigenvalue ζ ∈ C is regular for γG

⇔ V (x, ζ) contains a regular vector v for some x ∈ γG

⇔ V (αx, αζ) contains a regular vector v for some αx ∈ αγG

⇔ αζ ∈ C is regular for αγG.

�

Corollary 3.18. If x ∈ γG is ζ-regular, then αx ∈ αγG is αζ-regular (in αγG),
and the eigenvalues of αx acting on V are {αε∗i ζm

∗

i | i = 1, . . . , n}. (See §2.6 for a
definition of the coexponents m∗

i , and §2.9 for a definition of the V ∗-factors ε∗i .)

Proof of Corollary 3.18. This follows directly from Corollary 2.15 and Lemma 3.17.
�

By Lemma 3.16 and Corollary 3.18, if we can find ζ ∈ C which is regular and
satisfies αε∗i ζ

m∗

i 6= 1 for all i = 1, . . . , r), it will follow that FixV (αx) = {0}, where
x ∈ γG is any ζ-regular element.

As the proofs for the remaining six cases are very similar, we present only the most
difficult case here. The full proof is contained in [17].

Case 2: G = G(2, 2, 4), γ =
1

2




1 1 1 −1
1 1 1 1
1 −1 1 1
1 −1 −1 1




m∗
i = 1, 3, 3, 5; ε∗i = 1, ω, ω2, 1; ζ regular for γG ⇔ |ζ| ∈ {1, 2, 3, 6, 12}.

We must choose ζ such that αζ 6= 1, αωζ3 6= 1, αω2ζ3 6= 1, and αζ5 6= 1. Upon
simplification, this becomes ζ 6= α−1, ζ3 6= α−1ω, α−1ω2 and ζ5 6= α−1.

There are 10 complex numbers ζ whose order |ζ| ∈ {1, 2, 3, 6, 12} (all 12th roots
of unity, except i and −i, which have order 4). Of these, three satisfy ζ3 = 1,
three satisfy ζ3 = −1, two satisfy ζ3 = i and two satisfy ζ3 = −i. Hence there
are at least four 12th roots of unity ζ (in fact 7, if we argue more carefully) which
satisfy ζ3 6= α−1ω, α−1ω2. Since all 5th powers of 12th roots of unity are distinct (as
gcd(5, 12) = 1), at most one of these satisfies ζ5 = α−1, and also at most one satisfies
ζ = α−1. Hence we can choose such a ζ as required.
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As mentioned above, the other cases are similar but easier. This completes the
proof of Proposition 3.12 and Theorem 3.1. �

�

Theorem 3.1 describes the principal upper order ideals of the poset SV
ζ (γG). The

description of principal lower order ideals is much simpler. Recall (Corollary 2.8) that
if U is any subset of V = C

n, then GU is the parabolic subgroup of G which fixes U
pointwise.

Lemma 3.19. Let γG be a reflection coset in V = C
n. Let E = V (γ, ζ) ∈ SV

ζ (γG).

Then S̃V
ζ (γG)6E

∼= S̃V
ζ (γGE)

Proof. Suppose V (γh, ζ) 6 E. Then γ and γh both act on E as multiplication by ζ.
Then h = γ−1(γh) ∈ GE.

Conversely, if h ∈ GE then certainly V (γh, ζ) contains E. Note that GE is itself a
unitary reflection group by Steinberg’s fixed point theorem (Corollary 2.8). �

4. Homology of S̃V
ζ (γG)

Recall (Definition 2.18) that S̃V
ζ (γG) is the poset obtained from SV

ζ (γG) by remov-
ing the unique maximal element, as well as the unique minimal element if it exists.
In this section we assume that G is an irreducible unitary reflection group.

The main theorem in this section is the following:

Theorem 4.1. Suppose γG is a reflection coset in V , that G acts irreducibly on

V , and that ζ ∈ C
× is a complex root of unity. Then H̃i(S̃V

ζ (γG),Z) = 0 for i 6=
l(S̃V

ζ (γG)).

Proof. Consider the following propositions:

Proposition 4.2. Theorem 4.1 holds when l(S̃V
ζ (γG)) > 2.

Proposition 4.3. Theorem 4.1 holds when l(S̃V
ζ (γG)) > 2 and G is an exceptional

irreducible unitary reflection group.

