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Abstract

A partial transformation α on the finite set {1, . . . , n} moves an element i of its
domain a distance of |i − iα| units. The work w(α) performed by α is defined to be
the sum of all of these distances. In this article we derive a formula for the total work
w(S) =

∑

α∈S w(α) performed by a subset S of the partial transformation semigroup
PTn. We then obtain explicit formulae for w(S) when S is one of seven important
subsemigroups of PTn: the partial transformation semigroup, the (full) transforma-
tion semigroup, the symmetric group, and the symmetric inverse semigroup, as well
as their order-preserving submonoids. Each of these formulae gives rise to a formula
for the average work w(S) = 1

|S|w(S) performed by an element of S.
Keywords: Transformation semigroup, work.
MSC: Primary 20M20; Secondary 05A10.

1 Introduction

Fix a positive integer n and write n = {1, . . . , n}. The partial transformation semigroup
on n, denoted PTn, is the semigroup of all functions (transformations) between subsets
of n. Such a function is called a partial transformation on n. If α ∈ PTn we will write
dom(α) and im(α) for the domain and image of α (respectively). The semigroup operation
in PTn is composition, although the semigroup structure of PTn will not play any role in
our investigations.

Let α ∈ PTn and i ∈ n. We define the work performed by α to move i to be

wi(α) =

{

|i − iα| if i ∈ dom(α)
0 otherwise,

and we define the (total) work performed by α to be

w(α) =
∑

i∈n

wi(α).
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If S ⊆ PTn then we define the (total) work performed by S to be

w(S) =
∑

α∈S

w(α).

We also write

w(S) =
1

|S|
w(S)

for the average work performed by an element of S. The purpose of this article is to derive
explicit formulae for w(S) and w(S) when S is either PTn or one of its subsemigroups

• Tn =
{

α ∈ PTn

∣

∣ dom(α) = n
}

,

• In =
{

α ∈ PTn

∣

∣ α is injective
}

,

• Sn =
{

α ∈ Tn

∣

∣ α is injective
}

,

• On =
{

α ∈ Tn

∣

∣ α is order-preserving
}

,

• POn =
{

α ∈ PTn

∣

∣α is order-preserving
}

, or

• POIn =
{

α ∈ In

∣

∣α is order-preserving
}

.

The subsemigroups Tn, In, and Sn are known as the transformation semigroup, the sym-
metric inverse semigroup, and the symmetric group on n (respectively). A (partial) trans-
formation α ∈ PTn is said to be order-preserving if iα < jα whenever i, j ∈ dom(α)
and i < j.

All numbers in this article are assumed to be integers. Thus a statement such as
“let 1 ≤ i ≤ 5” should be read as “let i be an integer such that 1 ≤ i ≤ 5”. It will also be
convenient to interpret a binomial coefficient

(

p
q

)

to be 0 if p < q.

2 Example Calculations

Before moving on, let us calculate w(S) and w(S) for a selection of semigroups S ⊆ PT3.

Example 1 (The symmetric group S3) The elements of the symmetric group S3 are
pictured in Figure 1 below. For the moment, the reader should not be concerned with our
use of colours.

Figure 1: The elements of S3.
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The pictures should be interpreted so that, for example, the right-most diagram represents
the permutation which fixes 1 and interchanges 2 and 3. Adding up the work performed
by each permutation (from left to right as arranged in Figure 1) gives

w(S3) = 0 + 4 + 4 + 2 + 4 + 2 = 16.

The average work performed by a permutation in S3 is w(S3) = 16
6

= 22
3
.

Example 2 (The transformation semigroup T3) The transformation semigroup T3

consists of the six permutations pictured in Figure 1 together with the 21 non-invertible
maps pictured in Figure 2 below. (The maps are arranged in an egg-box diagram; elements
in the same row or column of a box have the same domain or image respectively.)

Figure 2: The remaining elements of T3.

One may then calculate that the total work performed by these 21 maps is 56 so that

w(T3) = 16 + 56 = 72 and w(T3) = 72
27

= 22
3
.

The observant reader will have noticed that w(S3) = w(T3). In fact, this is not a coninci-
dence, but rather an special case of a more general phenomenon; in Section 4 we will see
that w(Sn) = w(Tn) for all n.

Example 3 (The semigroup O3) The semigroup O3 consists of all order-preserving
transformations on {1, 2, 3}; these maps appear as the black diagrams in Figures 1 and 2.
One may compute that

w(O3) = 16 and w(O3) = 16
10

= 13
5
.
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Example 4 (The semigroup POI3) The elements of the semigroup POI3 are pictured
in Figure 3 below.

