HIERARCHIES OF NONLINEAR INTEGRABLE ¢-DIFFERENCE
EQUATIONS FROM SERIES OF LAX PAIRS

MIKE HAY

ABSTRACT. We present, for the first time, two hierarchies of nonlinear, inte-
grable g-difference equations, one of which includes a g-difference form of each
of the second and fifth Painlevé equations, qP;; and qPy,, the other includes
qPpqr. All the equations have multiple free parameters. A method to calculate
a 2 X 2 Lax pair for each equation in the hierarchy is also given.

1. INTRODUCTION

Nonlinear evolution equations occur frequently in physical modeling and ap-
plied mathematics. Nonlinear integrable lattice equations provide a natural dis-
crete extension of classically integrable systems. For example, the lattice modified
Korteweg-de Vries equation

X —rx
LMKAV : 241 ms1 = Zim EP I+1,m l,m+1)

PTim4+1 —T xl-‘rl,m)

provides an integrable discrete version of the well-known modified Korteweg-de
Vries equation. More recently, there has been great interest in nonlinear ordinary
difference equations because such g¢-discrete Painlevé equations are of fundamental
interest in the theory of integrable systems and random matrix theory amongst
other subjects. The integrability of such equations lies in the fact that they can be
solved through an associated linear problem called a Lax pair.

Reductions constitute a natural connection between lattice equations and or-
dinary difference equations. The LMKdV equation is de-autonomized by allow-
ing p and r to depend on ! and m and there are known reductions from the
non-autonomous LMKdV equation to g-discrete forms of the second, third and
fifth Painlevé equations, denoted qPy;, qPypp, and Py respectively [1, 2]. Differ-
ent types of these reductions are possible, one of the simplest of which is to set
Zim+1 = Tptd,m for some positive integer d. In fact the reductions that take
the LMKdV equations to qPy; and Py, are of this type with d = 2 and d = 3
respectively. There apparently exist an infinite series of such reductions that re-
sult in equations of arbitrary order, which suggests the existence of a hierarchy of
equations. In a recent paper [2] we established a connection between these non-
autonomous reductions and reductions of a Lax pair for the LMKdV equation itself.
In this way, Lax pairs for non-autonomous versions of qPy;, Py, and gPy, with
multiple free parameters were discovered.

Here we find Lax pairs for higher order equations and we thereby lay the ground-
work for a hierarchy of equations. Two hierarchies are shown to exist, at the base
of one lies qP;; and qP~;, while qPyy; lies at the base of the other.

While there is a relatively large body of literature focussing on continuous
Painlevé hierarchies [4, 5, 6] and some results concerning hierarchies of d-discrete
nonlinear equations [3, 4], the problem of ¢-discrete hierarchies has been more elu-
sive. Although a hierarchy of integrable nonlinear g-difference equations was found
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in [7], we believe that the results presented in this work are first example of such a
hierarchy found by expansions of Lax pairs.

The paper is organized as follows. In §2, we derive the formulas used to calculate
quantities that exactly describe an equation in one of the hierarchies. These are
given in terms of the same quantities describing the equation at a lower order
and so we thereby obtain a recursive method of finding the hierarchies. We go
further to purport a general formula that yields those quantities for any member
of either hierarchy, and thus any equation in the hierarchies with its Lax pair. In
§3, we clarify the application of the formulas found in §2 and use them to confirm
a known result. In §4, we derive new equations and Lax pairs. We end the paper
with a conclusion where we also point out some open problems.

2. How 17O CONSTRUCT THE HIERARCHY

In this section we will establish the existence of two hierarchies of nonlinear, inte-
grable, ordinary g-difference equations that are each obtainable from the LMKdV
equation via a reduction. In section 2.1, the procedure for constructing the hi-
erarchies will be derived in relation to the first hierarchy, which corresponds to
reductions of the type ;41 = Zj4d,m for some integer d. Subsequently, in sec-
tion 2.2 we shall outline an analogous process that leads to the second hierarchy
corresponding to reductions of the type @ m+1 = 1/Zi4d,m-

We establish the existence of the hierarchies by developing formulas that con-
struct a member of the hierarchy from the preceding, lower order member. However,
rather than iterating the equation or terms in the Lax pair directly, as has been
the procedure used for some other systems [3], we will derive formulas for iterating
a set of coefficients, introduced in equation (2.14), that describe the Lax pairs for
the equations in the hierarchy.

