The p-canonical basis of the anti-spherical Hecke module

In this talk we provide a brief introduction to the p-canonical basis of the anti-spherical Hecke module. Moreover, we explicitly calculate it in type \tilde{A}_1; the only case where it is explicitly known.

The structure of this talk is as follows:

1. The Hecke algebra and its canonical bases;
2. The anti-spherical Hecke module;
3. Explicitly calculating the p-canonical basis in type \tilde{A}_1.

Notation

Throughout this talk we adopt the following notation:

- k: an algebraically closed field of characteristic $p > 0$;
- G_k: a simple, simply connected, algebraic group scheme over k;
- (R, X, R^\vee, X^\vee): the root datum associated to G_k;
- $T_k \subset B_k \subset G_k$: a pinning of G_k;
- $W_f = N_G(T_k)/T$: the finite Weyl group;
- $W_p = W_f \rtimes p\mathbb{Z}$: the p-dilated affine Weyl group;
- f_W: the minimal left coset representatives;
- w_f: the longest element of W_f; and
- h: the Coxeter number.

The Hecke algebra and its canonical bases

Recall that the Hecke algebra H associated to the Coxeter system (W_p, S_p) is the associative, unital, $\mathbb{Z}[v^{\pm 1}]$-algebra generated by the symbols $\{\delta_w | w \in W_p\}$ subject to the relations:

$$\delta_w \delta_{w'} = \delta_{ww'} \quad \text{if} \quad \ell(w) + \ell(w') = \ell(ww')$$

$$(\delta_s + v)(\delta_s - v^{-1}) = 0 \quad \text{for all} \quad s \in S_p$$

Matsumoto’s lemma implies the symbols $\{\delta_w | w \in W_p\}$ are well defined. Moreover, $\{\delta_w | w \in W_p\}$ forms a basis of H called the standard basis. Each standard basis element is invertible.

There exists an involution $\overline{\cdot}$ on H given by:

$$\overline{\delta_w} = \delta_{w^{-1}}^{-1} \quad \quad \overline{v} = v^{-1}$$

By a theorem of Kazhdan and Lusztig, for each $w \in W_p$, there exists a unique element $b_w \in H$ such that $\overline{b_w} = b_w$ and $b_w = \delta_w + \sum_{u < w} \mathbb{Z}[v]\delta_u$. The set $\{b_w | w \in W_p\}$ form a basis of H called the canonical basis.

To motivate the definition of the p-canonical basis, we have to first categorify the presentation of the Hecke algebra given by the canonical basis.

Let $\mathcal{K} = \mathbb{C}((t))$ and $\mathcal{O} = \mathbb{C}[\![t]\!]$. Consider the groups $G^\vee(\mathcal{O}) \subset G^\vee(\mathcal{K})$. There is a natural map $G^\vee(\mathcal{O}) \to G^\vee(\mathbb{C})$ induced by $t \mapsto 0$. The Iwahori subgroup $I \subset G^\vee(\mathcal{O})$ is defined to be the pre-image of B under this map. The affine flag variety $\mathcal{F}I$ is the ind-projective ind-scheme whose \mathbb{C}-points may be identified with the space $G^\vee(\mathcal{K})/I$. It is a Kac-Moody flag variety, and thus admits a Bruhat decomposition:

$$\mathcal{F}I = \bigsqcup_{w \in W_p} \mathcal{F}b_w \quad \text{where} \quad \mathcal{F}b_w := IwI/I$$
The closure order is given by the Bruhat order on W_p. More precisely:

$$
\mathcal{F}_w = \bigcup_{u \leq w} \mathcal{F}_u
$$

Each \mathcal{F}_w is called an affine Schubert variety.