Figure 3: The elements of POI3.

One calculates that

w(POI3) = 16 and w(O3) = 16
20

= 4
5
,

illustrating another general phenomenon: w(On) = w(POIn) for all n.

3 General Calculations

Let S ⊆ PTn and i ∈ n. Write
wi(S) =

∑

α∈S

wi(α)

for the total work performed by S in moving i. We then have

w(S) =
∑

α∈S

w(α) =
∑

α∈S

∑

i∈n

wi(α) =
∑

i∈n

∑

α∈S

wi(α) =
∑

i∈n

wi(S).
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For i, j ∈ n let
Mij(S) = {α ∈ S | iα = j}

be the set of all elements of S which move i to j, and write

mij(S) =
∣

∣Mij(S)
∣

∣.

Note that wi(α) = |i − j| for all α ∈ Mij(S) and so

wi(S) =
∑

j∈n

|i − j|mij(S).

Thus we have the following.

Lemma 1 Let S ⊆ PTn. Then w(S) =
∑

i,j∈n

|i − j|mij(S).

4 Specific Calculations

We now consider the cases in which S is one of the semigroups PTn, Tn, In, Sn, On, POn,
or POIn. For each such S we calculate an explicit formula for the numbers mij(S),
and then apply Lemma 1 to obtain formulae for w(S) and w(S). We consider each case
separately, covering them roughly in order of difficulty.

It is a well-known fact that
∑

1≤i<j≤n

|i − j| =

(

n + 1

3

)

.1

It then follows that
∑

i,j∈n

|i − j| = 2

(

n + 1

3

)

=
n3 − n

3
, (∗)

a fact which will prove useful in several of the calculations performed below.
Before moving on we remark that although some of the combinatorial results of this

section (particularly Lemmas 2, 4, and 6) may be well-known, the proofs given here are
believed to be original. The reader is refered to the introduction of [2] for an excellent
review of related articles.

4.1 The Symmetric Group Sn

For any i, j ∈ n we have Mij(Sn) = {α ∈ Sn | iα = j}, and it follows immediately that
mij(Sn) = (n−1)!. Thus, by Lemma 1 and (∗), the total work performed by the symmetric
group Sn is

w(Sn) =
∑

i,j∈n

|i − j|(n − 1)! =
n3 − n

3
· (n − 1)! =

(n + 1)!(n − 1)

3
.

1The number
(

n+1

3

)

is sometimes referred to as the (n − 1)th tetrahedral number ; see for example [4]

(Sequence A000292). The reader is reminded that we interpret
(

n+1

3

)

= 0 if n = 1.
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The average work performed by an element of Sn is

w(Sn) =
w(Sn)

|Sn|
=

(n + 1)!(n − 1)

3 · n!
=

n2 − 1

3
.2

4.2 The Transformation Semigroup Tn

For any i, j ∈ n we have Mij(Tn) = {α ∈ Tn | iα = j}, and it follows that mij(Tn) = nn−1.
Thus, by Lemma 1 and (∗), we have

w(Tn) =
∑

i,j∈n

|i − j|nn−1 =
n3 − n

3
· nn−1 =

nn(n2 − 1)

3
.

We also have

w(Tn) =
w(Tn)

|Tn|
=

nn(n2 − 1)

3 · nn
=

n2 − 1

3

which, rather curiously, is the same as the average work performed by a permutation.

4.3 The Partial Transformation Semigroup

For any i, j ∈ n we have Mij(PTn) = {α ∈ PTn | iα = j}, so that mij(PTn) = (n + 1)n−1.
Thus, by Lemma 1 and (∗), we have

w(PTn) =
∑

i,j∈n

|i − j|(n + 1)n−1 =
n3 − n

3
· (n + 1)n−1 =

(n + 1)n(n2 − n)

3
,

and

w(PTn) =
w(PTn)

|PTn|
=

(n + 1)n(n2 − n)

3 · (n + 1)n
=

n2 − n

3
.

Although w(PTn) 6= w(Sn) = w(Tn), all three sequences are of course assymptotic to n3

3
.