2.1. Hierarchy corresponding to reductions of the type z;,,11 = Zitd,m-
Begin with the linear problem

v(l+1,n) = L{,n)v(l,n),

v(il,n+1) = N(l,n)v(l,n). (2.1)

whose compatibility condition is L(l,n + 1) N(I,n) = N(I 4+ 1,n) L(l,n). Hereafter
we adopt the notation o = v(l + 1,n) and o = v(l,n + 1). Now set

. ( )z —k/(m))’ (2.20)

“kz/A 1
N = ap + azk® + .. + azpk* bik + b3k + ... + bopy 1 K*PEL (2.2b)
T\ ak ek oA eop kPEY do + dok? 4+ dopk?P :

where k is associated with the spectral variable n such that k = kgq™, and =, A and
all of a;, b;, ¢;,d; are functions of [ alone. The diagonal entries of the N matrix in
the Lax pair contain only even powers of k, including a term constant in k, up to
k2 where p is a positive integer. The off-diagonals of N contain only odd powers
of k up to k?’*! depending on which part of the hierarchy we are considering.



HIERARCHIES OF ¢-DIFFERENCE EQUATIONS 3

Compatibility occurs when LN = NL. It is not difficult to show that the
compatibility condition can be written as follows

1, - i— .
a; = a;+ X(xbi_l - chc - ), ieven (2.3a)
- 1
xb; = b+ X(C_li& —qd;—1), iodd (2.3b)
Ci 1 - .
CE = % + X( i1 —qa;—1), iodd (2.3¢)
B 1.6 B .
i = d; X(C ! —qxbi_1), 1 even (2.3d)

corresponding to entries (1,1),(1,2),(2,1) and (2,2) respectively. Some equiva-
lences may be found between equations (2.3) if, at this point, we introduce the
quantities

A = 0 reven (2.4)
Tb;, i odd
D, — d;, ) 2 even (2.5)
¢i/T, i odd
so that equations (2.3) become
%Zi—l = A(ZIL — Az) + qu_l, 1 even (263)
A, = /\(%Zi — A;) +¢Di_1, i odd (2.6b)
ﬁifl = /\(Eﬁl — Dl) +qA;_1, 17 0dd (26C)
T
Ebi_l = /\(51 — Dz) + qA,;_l, 1 even (26d)
x

In equations (2.6) we may substitute

N\ (3 dd
- - - .

X’i = <x> = x/x7 Z 0
T 1, 1 even

so that either equation (2.6a) or (2.6b), with ¢ even or odd respectively, will become

Ay 4; )
= gD + ML — Ay, 2.
=D NG - A, v (27)
and similarly equations (2.6¢) and (2.6d), with ¢ odd or even respectively, become
ﬁi—lXi—l = in—l + )\(ElXZ - Di), Vi (28)
By repeated use of equations (2.7) and (2.8) respectively, we arrive at the following
A = XilgDi— > N7U(A; —qDy)] (2.9a)
j=it+1
_ 1 U L
D = +laA— Y NUD, —qA)) (290)
‘ j=it1

Where m is equal to the greatest degree of the polynomials in k located in the
entries of the N matrix (2.2b), i.e. m is either 2p or 2p+1. Now add ¢/X; x (2.9a)
to X; x (2.9b) so that

q 7 Ao 27, ) - 2 j—i ).
A+ XiDi = ¢*Di+ adi + Z;l(q DN 'D; (2.10)
J=1
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However, at ¢ = 0, (2.6) shows that both Ay and Dy are constant, meaning that
(2.10) at ¢ = 0 becomes

m
—Dy = ZAJ‘Dj
j=1
which we can rearrange so that
m .
—Dy =Do/A+ Y _N7'D; (2.11)
j=2

Similarly ¢(2.9a) + (2.9b) gives us an expression for A;

—Ar=Ag/A+ > N4, (2.12)

j=2

These expressions for A; and Dy, (2.11) and (2.12), can be substituted back into
(2.7) and (2.8) to find expressions for Ay and Dy in terms of A;, D; with i > 2. We
can continue this process to successively calculate all the terms in the Lax pair, A;
and D;, thus resolving the Lax pair for a particular value of m. However, in the
interest of establishing the existence of a hierarchy of equations, we will proceed to
derive a formula for calculating successive iterates from previous ones. To do this
we first rewrite (2.9a) as

—Ai+qXiD; + X; Y N7 (qDj — Aj) =0 (2.13)
J=it+1

We aim to calculate each of the quantities in the Lax pair, A;, D;, in terms of the
remaining quantities, A;, D; Vj > i and Ag,Dp. In general any A; of interest might
be found in terms of all A; and Dj;, Vj > i. However, when the calculations are
performed, it is observed that terms A; only depend terms A; (not D;) so it is
conjectured that we can write any A; or D; as

—Ai = ajAo+ Y a4, (2.14a)
j=i+1

-D;, = (SE)D()—F Z (S;Dj (214b)
j=i+1

Where we have introduced a series of coefficients ozé and (5;- that need to be found.
Substitute the expansion (2.14a) into (2.9a), noting that Ay = constant, to get

apAo+ Y abA;+qXiDi+X; Y N7 gDy — Aj) =0
j=i+1 j=i+1
which, upon exploiting (2.9a) again to replace Zj, becomes
ahAo — qXi6hDo+ D aiX; > NI (gDy — Ay)
j=i+1 k=j+1