The category of I-equivariant perverse sheaves on the affine flag variety with coefficients in \mathbb{C}, $\text{Perv}_I(\mathcal{F}l, \mathbb{C})$, has simple objects $\{\text{IC}_w | w \in W_p\}$ called intersection cohomology sheaves. Each IC_w is supported on the affine Schubert variety \mathcal{F}_w. We can also take the convolution of I-equivariant perverse sheaves

$$
* : \text{Perv}_I(\mathcal{F}l, \mathbb{C}) \times \text{Perv}_I(\mathcal{F}l, \mathbb{C}) \to \text{Perv}_I(\mathcal{F}l, \mathbb{C})
$$

which endows $\text{Perv}_I(\mathcal{F}l, \mathbb{C})$ with the structure of a monoidal category.

The split Grothendieck ring of $\text{Perv}_I(\mathcal{F}l, \mathbb{C})$, denoted $[\text{Perv}_I(\mathcal{F}l, \mathbb{C})]_{\oplus}$, can be endowed with the structure of a $\mathbb{Z}[v^\pm 1]$-algebra where $v[\mathcal{F}] = [\mathcal{F}[1]]$. We then have an isomorphism of $\mathbb{Z}[v^\pm 1]$-algebras:

$$
[\text{Perv}_I(\mathcal{F}l, \mathbb{C})]_{\oplus} \leftrightarrow H,
$$

$$
[\text{IC}_w] \mapsto b_w
$$

$$
[\mathcal{F}] \mapsto \sum_{w \in W} \sum_{i \in \mathbb{Z}} \dim H^{-i}(\mathcal{F}_w)v^{i-\ell(w)}\delta_u
$$

Thus the canonical basis can be interpreted geometrically as the characters of simple objects in the category of perverse sheaves on the affine flag variety.

The p-canonical basis is a generalisation of the canonical basis when the sheaf coefficients \mathbb{C} are replaced by k, a field of positive characteristic.

The category of I-equivariant parity sheaves on the affine flag variety with coefficients in k, $\text{Parity}_I(\mathcal{F}l, k)$, has indecomposable objects $\{\mathcal{E}_w | w \in W_p\}$ called indecomposable parity sheaves. Each indecomposable parity sheaf \mathcal{E}_w is the extension by zero of the constant sheaf $k_{\mathcal{F}_w}$. As before, there is a convolution of I-equivariant parity sheaves

$$
* : \text{Parity}_I(\mathcal{F}l, k) \times \text{Parity}_I(\mathcal{F}l, k) \to \text{Parity}_I(\mathcal{F}l, k)
$$

which endows $\text{Parity}_I(\mathcal{F}l, k)$ with the structure of a monoidal category.

The split Grothendieck ring of $\text{Parity}_I(\mathcal{F}l, k)$, denoted $[\text{Parity}_I(\mathcal{F}l, k)]_{\oplus}$, can be endowed with the structure of a $\mathbb{Z}[v^\pm 1]$-algebra where $v[\mathcal{F}] = [\mathcal{F}[1]]$. We then have an isomorphism of $\mathbb{Z}[v^\pm 1]$-algebras:

$$
[\text{Parity}_I(\mathcal{F}l, k)]_{\oplus} \leftrightarrow H,
$$

$$
[\mathcal{E}_w] \mapsto pb_w
$$

$$
[\mathcal{F}] \mapsto \sum_{w \in W_p} \sum_{i \in \mathbb{Z}} \dim H^{-i}(\mathcal{F}_w)v^{i-\ell(w)}\delta_u
$$

The p-canonical basis is defined to be the character of the indecomposable parity sheaves on the affine flag variety.

The p-canonical basis satisfies the following properties:
(1) \(p_{bw} = p_{bw} \);
(2) \(p_{bw} = bw + \sum_{u<w} p_{a_{u,w}b_u} \) with \(p_{a_{u,w}} \in \mathbb{Z}[v^{\pm 1}] \) and \(p_{a_{u,w}} = \overline{p_{a_{u,w}}} \);
(3) \(p_{bw} = bw \) for \(p \gg 0 \).