4.4 The Symmetric Inverse Semigroup In

For all i, j ∈ n we have Mij(In) = {α ∈ In | iα = j}, and it follows that mij(PTn) = |In−1|.
Thus, by Lemma 1 and (∗), we have

w(In) =
∑

i,j∈n

|i − j||In−1| = 2

(

n + 1

3

)

|In−1| =
n3 − n

3

n−1
∑

k=0

(

n − 1

k

)2

k!.

The average work performed by an element of In is

w(In) =
w(In)

|In|
= 2

(

n + 1

3

)

|In−1|

|In|
=

(n3 − n)|In−1|

3|In|
.

However, it does not seem easy to obtain a formula for w(In) as simple as those obtained
above for w(Sn), w(Tn), and w(PTn).

2This result may be found in [1] (in a slightly different form).
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4.5 The Semigroup POIn

For 0 ≤ p, q ≤ n let POIp,q denote the set of all order-preserving injective partial maps
from p to q.

Lemma 2 Let 0 ≤ p, q ≤ n. Then |POIp,q| =
(

p+q
p

)

=
(

p+q
q

)

.

Proof Let q′ = {1′, . . . , q′} be a set in one-one correspondence with q, and put

Ω =
{

A ⊆ p ∪ q′
∣

∣ |A| = q
}

.

For A ∈ Ω put Ap = A ∩ p and Aq = {i ∈ q | i′ ∈ A}, and define φA ∈ POIp,q by

dom(φA) = Ap and im(φA) = q \ Aq,

noting that |Ap| = |q \ Aq|, and that an element of POIp,q is completely determined by
its domain and image. It is then easy to check that A 7→ φA (A ∈ Ω) defines a bijection
Ω → POIp,q and the result follows since |Ω| =

(

p+q
q

)

. 2

Lemma 3 Let i, j ∈ n. Then mij(POIn) =
(

i+j−2
i−1

)(

2n−i−j
n−i

)

.

Proof Let α ∈ Mij(POIn). Then since iα = j and α is order-preserving, we see that
kα < j whenever k ∈ dom(α) and k < i. Thus, we may define a map λα ∈ POI i−1,j−1 by

dom(λα) = dom(α) ∩ {1, . . . , i − 1} and im(λα) = im(α) ∩ {1, . . . , j − 1}.

Similarly, we have kα > j whenever k ∈ dom(α) and k > i, and so we may also define a
map ρα ∈ POIn−i,n−j by

dom(ρα) =
{

k − i
∣

∣ k ∈ dom(α) , k > i
}

and im(ρα) =
{

k − j
∣

∣ k ∈ im(α) , k > j
}

.

It is then easy to check that the map α 7→ (λα, ρα) (α ∈ Mij(POIn)) defines a bijection
Mij(POIn) → POI i−1,j−1 × POIn−i,n−j. The result now follows from Lemma 2. 2

It follows by Lemmas 1 and 3 that the total work performed by POIn is

w(POIn) =
∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

.

The average work performed by an element of POIn is

w(POIn) =
w(POIn)

|POIn|
=

1
(

2n
n

)

∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

.
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4.6 The Semigroup On

For 0 ≤ p ≤ n and q ∈ n let Op,q denote the set of all order-preserving maps from p to q.

Lemma 4 Let 0 ≤ p ≤ n and q ∈ n. Then |Op,q| =
(

p+q−1
p

)

=
(

p+q−1
q−1

)

.

Proof If p = 0 then the result is trivial, so suppose that p ≥ 1. Let p[ = p \ {p},
let q′ = {1′, . . . , q′}, and put

Ω =
{

A ⊆ p[ ∪ q′
∣

∣ |A| = q − 1
}

.

Let A ∈ Ω and put

Ap = (A ∩ p[) ∪ {p} and Aq = {i ∈ q | i′ ∈ A}.

Suppose that |Ap| = k. It then follows that |q \ Aq| = k also, and so we may write

Ap = {x1, . . . , xk} and q \ Aq = {y1, . . . , yk}

where x1 < · · · < xk and y1 < · · · < yk. It will also be convenient to put x0 = 0. Now
define φA ∈ Op,q, for i ∈ p, by

iφA = y` if i ∈ {x`−1 + 1, . . . , x`}.

Then one may check that A 7→ φA (A ∈ Ω) defines a bijection Ω → Op,q. The result now
follows since |Ω| =

(

p+q−1
q−1

)

. 2

Lemma 5 Let i, j ∈ n. Then mij(On) =
(

i+j−2
i−1

)(

2n−i−j
n−i

)

.