+ Y AD XN T = 8)) + @ X] - N TA X =0
j=it1
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Now we may rearrange the double sum to arrive at the following
déAo — le(SZ DO + DH.lq[X()\ — 62:_’_1) + 6L§+1Xi+1] — AAH_lX'

+ Z{DJq (N0 4 al X + Z N7FXal)
j=i+2 k=i+1
j—1
—A;NTX 4 > NTEXap) =0 (2.15)
k=i+1

A repeat of this process beginning with (2.9b) brings us to

81y = AD;q
Xz+1 Xz

m _ 5t Jj—1 N —k§i
+Z{qu A”— al)+ L+ ka]

<i ai 1 i
doDo — qfiAO + Az‘+1Q[Z(>\ — Qi) +

j=it2 X; k=it+1
N )\J ki
e by =0 (2.16)

k=i+1

To calculate the next sets of coefficients o™ and 5§+1, j=14+2,...,m, we must
combine equations (2.15) and (2.16) in the correct way. We claim that we can
eliminate the quantities D; by adding ¢(2.16)+dj /(5§ X;) (2.15), which tallies to

apdy L) , oLy Oi 1 _)‘Sfﬂ
AO(X_(Si q X‘)+Az+1{q [Xi()\ Qi) + Xi} i }

L0 NTREL L NS S VRNl
J—i__ at J k1_ 0 ko™ _
+§ A{q >\ )+t § X =+ § Txe )} =0
j=i+2 T k=it1 0 k=i+1 0

(2.17)

It is not obvious that every D, should be canceled out in the above sum but this
occurs in every calculation performed to date and we conjecture that it is always

the case. From here we can make —A;;; the subject and so find the sought after
coefficients

a8 — al s
— A = A o 0% q olo _
[5 (A _ao) + X 51+1] AXidy
7 7 ol /\j_k‘sing 151 i—k%i~J
+ZA{ ¢ [0V~ j) Zk H—l#] (N~ 5X+Zk it+1 N=R5gaq,)
j=it2 [56( —ap) + %15’%1] AXi6
(2.18)
Comparing (2.18) with (2.14a) shows that
—igi — i)
AR — @o% — 4 % _ (2.19a)

¢*5p[A —aj + 5, +153+1} )‘Xi‘%

2501 NF§EX,
ottt = Gi(a,é,X){q 0[ Zk i+l Xy ‘] (2.19Db)
751()\3 ¢ +Zk z+1 aka)}
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Where G; in (2.19b) is the same as the denominator in (2.19a). In fact we shall
say

agtt = 72{ ((Z g ;8 (2.20a)
i1 (a 4,X)
= @ d.X) (2.20b)

The H and G quantities in (2.20) are defined by comparison with (2.19) where
we have introduced the bold face notation « to signify all «a, @, etc, with any
superscripts and subscripts.

Naturally, we must also repeat the operations to find an expression for the other
coefficients &%, this begins with adding ¢(2.15)+a$X;/af (2.16), and leads to

Jitl = B — q255°‘6 (2.21a)
0 - 41 _1 )\&z *
Gah[\ =0l +% > en z+1] XO
. 1 {q [ 51 5‘ Z M- k@ZXk]
Gt = Gel/X) 1 1 k kﬁ(;gl Xi (2.21b)
—ap(N 7'/ X; +Zk i1 Xk 2}

Notice that the quantities H and G from (2.20) arise again in equations (2.21) but
this time as

, Hi(d, 0, L

girt = =0 ’O">1<> (2.22a)
Gi(57a7i)

| Hi(5,a, L

s H0e ’f) (2.22b)
Gi(éaaaf)

Importantly, since aj = 4§}, (2.20) and (2.22) indicate that (A, x) = 61( 1) for
i > 1. Hence, we only need to calculate the coefficients aj in practice as 5; follow
from these results.

Because these coefficients exactly describe a Lax pair and an associated nonlin-
ear equation, we have shown that this system does indeed constitute a hierarchy
by constructing a general operation that takes the members at any level of the
hierarchy to the next level. To find a particular Lax pair in the hierarchy, we trun-
cate the series at some point A,,, D,, say, and use the coefficients to calculate each
of the terms A;, D; that appear in the N matrix of the Lax pair, the L matrix
is always the same. The equation associated with any Lax pair can be found via
the compatibility condition. We may also continue to find higher order members
of the hierarchy by subsequently reinstating some of the terms A,, D, with ¢ > m
and calculating the coefficients needed to describe those terms, aé and (5;»7 through
equations (2.19) and (2.21).