Clearly (4.1) ⇒ (4.2) ⇒ (4.3). The reverse implications are also true:

Theorem 4.4. We have the implications (4.3) ⇒ (4.2) ⇒ (4.1).

Proof of Theorem 4.4. (4.2) ⇒ (4.1). It is sufficient to show that Theorem 4.1 holds

in the case l(S̃V
ζ (γG)) 6 1.

The poset S̃V
ζ (γG) can have nonzero homology in dimension at most l(S̃V

ζ (γG)).

Hence Theorem 4.1 is trivially true if l(S̃V
ζ (γG)) = 0.

For the case l(S̃V
ζ (γG)) = 1 we require the following proposition:

Proposition 4.5. If l(S̃V
ζ (γG)) > 0, then S̃V

ζ (γG) is connected.
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Proof of Proposition 4.5. Given two eigenspaces X1, X2, we must find a sequence of
eigenspaces X1 = Y1, Y2, . . ., Yk = X2 such that for each i, either Yi covers Yi+1 or
Yi+1 covers Yi. First note that it suffices to consider the case where X1 = E1, X2 =
E2 are maximal eigenspaces, since every eigenspace is contained within a maximal
eigenspace.

We now require a lemma:

Lemma 4.6. Let X = V (γg, ζ) be a ζ-eigenspace in S̃V
ζ (γG), and let r be a reflection

in G such that r 6∈ N(X). Then dim(rX ∩X) = dimX − 1.

Proof of Lemma 4.6. It is clear that rX ∩ X ⊇ Fix(r) ∩ X. Since r is a reflection,
Fix(r) has codimension 1 in V . Hence Lemma 4.6 follows. �

To complete the proof of Proposition 4.5, we know (by Theorem 2.12(ii)) that
E2 = xE1 for some x ∈ G. Write x = r1r2 . . . rm for some reflections ri ∈ G. If for
some i, ri normalises ri+1ri+2 . . . rmE1, delete it from the expression for x. In other
words, setting x̂ = r1r2 . . . ri−1ri+1 . . . rm, it remains true that E2 = x̂E1. Hence we
can assume that in the expression for x, ri does not normalise ri+1ri+2 . . . rmE1 for any
i. Let Y1 = E1, Y2i+1 = rm−i+1rm−i+2 . . . rmE1 (1 6 i 6 m), and Y2i = Y2i−1 ∩ Y2i+1

(1 6 i 6 m). Denote the product rm−i+1rm−i+2 . . . rm by xi (1 6 i 6 m). Thus
x = xm.

It is clear that, for 1 6 i 6 m, Y2i+1 = xiE1 = xiV (γg, ζ) = V (xiγgx
−1
i , ζ) ∈

S̃V
ζ (γG), since γ ∈ NGL(V )(G). Also dim(Y2i+1) = dim(E1), since xi is invertible.

Hence for 1 6 i 6 m,Y2i+1 is a maximal eigenspace. Also, by Corollary 3.2, Y2i =

Y2i−1 ∩ Y2i+1 ∈ S̃V
ζ (γG). Note the requirement in the statement of Proposition 4.5

that l(S̃V
ζ (γG)) > 0, since otherwise Y2i is the zero space, and does not lie in S̃V

ζ (γG)

by definition. Given that l(S̃V
ζ (γG)) > 0, Lemma 4.6 guarantees that Y2i 6= {0}, and

that Y2i covers both Y2i−1 and Y2i+1 (1 6 i 6 m).
Proposition 4.5 now follows. �

To complete the proof that (4.2) ⇒ (4.1), consider the case l(S̃V
ζ (γG)) = 1. In

this case, nonzero homology can exist only in degrees 0 and 1. By Proposition 4.5,

H̃0(S̃V
ζ (γG)) = 0, and hence Theorem 4.1 holds. Thus (4.2) ⇒ (4.1), as claimed.