Proof Let α ∈ Mij(On). Then since iα = j and α is order-preserving, we see that kα ≤ j

whenever k ∈ dom(α) and k < i. Thus, we may define a map λα ∈ Oi−1,j by

kλα = kα for each k ∈ {1, . . . , i − 1}.

Similarly, we may also define a map ρα ∈ On−i,n−j+1 by

kρα = (k + i)α − j + 1 for each k ∈ {1, . . . , n − i}.

Then one may check that the map α 7→ (λα, ρα) (α ∈ Mij(On)) defines a bijection
Mij(On) → Oi−1,j ×On−i,n−j+1. The result now follows from Lemma 4. 2

In particular, Lemma 5 demonstrates another curious fact; namely that mij(On) =
mij(POIn) for all i, j ∈ n. By Lemmas 1 and 5 we have

w(On) =
∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

which, of course, is the same as w(POIn). However, since |On| =
(

2n−1
n

)

6= |POIn|, we
see that w(On) 6= w(POIn). Rather, we have

w(On) =
w(On)

|On|
=

1
(

2n−1
n

)

∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

.

But, since
(

2n−1
n

)

= 1
2

(

2n
n

)

, we do have the interesting relation w(On) = 2w(POIn); that
is, an element of On works “twice as hard” as an element of POIn on average.

8



4.7 The Semigroup POn

For 0 ≤ p ≤ n and q ∈ n let POp,q denote the set of all order-preserving partial transfor-
mations from p to q.

Lemma 6 Let 0 ≤ p ≤ n and q ∈ n. Then |POp,q| =
∑p

k=0

(

p
k

)(

q+k−1
k

)

.

Proof For A ⊆ p write POA
p,q =

{

α ∈ POp,q

∣

∣ dom(α) = A
}

. We then have the disjoint
union

POp,q =
.

⋃

A⊆p

POA
p,q.

Now for any 0 ≤ k ≤ p, there are
(

p
k

)

subsets A ⊆ p for which |A| = k and, for each such

subset A, we have
∣

∣POA
p,q

∣

∣ = |Ok,q| =
(

q+k−1
k

)

, the last equality following by Lemma 4.
This shows that

|POp,q| =
∑

A⊆p

∣

∣POA
p,q

∣

∣ =

p
∑

k=0

(

p

k

)(

q + k − 1

k

)

,

and the proof is complete. 2

Lemma 7 Let i, j ∈ n. Then

mij(POn) =

n
∑

k,`=0

(

i − 1

k

)(

j + k − 1

k

)(

n − i

`

)(

n − j + `

`

)

.

Proof A similar argument to that used in the proof of Lemma 5 shows that there is a
bijection from Mij(POn) to POi−1,j × POn−i,n−j+1. It then follows by Lemma 6 that

mij(POn) = |POi−1,j| × |POn−i,n−j+1|

=
i−1
∑

k=0

(

i − 1

k

)(

j + k − 1

k

) n−i
∑

`=0

(

n − i

`

)(

n − j + `

`

)

.

The upper limits on both sums may be changed to n in light of the convention regarding
binomial coefficients explained at the end of Section 1. 2

Thus, by Lemmas 1 and 7, we have

w(POn) =
n

∑

i,j=1

n
∑

k,`=0

|i − j|

(

i − 1

k

)(

j + k − 1

k

)(

n − i

`

)(

n − j + `

`

)

.

We also have

w(POn) =
w(POn)

|POn|
=

∑n
i,j=1

∑n
k,`=0 |i − j|

(

i−1
k

)(

j+k−1
k

)(

n−i
`

)(

n−j+`
`

)

∑n
m=0

(

n
m

)(

n+m−1
m

) .
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5 Summary of Results

We now collect the results obtained in the previous section. Tables 1 and 2 catalogue the
formulae obtained for w(S) and w(S), respectively, for the various semigroups S considered
in Section 4.

S Formula for w(S)

Sn
(n+1)!(n−1)

3

Tn
nn(n2−1)

3

PTn
(n+1)n(n2−n)

3

In
n3−n

3

∑n−1
k=0

(

n−1
k

)2
k!

POIn

∑n
i,j=1 |i − j|

(

i+j−2
i−1

)(

2n−i−j
n−i

)

On

∑n
i,j=1 |i − j|

(

i+j−2
i−1

)(

2n−i−j
n−i

)

POn

∑n
i,j=1

∑n
k,`=0 |i − j|

(

i−1
k

)(

j+k−1
k

)(

n−i
`

)(

n−j+`
`

)

Table 1: Formulae for the total work w(S) performed by a semigroup S ⊆ PTn.