2.2. Hierarchy corresponding to reductions of the type x,, 11, = 1/%m i14-
The formulas for the coefficients that were found in the preceding section corre-
sponded to equations that can be obtained from the LMKdV equation via the
reduction & = x;44. However, in [2] it was shown that reductions of the type
& = 1/xy44 can also be used and that these reductions lead to ¢-discrete Painlevé
equations as well. The hierarchy of equations that springs from this type of reduc-
tion has Lax pairs that are very similar to the ones used in section 2.1 and fit easily
into the present framework. The main difference between the two sets of Lax pairs
can be described in terms of the spectral parameter k. The Lax pairs in section 2.1
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all have the following form:

N = a0+a2k2—|—... +a2pk2” blk—‘rbgks—i-...—‘rbgpilkﬁQPil
T\ ek ek 4 e kY do + dok? + .+ dopk®P

Observe that the terms that contain the lowest power of k, that is terms that are
constant in k, appear in the diagonal entries of N. Also note that the other half of
the Lax pair, the L matrix from equation (2.2a) remains the same for both types
of reduction.

Moving now to the hierarchy associated with reductions of the type & = 1/x;44,
we find that the associated Lax pairs have a form similar to the former case, except
here the lowest powers of k appear in the off diagonal entries. This can be achieved
simply by removing the constant terms from the diagonal entries.

0,2]'{32 +...+a2pk2" blk+b3k’3+...+b2pi1k2pi1
N = 3 2p+1 2 2
Clk+03k +~~~+02p:i:1k P ko ++d2pk P

We can find the hierarchy that arises from this case in a congruent manner to
the last with only minor alterations. The differences here arise because A; is now
the first term in the series but it is not a constant, as was Ag in the previous case.
Instead A; = B12%, $1 = constant, which introduces additional factors of Xy = Z/x
into the equations after (2.14a). Following the same procedure as in section 2.1, it
is not difficult to show that in this case the formulas analogous to (2.19) are

G10IX2 — g2aio]

ottt = : : — (2.23a)
Q28N —ai,, + XXH&;H] AX; X6
1 i kSLX1
Wit — g {a®0iV T —af +° X +Zk i+1 Xikk] (2.23b)
J IV TIX X+ S M RaE X X))

Where G; in (2.23b) is the same as the denominator in (2.23a). We will present
the first few equations in this hierarchy in section 4.2

2.3. General Coeflicients. It is conjectured that all the coefficients for the hier-
archy of equations that arise from reductions of the type &y, 41,1 = Tm,i+4 are given
by the following equations

—k j—k— j—k—Ik_o k—2 XI ; k—1 ¥
h=1,h odd h— 1k~ i
ak = § § E ° ket H N (2.24a)
. k—2
1=0 i2=0 ir-1=0 Hg:O,g even XIQ_kal f=0

k—1,\ ~' k-2 -1
h g
h=0 g=0

Where I, = S8 i, ig = j — k — Ij_1,
_ =1 _
X, - (3‘:) T T/x, z:odd
T 1, 1 even

and we use the notation A = Ajy¢.

These formulas can be used to find any coefficient of interest, which vastly de-
creases the number of calculations required to find an equation of any order in the
hierarchy.
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We obtain similar results for the coefficients for the hierarchy corresponding to
reductions of the type Tp41; = 1/Tpm 144

(-1)F

. . : g
j—k j—k—I, j—k—Ix_2 Hk*2 X k=1
= Iy—In—1 £
ot = S5 Ly | Hamog e X [[ A 2250
i+l k—2 x
11=0 1i9=0 ip—1=0 h=1,h odd thffk_l f=0

E—1,\ "1 k-2
h g
ot = (H A) I Xxrgen (2.25D)
h=0 g=0

These coefficients oz?jtll are equal to (5;? from the first hierarchy.

3. A KNOWN EXAMPLE

In this section we will implement the formulas (2.24) to explicitly find a known
example. The procedure runs as follows:

- First, we decide how many terms we will keep in the Lax pair, i.e. we decide
which A;, and D; will be nonzero, up to i = m say.

- Second, use equation (2.24) to calculate all the coefficients a§» up to a1,

m
It is necessary to calculate every ozé- with 7 < m and i <m — 1 in order to
specify the Lax pair.

- Third, calculate the terms A; and D; from equations (2.14a) and (2.14b),
noting that any ¢’ is equal to o with X;, X;, X, ... replaced with 1/X;,

1/X;,1 /?u .... We may then find the corresponding nonlinear equation
using the compatibility conditions (2.7) and (2.8).

For our example we shall retain only those terms A;, D; with 0 < ¢ < 3, which
causes there to be two terms in each entry of the N matrix of the Lax pair (see
(2.2b)). A Lax pair of this form was already presented in [2] where it was shown
to correspond to qPry, we expect the same to occur here.