(4.3) ⇒ (4.2). By Theorem 1.2, when G = G(r, p, n) the poset SV
ζ (γG(r, p, n))

is Cohen-Macaulay over Z. Hence so is S̃V
ζ (γG(r, p, n)), by Corollary 2.3. Thus

Theorem 4.1 holds immediately in these cases. This completes the proof of Theorem
4.4. �

Hence, in order to prove Theorem 4.1, it suffices to prove Proposition 4.3. That is,

we may assume in the statement of Theorem 4.1 that l(S̃V
ζ (γG)) > 2 and that G is

an exceptional irreducible reflection group.
Let V be a complex vector space of dimension n, G a reflection group acting

irreducibly on V , and γG be a reflection coset in V . See §2.9 for a definition of the
factors εi of (G, γ). Recall that for ζ ∈ C

× a root of unity, we define

A(ζ) = {i | εiζdi = 1},
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where di is the degree of the basic invariant corresponding to εi. Note that there are
exactly n basic invariants. Let a(ζ) = |A(ζ)|.

Proposition 4.7. With the notation of the above paragraph, it suffices to check Propo-
sition 4.3 for all (G, γ, V ) such that G acts irreducibly on V , a(ζ) > 3 and a(ζ) 6= n.

Proof of Proposition 4.7. If l(S̃V
ζ (γG)) > 2, then the dimension of a maximal eigenspace

is at least 3. By Theorem 2.12(i) the dimension of a maximal eigenspace is equal to
a(ζ) and it follows immediately that a(ζ) > 3..

If a(ζ) = n, then applying Theorem 2.12(i) again, the full space V is the unique
maximal ζ-eigenspace. Thus V = V (γg, ζ) for some g ∈ G. But then for any

V (γh, ζ) ∈ S̃V
ζ (γG), V (γh, ζ) = V ((γg)−1γh, 1) = V (g−1h, 1). Hence S̃V

ζ (γG) =

S̃V
1 (G), which is a geometric lattice, and therefore is Cohen-Macaulay over Z. Hence

we can assume that a(ζ) 6= n, and the proof of Proposition 4.7 is complete. �

It remains to check all triples (G, γ, V ) satisfying the conditions of Proposition 4.7.
First consider the special case γ = Id. In this case εi = 1 for all i.

A list of irreducible reflection groups and their degrees is given, for example, in
[19, Table D.3, p.275]. An inspection of this table provides the following cases for
consideration. Here |ζ| is the order of ζ, not its modulus.

(i) G = K5, |ζ| = 3
(ii) G = K5, |ζ| = 6
(iii) G = E6, |ζ| = 2
(iv) G = E6, |ζ| = 3
(v) G = E7, |ζ| = 3
(vi) G = E7, |ζ| = 6
(vii) G = E8, |ζ| = 3
(viii) G = E8, |ζ| = 4
(ix) G = E8, |ζ| = 6

We note immediately that for cases (i) & (ii), primitive 3rd roots of unity are
precisely the negatives of primitive 6th roots of unity. Also (−1) Id ∈ K5, so in fact

the posets S̃V
ζ (G) are identical in these cases. The same argument applies to cases

(v) & (vi), and (vii) & (ix).
As described in the Introduction, the reduced homology of these posets was com-

puted using MAGMA ( [5], [24]), the GAP package ‘Simplicial Homology’ ( [13], [12],
[10], [30]), and (for posets (vii), (viii) and (ix)), RedHom ( [32], [8]). In particular,
MAGMA was used to generate the posets under consideration, while GAP and Red-
Hom actually performed the homology calculations. Here ω denotes a primitive 3rd
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root of unity, while i denotes a primitive 4th root of unity.

H̃j(S̃C5

ω (K5),Z) =

{
Z

364, if j = 2
0, otherwise

H̃j(S̃C6

−1(E6),Z) =

{
Z

475, if j = 3
0, otherwise

H̃j(S̃C6

ω (E6),Z) =

{
Z

649, if j = 2
0, otherwise

H̃j(S̃C7

ω (E7),Z) =

{
Z

87 751, if j = 2
0, otherwise

H̃j(S̃C8

ω (E8),Z) =

{
Z

723 681 if j = 3
0, otherwise

H̃j(S̃C8

i (E8),Z) =

{
Z

21 888 721 if j = 3
0, otherwise

In each case, reduced homology is zero except in top possible dimension. This
completes the proof of Proposition 4.3 in the case γ = Id.