S Formula for w(S)

Sn
n2−1

3

Tn
n2−1

3

PTn
n2−n

3

In
n3−n

3
∑

n

`=0 (n

`
)
2
`!

∑n−1
k=0

(

n−1
k

)2
k!

POIn
1

(2n

n
)

∑n
i,j=1 |i − j|

(

i+j−2
i−1

)(

2n−i−j
n−i

)

On
1

(2n−1

n
)

∑n
i,j=1 |i − j|

(

i+j−2
i−1

)(

2n−i−j
n−i

)

POn
1∑

n

m=0 (n

m
)(n+m−1

m
)

∑n
i,j=1

∑n
k,`=0 |i − j|

(

i−1
k

)(

j+k−1
k

)(

n−i
`

)(

n−j+`
`

)

Table 2: Formulae for the average work w(S) performed by an element of a semigroup
S ⊆ PTn.

Tables 3 and 4 catalogue calculated values of w(S) and w(S) for values of n up to 10.
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n 1 2 3 4 5 6 7 8 9 10

w(Sn) 0 2 16 120 960 8400 80640 846720 9676800 119750400

w(Tn) 0 4 72 1280 25000 544320 13176688 352321536 10331213040 330000000000

w(PTn) 0 6 128 2500 51840 1176490 29360128 803538792 24000000000 778122738030

w(In) 0 4 56 680 8360 108220 1492624 21994896 346014960 5798797620

w(POIn) 0 2 16 96 512 2560 12288 57344 262144 1179648

w(On) 0 2 16 96 512 2560 12288 57344 262144 1179648

w(POn) 0 4 48 424 3312 24204 169632 1155152 7702944 50550932

Table 3: Calculated values of w(S) for small values of n.

n 1 2 3 4 5 6 7 8 9 10

w(Sn) 0 1 2 2

3
5 8 11 2

3
16 21 26 2

3
33

w(Tn) 0 1 2 2

3
5 8 11 2

3
16 21 26 2

3
33

w(PTn) 0 2

3
2 4 6 2

3
10 14 18 2

3
24 30

w(In) 0 0.5714 1.6471 3.2536 5.4075 8.1204 11.4009 15.2559 19.6911 24.7112

w(POIn) 0 0.3333 0.8000 1.3714 2.0317 2.7706 3.5804 4.4556 5.3916 6.3848

w(On) 0 0.6667 1.6000 2.7429 4.0635 5.5411 7.1608 8.9113 10.7833 12.7697

w(POn) 0 0.5000 1.2632 2.2083 3.3054 4.5360 5.8871 7.3490 8.9139 10.5754

Table 4: Calculated values of w(S) for small values of n.

6 Concluding Remarks

The work presented in this article was inspired by a talk given by Tim Lavers in which
a conjecture was described; namely that w(On) = (n − 1)22n−3. The second-last row of
Table 3 (and some modest labour) shows that this is true if n ≤ 10. Some further values
of w(On) are provided in Table 5 below, giving further credibility to the conjecture. The

n 11 12 13 14 15 16 17 18

w(On) 5242880 23068672 100663296 436207616 1879048192 8053063680 34359738368 146028888064

n 19 20 21 22 23 24

w(On) 618475290624 2611340115968 10995116277760 46179488366592 193514046488576 809240558043136

Table 5: Further values of w(On).
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author believes that Lavers has also verified the conjecture for some values of n; see [3]
for more details. In light of the results of Sections 4.5 and 4.6, a verification of Lavers’
conjecture amounts to a proof of the identity

n
∑

i,j=1

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

= (n − 1)22n−3

for all n ≥ 1. Replacing n by n + 1, and substituting p = i − 1 and q = j − 1, the above
identity takes the more pleasing form

n
∑

p,q=0

|p − q|

(

p + q

p

)(

2n − p − q

n − p

)

= n22n−1.

Finally we remark that some of the numbers w(S) have been calculated before. Indeed,
w(Sn) appears as Sequence A090672 in [4]; see also [1] where the quantity 1

n
w(Sn) was

investigated in relation to “turbo coding”. The numbers w(On) = w(POIn) as calculated
above agree with the first 23 entries of Sequence A002699 of [4] which (not surprisingly3)
is n22n−1. At the time of writing, the other sequences in Table 3 had not been listed in [4].
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