The next step is to calculate the coefficients ag», 5} uptor=2and j =3. We
begin with the coefficients o and ¢}, for which inspection of equations (2.11) and

(2.12) indicates

ol =g =N (3.1)

Directly from (2.24) we find
ad = —1/(0\X,) (3.2a)
A = A+NX, (3.2b)

We have now calculated all the coefficients needed for the present example but we
will list the next four as well, for future reference.

o = AN +AN/X+ N2 (3.3a)
a2 = N HAN/X+ AN+ 0/X, (3.3b)
aZ = N ENNXTFAN /X N (3.3¢c)
a2 = N FNN/X BN /X MV X (3.3d)

At this point we use the coefficients to calculate the values of the nonzero terms
in the N matrix. Since Ay and Az are at the ends of the sequence, we can calculate
their values directly from (2.7), using the appropriate values of ¢ in that equation.
Trivially, these are found to be Ay = ag = constant and Az = Tby = ThoZ/x where
T, is an arbitrary period two function of I and ¢ = ¢'. The lower case ag and bs
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are the original variables in the N matrix, see (2.2b). Using (2.14a)
7A2 = OtgAO + OlgAg
apT Mt TooZ
- )\ e
AT O+ T ) T

We then use the coefficients from the previous step to calculate A;

—A1 = Oé(l)AQ —|— OééAQ —|— OzéA:;
1 T Mo
= a(~+=<)—— 3.5
o5+ 52) = 2 (35)
Finally, we can obtain the related equation by substituting these values into (2.7)
at ¢ = 3 whence we recover qP; as expected. The form of the equation is
- Tory

y(yy — Tor)

where logr = 4o + 71 (—1)! — ¢l/2, v,7; = constant, and y = &/Z. Actually this
version of qPy; contains more parameters than those found in [1, 2] as v and 75,
which are described after the Lax pair below, were not present in those papers. The
corresponding Lax pair is

I - Z/x  —k/(Ax)
N —kZ/A 1 ’
N ao + K585 — (A4 ) B k(=225 + 55) + MPo) 4 1 T
k(—doZ(} + =) + AT20Z) + Taoxk®  do + k>8I — k2(\ + 22) Taow

yy = (3.6)

B

N

The terms in the N matrix are related to those in (3.6) by v = do/ag, T» is an
arbitrary, period-two function of I and r = Ao /ag where o = ¢'. The spectral
parameter is n and it enters the Lax pair via k = ¢™.

4. HIGHER ORDER EQUATIONS

Now that the formulas for finding all the equations in the hierarchy have been
derived and their use explained, we will write down some higher order equations
and their associated Lax pairs. Section 4.1 will deal with equations obtained from
the LMKdV equations via reductions of the type %41, = T, 1+q and 4.2 will deal
with the type Tm+1,0 = 1/Zm i+4d-

4.1. Equations Corresponding to Reductions of the Type =, 11, = Tm,i4+d-
This subsection pertains to higher order equations that can be obtained from the
LMKDV equation by using a reduction of the type & = ;14 where d is some
positive integer. The coefficients, a?ﬁ that will be required for all of the equations
presented in this section are calculated using (2.24) and are listed below.

ol = 1/(AMX,)
- X
ai S >\+)\X1+T1
1
- MY, -, =
af = AN 4MX + 25+ T R N2
X17 1
_ AAXT =AM
3= N4ANX = 2+ 228
ag 1+ x, + +X1
S\QXX1 5\3X1

A2+ 28X+ S22 LN, + 2L
1 X1 1 Xl
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The Lax pair and associated equation that is achieved by truncating the series A;
at Ay was derived in [2]. The equation is qPy,, which can be obtained from the
LMKdV equation via the reduction & = z [1, 2].

1+ Thrw

= (4.2)
Tor +~yw

qPy @ ww =
Where w = /%, v = constant, Ty is an arbitrary period-two function and logr =
Yo + 7154 + 7252 — gl /3, with 7, = constant. Noting that X; = Z/x, we can use the
coefficients Oz;» to find the Lax pair for this Py, equation through (2.14a). The Lax
pair lies below and the relationships between the terms in the Lax pair and those
in the equation (4.2) follow.