Now consider the case of arbitrary γ. In [19, Table D.5, p.278], there is a list of
reflection cosets (G, γ0). Recall (see the discussion following Lemma 3.15) that if
(G, γ) is any reflection coset where G acts irreducibly, then either γ induces an inner
automorphism, or else (G, γ) = (G,αγ0), where (G, γ0) appears in this table, and
α ∈ C

×. (See also [7, Proposition 3.13]).
If γ induces an inner automorphism, then as in Lemma 3.15 we may assume that

γ is a scalar multiple of the identity. If γ is a scalar multiple of the identity, then

S̃V
ζ (γG) = S̃γ−1ζ(G). By the result for the γ = Id case, Proposition 4.3 holds.
Hence we may assume that (G, γ) = (G,αγ0), where (G, γ0) can be found in [19,

Table D.5, p.278], and α ∈ C
×. Since S̃V

ζ (αγ0G) = S̃V
α−1ζ(γ0G) as in the paragraph

above, it suffices to consider the case α = 1.
Applying Proposition 4.7, and inspecting [19, Table D.5, p.278], there are only two

cases to consider:

(i) G = G(2, 2, 4), γ =
1

2




1 1 1 −1
1 1 1 1
1 −1 1 1
1 −1 −1 1




(ii) G = G28, γ =
1√
2




0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0


 .

The first of these cases is covered by Theorem 1.2, whose proof appears in [16]. For
completeness, the proof is included here.

In case (i), we have di = 2, 4, 4, 6 and εi = 1, ω, ω2, 1. For a counterexample in this
case it would be necessary to find a ζ such that exactly 3 of {ζ2, ζ4ω, ζ4ω2, ζ6} are



18 JUSTIN KOONIN

equal to 1. Certainly ζ4ω and ζ4ω2 are always unequal. This forces ζ2 = 1, in which
case neither ζ4ω nor ζ4ω2 are equal to 1. Hence no such counterexample exists in this
case.

For (ii), we have di = 2, 6, 8, 12 and εi = 1,−1, 1,−1. For a counterexample here
we would need to find a ζ such that exactly 3 of {ζ2,−ζ6, ζ8,−ζ12} are equal to 1.
Now if ζ2 = 1 then both −ζ6 and −ζ12 are equal to -1. Hence −ζ6 = 1 and ζ8 = 1.
Thus ζ2 = −1. But then −ζ12 = −1, and so at most two of {ζ2,−ζ6, ζ8,−ζ12} are
equal to 1. Thus no counterexample can be found here either. This completes the
proof of Proposition 4.3 and Theorem 4.1. �

5. The CM Property for SV
ζ (γG)

In this section we examine the Cohen-Macaulay property for the poset SV
ζ (γG),

and prove Theorem 1.1.
The first step in the proof of Theorem 1.1 is a reduction to the case where V is

irreducible as a G-module. Although Theorem 1.1 concerns reflection groups, we will
make use of the following lemma for reflection cosets. G, γ and V all have their usual
meaning.

Lemma 5.1. If S V
ζ (γG) is Cohen-Macaulay over Z for all (G, γ, V ) such that V is

irreducible as a Ĝ = 〈G, γ〉-module, then S V
ζ (γG) is Cohen-Macaulay over Z for all

(G, γ, V ).

Proof. Suppose V = V1⊕. . .⊕Vk, where each Vi is an irreducible 〈G, γ〉-module. Then
G = G1 × · · · ×Gk, and γ = γ1 ⊕ · · · ⊕ γk, where Gi acts a reflection group in Vi and
trivially on Vj for j 6= i, and γi ∈ GL(Vi) normalisesGi. Suppose g = (g1, g2, . . . , gk) ∈
G, and v = v1+· · ·+vk ∈ V . Denote by γ′

i the restriction of γi to Vi. Then v ∈ V (γg, ζ)
if and only if vi ∈ Vi(γ

′
igi, ζ) for each i. Hence SV

ζ (γG) ∼= SV1

ζ (γ1G1)×· · ·×SVk

ζ (γkGk).
The result now follows from [2, Theorem 7.1] (thanks to Alex Miller for pointing out
this theorem1). �

Noting that when γ = Id, the proof of Lemma 5.1 never leaves the class of reflection
groups, Theorem 1.1 will follow if we can show that SV

ζ (G) is Cohen-Macaulay over
Z whenever V is irreducible as a G-module.

By Theorem 1.2, it suffices to show that SV
ζ (G) is Cohen-Macaulay over Z whenever

G is an exceptional irreducible reflection group.