The coefficients of the \(p \)-canonical basis have the following representation theoretic interpretation:

\[
p_{bw_{\lambda,\mu}}(1) = \dim T_{\lambda,\mu}
\]

where \(T_{\lambda,\mu} \) is \(\mu \)-weight space of the the indecomposable tilting module with highest \(\lambda \), \(T_{\lambda} \), \(w_{\lambda}(0) = \lambda \), and \(w_{\mu}(0) = \mu \).

Remarks.

(1) The character of the indecomposable parity sheaf depends only on the characteristic of \(k \), not on the field \(k \) itself.
(2) Whilst the canonical basis may be defined relative only to the Hecke algebra \(H \), the \(p \)-canonical basis requires the addition data of a root system associated to \(H \). For example, Jensen and Williamson show that the 2-canonical bases for the Hecke algebras of types \(\tilde{C}_2 \) and \(\tilde{B}_2 \) differ.
(3) The \(p \)-canonical basis is typically calculated using intersection forms and Elias-Williamson-Khovanov diagrammatics. When the associated Schubert variety is relatively nice (i.e. smooth/rationally smooth/low dimensional) the \(p \)-canonical basis can be determined using geometric techniques. It may also be calculated using the Braden-Macpherson algorithm.

The anti-spherical Hecke module

The quadratic relation \((\delta_s + v)(\delta_s - v^{-1}) = 0\) gives a morphism of \(\mathbb{Z}[v^{\pm 1}] \)-algebras

\[
\begin{align*}
H & \longrightarrow \mathbb{Z}[v^{\pm}] \\
\delta_s & \longmapsto -v.
\end{align*}
\]

For any parabolic subset of \(S_p \) containing \(s \). In particular, if we take \(S_f \subset S_p \) as the parabolic subset then the resulting \(H_f \)-module is denoted \(\text{sign}_v \).

Inducing \(\text{sign}_v \) to a representation of \(H \) produces the anti-spherical Hecke module \(N \). Explicitly:

\[
N = \text{sign}_v \otimes_{H_f} H
\]

It is a free \(\mathbb{Z}[v^{\pm 1}] \)-module with basis \(\{ \nu_w := 1 \otimes \delta_w | w \in fW_p \} \) called the standard basis of \(N \).

The Kazhdan-Lusztig involution extends to an involution of \(N \) in the following way:

\[
\nu_w = 1 \otimes \overline{\delta_w}.
\]

We analogously define the canonical basis of \(N \) to be the elements \(\{ d_w | w \in W_a \} \) such that \(d_w = d_w \) and \(d_w \in \nu_w + \sum_{u<w} v\mathbb{Z}[v]\nu_u v \).

The \(p \)-canonical basis of the anti-spherical Hecke module is then defined as:

\[
p_{d_w} := 1 \otimes p_{bw}
\]

for any \(w \in fW_a \).

Remarks.
Analogous to the universal enveloping algebra U, then (G) modules (where A result of Carell and Petersen implies the affine Schubert variety of the Bruhat interval $[id, w]$. Moreover the Bruhat order is particularly simple. [INSERT PICTURE].

Calculations for SL_2

Recall that for SL_2 we have

- $W_f \cong \langle s | s^2 = id \rangle$;
- $W_p \cong \langle s, t | s^2 = t^2 = id \rangle$; and
- $f W_p = \{ w_l \in W_p | \ell(w_l) = l \text{ and } sw_l > w_l \}$.

Moreover the Bruhat order is particularly simple. [INSERT PICTURE].

The canonical basis is particularly simple for SL_2. For any $w \in W_p$ the Poincare polynomial of the Bruhat interval $[id, w]$ is $1 + 2r + 2r^2 + \cdots + 2r^{\ell(w)} - 1 + r^{\ell(w)}$. In particular it is palindromic. A result of Carell and Petersen implies the affine Schubert variety \mathcal{F}_w is rationally smooth. Thus the canonical basis is

$$b_w = \sum_{u \leq w} v^{\ell(w) - \ell(u)} \delta_u.$$

It is then immediate that the canonical basis of the anti-spherical module is

$$d_{w_n} = v_{w_n} + v v_{w_{n-1}}$$

where w_{n-1} is taken to be 0 if $n = 0$.