L ( %[z k/(Az)) (4.3)

“kE/A 1
x x T
N == kz = fr—pd =—
H a0t Rl 3E T 55 T e
—  AZ AT AT —
+Too(228 + 2228 4 200) | T
x T z
1 — A k3 — X A A
Nip = —kao(f-f——i_:"‘:i:;)_]ﬂBU?— 7(:1()E+T2 (f'\*i é)
A AT \¥1 T ML T T T
T Fr  Ix =~ K3dyz \e AT
N. = —kdo(=+ =— + =) — kToo T — ——= Too(A\T + — + —
21 0()\+)\x+)\x) 20AME — == + Tho (AT + =+t )
z T T
Ny = do+ Kk do(—=— + =—=— + —
22 o+ 0()\)\3; + e + )\)\mf)

Mz A\TZ AT
+To0 (== + —=— + =) + k'Tho

z T z
Where A = A(I), k = koq", n being the spectral parameter, and ¢ = ¢'. The
compatibility condition for this Lax pair produces a series of equations that are

either identities or one of two slightly different copies of qPy,. These two copies of

qPy are equal if qi = ), there are no other restrictions on the parameters. To get
from the form of qPy, that comes directly from the Lax pair to the form as listed in

(4.2), we set 7 = A\g /ag, v = do/ag and Ty remains as is. This type of condition
on A is common to every equation that has been calculated by the author. Indeed
it is expected that, when considering a Lax pair with /N matrix truncated at A;, A
must satisfy gA(I +7 — 1) = A(l) and r = Z [[},_o A + h).

We also point out that if one were only interested in this Lax pair and equa-
tion, the coefficients oz? with 7 > 4 would be superfluous, they are written above
because they are required to find subsequent Lax pairs and equations listed below.
Continuing to the next level in the hierarchy, we obtain the coefficients:

ab = —1/OMNX( X))
A AX:T X
ab = A+ =
> Xl X1 lel
A OAOXT KT wy c=— XL =y A =
ag = N+ + L 222l N X + 2 e 2 22 0
X1 X XX, X, X,

Ceasing at As yields a new Lax pair for a fourth order equation also written in
[2]. The associated equation, given below, is a reduction of the LMKDV equation

.4 .4 . . =
under £ = x. The notation x = ;44 is used instead of  because too many bars
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become difficult to read.
70 B 1 —"Tergyy
= gyy —Tor
where y = z/Z, logr = vo + y1i' + vo(=1)! 4+ 43(—i)! — ¢l/4 and v, = constant.
The relationship between r and quantities in the Lax pair for this equation is

_—=4 4
r = Ao /ap and gA = A to ensure compatibility. The L matrix in the Lax pair,
as always, is as in (4.3) and components of the N matrix in the Lax pair are

N = aptRag(-te 4 oy T T T, T
11 = Qo ol—== =—C = —== T "=_ —=
AT CONIT  ANEz AT XEr M
KT (OMNE + AZ\/E\—Z + Aif\% + 555\%)
x xx rr x
LTI R L
AT z T
T T x — —==1
Nip = —kao(~— _ b ) KT M-
= e e T T T
) : "
_kgao( —= = ,§,4+ :i 4 + ,:i 4)
AT ANZz AMAzz Azz
MI AE AMZ AZE AT, KT
kO Too (58 + S 4 200 4 200 2T O | 220
= rxr = X
X TXrx T
z % %1 Ie ==
Not = —kdo(> + 22 + 22 + Z8) 4 kTho AT
A AT X
= =4 _4 _4
kP do( =+ o+ Ty T
A OANE AN WD
=__ = 4 oz s 4 = 4
AMIZ  ANET  ANZT ATTT AN
+EToo (AT + WL AT AT AR :m) + K Thox
x X X T xr
7 Tz 57 z Tz i
N22 = d0+k2d0(f+ = + —= + =+ —= +?)
AANT  ANZZ Az AAT ANEE ANT
— 4 _= 4 7254
KT (MM + AMEE + AMZZ + AAND)
X xrx rxr X
kdo At AF AE AR
R i T R )
Az T T r I

We will list one more higher order equation. The next set of coefficients that we
require are

_==4__ —
a) = 1/(OMINX X))
= = — 4
- A X1 X AX1 X
ol = AN4AX, bt 2aad
1 X X, X,

(4.5a)



12 MIKE HAY

Where Xy = Z/x as usual. These coeflicients lead to a Lax pair with the L matrix
as before (see (4.3)) and the N matrix below.

Nll = a0+/<:2a0( ‘Zj ISy %+T+77§+ E:4+:
ez M Xz aEr M Er (S

) L RPTao (A
AIT  M\Iz 2
T

S
>
N
Kl
8
>
>
8
>
>
8
8

8
>
>
8l
8
>
K| >
K| K
+
1l

>
>
>
S
>
>
>
Kl
+
>
K >
pell
>
K| >1
Sl
8
>
>~
>
Kl
>
>
>
ISl
(5PN
>
>l
ST
SIS
>
>l
S
Kl
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Noo = do+ k*do( + =+ == 1 — + — -
Mz MTANT gz MT ez ()3
IT azc% E?c _==¢ —:24:% -—4:10:%
- —— + =)+ FTeo (AT + AAZ + A==
AT M\T7T i)\fc T x T
i 2 iz s
+)\/\/\>\—+)\/\/\>\—)+k4do( ——t—— Tt ——
Tz AAZ NNMNE AWZZ AT
4 —= _4 _ - _ = _
72 MIZ AT MEZ Az AT AaE
+7)+kT20'( 1 +T+ 1 + =+ —+ 1
)\)\)\)\xf Tx T Tx z r rx
~=_- = = =45 =4_5
MIT AT AT A\ 5
1 +—+ =+ > ) + k°Tso
TT LT z TT

Incredibly this cumbersome Lax pair has as its compatibility condition the follow-
ing, rather simple, fourth order equation

_ 11+ Tyw
Tw = — 12w (4.6)

= wryww+Tor

g

4, . , .
where w = x/% and logr = —ql/5 + 7o + Y155 + Y252 + 358 + 1458, with ; =
constant, js = 1*/%, and T» is an arbitrary, period-two function of I.