By Corollary 2.3, it is equivalent to show that S̃V
ζ (G) is Cohen-Macaulay over Z

for all such G.
To do this, we make use of Lemma 2.1. The statement that H̃i(S̃V

ζ (G),Z) = 0 for

i 6= l(S̃V
ζ (G)) is just the case γ = Id of Theorem 4.1. Now choose X = V (h, ζ) ∈

S̃V
ζ (G) and consider lk(X) = S̃V

ζ (G)<X ∗ S̃V
ζ (G)>X . By Lemma 2.1 it will suffice

to show that lk(X) is CM. By Proposition 2.2 it is enough to show that each of

S̃V
ζ (G)<X and S̃V

ζ (G)>X is CM.

1Theorem 1.1 was originally proved over F. The use of this theorem of Baclawski affords a proof
over Z.
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Examining S̃V
ζ (G)>X first, we know thatX is contained in some maximal eigenspace

E. Hence SV
ζ (G)>X is a principal upper order ideal of [E, 1̂], which is a geometric

lattice by Corollary 3.5. Hence SV
ζ (G)>X is a geometric lattice too (see [37, Lecture

3]), and so is certainly CM. Removing unique minimal and maximal elements from
a poset does not affect whether the poset is CM or not, by Corollary 2.3. Thus

S̃V
ζ (G)>X is CM too.

As for S̃V
ζ (G)6X , a similar argument to that used in Lemma 3.19 shows that

S̃V
ζ (G)6X

∼= S̃V
ζ (hGX) ∼= S̃V/X

ζ (hGX). The last isomorphism holds because every
element of hGX actis by multiplication by ζ on X. Note that hGX is a genuine
reflection coset, not just a refection group, since g acts by multiplication by ζ on X.

Now if l(S̃V
ζ (G)6X) 6 1 then S̃V

ζ (G)<X is trivially Cohen-Macaulay.

If l(S̃V
ζ (G)6X) = 2 then l(S̃V

ζ (G)<X) = 1, and S̃V
ζ (G)<X is Cohen-Macaulay since

it is connected, by Proposition 4.5.
A list of irreducible reflection groups and their degrees is given in [19, Table

D.3, p.275]. An inspection of this table reveals that the only other possibility is

l(S̃V/X
ζ (G)6X) = 3, when X is an eigenspace of dimension 1, and maximal eigenspaces

have dimension 4. This occurs for only three posets: S̃C6

−1(E6), S̃C8

ω E8) and S̃C8

i (E8),
where ω and i are respectively primitive 3rd and 4th roots of unity.

Now if V/X is reducible as a Ĝ = 〈G, h〉-module, then Lemma 5.1 shows that

S̃V/X
ζ (hGX) is the product of smaller posets of length less than or equal to 2, which

must be Cohen Macaulay by the arguments used above. Hence S̃V/X
ζ (hGX) is Cohen-

Macaulay, by [2, Theorem 7.1]. Thus we may assume that V/X is irreducible as a

Ĝ = 〈G, h〉-module.

If V/X is irreducible as aG-module, then H̃i(S̃V/X
ζ (hGX),Z) = 0 if i 6= l(S̃V/X

ζ (hGX)),

by Theorem 4.1. Lower order ideals of S̃V/X
ζ (hGX) have length less than or equal to

2, and hence are Cohen-Macaulay by the arguments used above. Upper order ideals

of S̃V/X
ζ (hGX) are also Cohen-Macaulay by Corollary 3.5. Hence if V/X is irreducible

as a G-module, then S̃V/X
ζ (hGX) is Cohen-Macaulay as required.

So assume S̃V/X
ζ (hGX) is reducible as a G-module. For the three cases we are con-

sidering, V/X has dimenion either 5 or 7. Since V/X is the direct sum of isomorphic
vector spaces Vi, each of these vector spaces must have dimension 1.

But then by Lemma 3.14. maximal eigenspaces in S̃V/X
ζ (hGX) must have dimension

at most 1, which contradicts the assumption that l(S̃V/X
ζ (G)6X) = 3.

This completes the proof of Theorem 1.1.

Remark 5.2. The question as to whether SV
ζ (γG) is Cohen-Macaulay over Z for all

reflection cosets γG is open. By Lemma 5.1, it would suffice to prove this result for

all (G, γ, V ) such that V is irreducible as a Ĝ = 〈G, γ〉-module, but this is unknown
at this stage.
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