Tilting modules for SL_2 can all be explicitly described. This allows an explicit description of the p-canonical bases of the Hecke algebra and the anti-spherical module of the Hecke algebra.

First, observe that $T_\lambda \cong \Delta_\lambda$ for $0 \leq \lambda \leq p - 1$ by the linkage principle.

The T_λ where $p \leq \lambda \leq 2p - 2$ are known to be the projective covers of the simple G_1-modules (where G_1 denotes the first Frobenius kernel of $G = SL_2$). The category $Rep G_1$ is equivalent to $Rep U_p(\mathfrak{sl}_2)$ where $U_p(\mathfrak{sl}_2)$ is the restricted Lie algebra of \mathfrak{sl}_2. Recall the restricted Lie algebra \mathfrak{sl}_2 is the Lie algebra \mathfrak{sl}_2 over a field k of characteristic p, endowed with a p-operation $(\cdot)^{[p]} : \mathfrak{sl}_2 \to \mathfrak{sl}_2$. If we realise $\mathfrak{sl}_2 \subset \mathfrak{gl}_2$ as the matrices

$$f = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

then $(\cdot)^{[p]}$ can be realised as the p-th power of each matrix:

$$f^{[p]} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0, \quad h^{[p]} = \begin{bmatrix} 1^p & 0 \\ 0 & (-1)^p \end{bmatrix} = h, \quad e^{[p]} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0.$$

Analogous to the universal enveloping algebra $U(\mathfrak{sl}_2)$ we have the restricted universal enveloping algebra $U_p(\mathfrak{sl}_2)$ which is the quotient $U(\mathfrak{sl}_2)/(x^p - x^{[p]})$. The Poincare-Birkhoff-Witt basis of $U(\mathfrak{sl}_2)$ descends to a basis of $U_p(\mathfrak{sl}_2)$ given by $\{ [i^j] e^k \}_{0 \leq i, j, k < p}$. It can be shown that

$$[T_\lambda] = [\Delta_\lambda] + [\Delta_{\ell, \lambda}]$$
when \(p \leq \lambda \leq 2p - 2 \).

Finally Donkin’s tensor product theorem (for \(SL_2 \)) states that if we write \(\lambda = \lambda_0 + p\lambda_1 \) where \(p - 1 \leq \lambda_0 \leq 2p - 2 \) and \(\lambda_1 \in \) then:

\[
T_\lambda = T_{\lambda_0} \otimes T^{(1)}_{\lambda_1}
\]

where \((-)^{(1)}: Rep G \to Rep G \) denotes the Frobenius twist.

For \(SL_2 \) these suffice to inductively prove that for any fixed \(\lambda = \sum_{i \geq 0} \lambda ip^i \in X_+ \) where \(0 \leq \lambda_i \leq p - 1 \). Set \(\lambda_{(k)} = \sum_{i \geq k} \lambda_i p^i \). Then

\[
[T_\lambda] = \left(\prod_{k \geq 1} (s_{\alpha, \lambda_{(k)}} + 1) \right) \cdot [\Delta_\lambda]
\]

where the product acts on the left (i.e. \(\prod_{k \geq 1} x_i = \ldots x_3 x_2 x_1 \)), and the action of \(W_\alpha \) on \(Rep G \) is given by \(w \cdot \Delta_\lambda = \Delta_{w \cdot \lambda} \).

Using explicit knowledge of the Weyl modules for \(SL_2 \) and the characterisation of the \(p \)-canonical basis of \(H \) in terms of tilting modules we find

\[
pb_{w\lambda} = \left(\prod_{k \geq 1} (s_{\alpha, \lambda_{(k)}} + 1) \right) \cdot bw_\lambda
\]

and consequently

\[
pd_{w\lambda} = \left(\prod_{k \geq 1} (s_{\alpha, \lambda_{(k)}} + 1) \right) \cdot dw_\lambda
\]