4.2. Equations corresponding to reductions of the type x.,, 11, =1/%p i14-
Here we will write down some equations, with their Lax pairs, from the hierarchy
that arises from the LMKdV equation via reductions of the type Zm+1,; = 1/Zm 144,
d = constant. The procedure used to obtain these results is just the same as
that explained in section 3. However, as outlined in section 2.2, now A; = (1z7,
(1 = constant, is an end point of the series of terms in the Lax pairs, and the odd
and even powers of k have been redistributed. We will not list the coefficients used
in finding the results presented here because they are easily obtained from those

used in section 4.1. To find al}C as requlred with the present hierarchy, use af 11

from section 4.1 and replace X i — 1 /X i
The first non-trivial equation in this part of the hierarchy is qPyy;:

_ 1+ TQTjQ
=~ 4.7
T ST Tor (4.7)

which was found with the following Lax pair in [2], except here the equation has two
extra free parameters coming from the 75 term which is an arbitrary, period-two
function of I, and v = constant. The Lax pair has L as in (4.3) and

( R2(2E 4 \ThoZ) kﬁlx—i—k?’/\Tgf )

kéz —+ TQUZL’ k'2( —+ )\TQU ) (48)

AT

and A = ¢ for compatibility so r = Ao /B2 = g ~" with vy = constant.

The next equation in the hierarchy is an alternative qPy;. After setting y = Z&

1—Tory

4.9
vy — Tor (4.9)

Jy =y
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The N matrix of the Lax pair for this equation is

2% LT T T AT
N1 = k [ﬁll’(A—‘r ;\)7 AAT20$J+k Tso
Ny = kﬁ1x+k3[ﬁlﬁ—@+}§)? o]
-
Na = Kar RIS - (o A5 T
_ ogep 1 Ty
Noy = k‘[ ()\x—‘r/\x) /\)\TQ ] + k*To0

where 3y, 32 = constant and to ensure compatibility A = g\. We set 7 = A\\o/B2
causing logr = v + 71(—1)! — ¢l /2, since o = ¢'.

The final Lax pair that will be presented from this part of the hierarchy is for
the fourth order equation
]. —+ TQ?“ZZ’E

4
Tr = ——
yTT + Tor

(4.10)

Where v = (31/62 = constant and r = /\E\Xia/ﬁg. The Lax pair for this equation
has the same L matrix again (4.3) and the components of the N matrix are

Ny = —kQ[ﬁl(%f + % + ”””j) + Mma% oo+ (A% + Ag + igma]
Niz = kBixz+ k3[51(% ;; ;}\i) ();cé + %; %)TQU} + kT =

Noy = k% + B[ Aix 4 xii% + A%E) (NG + AX;”” MaZ o1t kiTQO—x
Nyy = —k2[52();—$ + le + ﬁ) + /\/\ATQ%] k4[/\)\/6)\2x§ + (%x + ;\—f:; + g)Tga}

With this member of the hierarchy we require A = qi for compatibility, which
causes logr = 7o + 7144 + 7243' — ql/3, 7, = constant.

5. CONCLUSION

In this paper we have presented two new hierarchies of nonlinear g-difference
equations, one of which includes qPy; and Py, the other of which includes qPyyp in
addition to higher order equations. The relationship between the equations in each
hierarchy was found using a series of Lax pairs and, as such, a Lax pair accompanies
each equation in the hierarchy. All of the resulting equations are non-autonomous
and contain multiple free parameters while each Lax pair is 2 x 2.

Even though these Lax pairs increase in complexity at each level of the hierarchy,
the equations retain the same simple structure while increasing in order and the
number of free parameters. The persistence of a simple structure in the equations
may facilitate the discovery of special solutions applicable to all members of the
hierarchy.

We must point out that some key features of the method used to establish the
hierarchy have not been proven in generality. We simply conjecture their validity
based on agreement with results.

We note that these hierarchies have their roots in reductions from the lattice
modified KdV equation, it remains to be seen whether similar results lie behind
other partial difference equations. It would eventually be interesting to find re-

ductions from lattice equations to the g-Garnier hierarchy constructed by Sakai in
[24].
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At this point there is still a significant deficiency in knowledge about the generic
solutions of g-Painlevé equations. The author is unaware of any instances where
Birkhoff’s theory of linear g¢-difference equations has been applied to deduce in-
formation about the solutions of ¢-Painlevé equations. The question of the global
properties of solutions remains completely open.

Acknowledgment
The author acknowledges Nalini Joshi’s helpful suggestions.

REFERENCES

[1] B. Grammaticos, A. Ramani, J. Satsuma, R. Willox and A. S. Carstea, Reductions of integrable
lattices, J. Nonlin. Math. Phys., 12 Supp. 1 (2005) 363-371.

[2] M. Hay, J. Hietarinta, N. Joshi and F.W. Nijhoff, A Lax Pair for a lattice mKdV equation,
reductions to g-Painleve equations and associated Lax pairs, J. Phys. A: Math. Gen., 40 No.
2 (2007), F61-L73

[3] C. Cresswell and N. Joshi, The discrete first, second and thirty-fourth Painlevé hierarchies, J.
Phys. A: Math. Gen., 32 (1999) 655-669

[4] F.W. Nijhoff and A.J. Walker, The discrete and continuous painlevé VI hierarchy and the
Garnier systems, Glasgow Math. J., 43A (2001) 109-123

[5] P.A. Clarkson and E.L. Mansfield, The second Painlevé equation, its hierarchy and associated
special polynomials, Nonlinearity, 16 (2003) no. 3: R1-R26

[6] P.R. Gordoa, N. Joshi and A. Pickering, On a generalized 2+1 dispersive water wave hierarchy,
Publ. Res. Inst. Math. Sci., 37 (2001) 327

[7] S. Kakei and T. Kikuchi, A g-analogue of the gl3 hierarchy and qPys, J. Phys. A, 39 (2006)
no. 39, 12179-12190

[8] F.W. Nijhoff, and H.-W. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math.,
39 (1-3) (1995) 133-158.

[9] F Nijhoff and V Papageorgiou, Similarity reductions of integrable lattices and discrete ana-
logues of the Painlev II equation, Phys. Letts A, 153 No. 6.7 (1991), 337-344

[10] F Nijhoff, N Joshi and A Hone, On the discrete and continuous Miura chain associated with
the sixth Painlev equation, Phys. Lett A, 264 (2000), 396

[11] F Nijhoff, A Hone and N joshi, On a Schwarzian PDE associated with the KdV hierarchy,
Phys. Lett A, 267 (2000), 147-156

[12] D Levi Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction
of the lattice potential KAV, J. Phys. A: Math. Gen., 38 (2005), 7677—-7689

[13] A. Ramani, B. Grammaticos, J. Hietarinta, Discrete versions of the Painlevé equations, Phys.
Rev. Lett., 67:1829-1832, 1991.

[14] M. Jimbo and H. Sakai, A g-analogue of the sixth Painlevé equation, Lett. Math. Phys. 38
(1996), no. 2, 145-154.

[15] V. Papageorgiou, F. Nijhoff, B. Grammaticos and A. Ramani, Isomonodromic deformation
problems for discrete analogues of Painlev equations, Phys. Lett A, 164 (1992), 5764

[16] F.W. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A, 297(1-
2) (2002) 49-58.

[17] A.I. Bobenko and Y.B. Suris, Integrable systems on quad-graphs, IMRN 11 (2002) 573-611.

[18] J. Hieterinta A new two-dimensional lattice model that is 'consistent around a cube’, J. Phys.
A: Math. Gen., 37 (2004), L67-L73

[19] N. Joshi, F. W. Nijhoff and C. Ormerod, Lax pairs for ultra-discrete Painlev cellular au-
tomata, J. Phys. A: Math. Gen., 37 (2004) L559-565

[20] V. Papageorgiou and F. Nijhoff, Integrable mappings and nonlinear integrable lattice equa-
tions, Phys. Lett A, 147 No. 2.3 (1990), 106-114

[21] F. Nijhoff (1996), Discrete Integrable Geometry and Physics, Eds A Bobenko and R seiler,
(Oxford University Press)

[22] M. Kruskal, K. Tamizhmani, B. Grammaticos and A. Ramani, Asymmetric discrete Painleve
equations, Reg. Chaot. Dyn., 5 (2000), 273

[23] R. Sahadevan, O. G. Resin, and P. E. Hydon, Integrability conditions for nonautonomous
quad-graph equations, preprint, 2006.

[24] H. Sakai, A g-analog of the Garnier system, Funkcial. Fkvac. 48 (2005) 273-297.

SCHOOL OF MATHEMATICS AND STATISTICS F07, THE UNIVERSITY OF SYDNEY, NSW 2006,
AUSTRALIA
E-mail address: mhay@mail.usyd.edu.au



