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Abstract

We present a method to numerically calculate the action variables of a com-
pletely integrable Hamiltonian system with N degrees of freedom. It is a con-
structification of the Liouville-Arnol’d theorem for the existence of tori in phase
space. By introducing a metric on phase space the problem of finding N inde-
pendent irreducible paths on a given torus is turned into the problem of finding
the lattice of zeroes of an N -periodic function. This function is constructed us-
ing the flows of all constants of motion. For N = 2 we use a Poincaré surface of
section to scan all tori with a continuation method. As an example the energy
surface in the space of action variables of a Hamiltonian showing resonances is
calculated.
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1 Introduction

The Liouville-Arnol’d theorem proves that action-angle variables can always be
found for completely integrable systems. In practice it can be very hard to do
the necessary calculations, e.g. for the Kovalevskaya top this has not been achieved
for 100 years. It might not be worth the effort doing a long analytical calculation
to obtain the action-angle variables, but the energy surface in the space of action
variables can be considered the most concise and comprehensive representation of
the global dynamical properties of the system. We therefore want to calculate this
surface by numerical methods that also work when analytical manipulations would
be unmanageable.

For a system with one degree of freedom the action integral is calculated by inte-
grating along the orbit, which is always closed if it is compact. The case N = 2
with compact energy surface is our main interest in this article. Systems with more
than two degrees of freedom that are separable except for two freedoms can also be
treated like N = 2. If the system is completely separable the calculations are as
simple as for one freedom. For a generic integrable system with N ≥ 2 the problem
in calculating the actions is to find N independent irreducible paths around each
torus. One brute force approach would be to integrate a single trajectory for a long
time and then to analyze at the Fourier spectrum. We present a method that is
much more efficient.

The main idea in the calculation of actions is to use the flows generated by each
constant of motion. At every point these flows give a local coordinate system. The
goal is to find a coordinate transformation from the local coordinate systems to one
global coordinate system where each coordinate line corresponds to going around
one irreducible path of the torus. The flows corresponding to these coordinate lines
can be constructed from a linear combination of the original flows of the constants of
motion. This combination is given by a matrix of “mixing coefficients” which have
to be determined. In fact the matrix entries are the coordinates of the generating
vectors of a lattice, each of its cells corresponding to one copy of the torus. The
task is to find the generators of this lattice. To solve this problem numerically we
introduce a metric on phase space, which allows us to construct a multiply periodic
function on that lattice whose zeroes correspond to the corners of the cells. Once
the lattice is determined we have: 1) A way to calculate the actions for the torus
going around its irreducible paths. 2) The frequencies of the Hamiltonian flow and
the winding numbers. 3) An explicit parametrization of the torus which can be used
for visualization.

We proceed as follows: first we recall the definition of a completely integrable
Hamiltonian system giving some intuitive interpretations. In order to introduce
our method and the notation used, it is necessary to give a sketch of Arnold’s proof
[1] of the existence of tori for completely integrable systems (see also Ozorio de
Almeida [2] whose geometric discussion inspired this work) – this is done in section
3. The method itself is then described for the general case of N freedoms and is
summarized in a sketch of the algorithm. The discussion of some special features
of calculating energy surfaces for N = 2 follows, and finally we apply our method
to the Walker and Ford Hamiltonian [3] with a 2-2 resonance. For this system the
actions are also calculated by standard methods and compared to our results.
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Our motivation in developing this method was the study of integrable spinning tops.
It is possible to analytically calculate the energy surfaces in action variables for the
cases of Euler and Lagrange [4]. This has not yet been achieved for the Kovalevskaya
top. We have included some illustrations from that system, but the whole picture
will be presented in a forthcoming paper [5]. The complicated structure of phase
space in that case deserves some special attention.

2 Completely Integrable Systems

Since our method follows the lines of the proof of the Liouville-Arnol’d theorem,
we review it briefly beginning with the definition of a completely integrable system.
Consider a Hamiltonian system with N degrees of freedom and canonical variables
(q,p) =: x in phase space P, dimP = 2N , with a time independent smooth Hamil-
tonian H : P → R. The time development of this system is governed by the system
of differential equations

ẋ = J∇H =: vH with J =

(
0 1N

−1N 0

)

where ∇ is the gradient with respect to x and 1N the N × N identity matrix. By
vH we denote the Hamiltonian vector field and by gt

H the corresponding flow. For
any two smooth functions Fi : P → R, i = 1, 2, their Poisson bracket is defined as

{F1, F2} := ∇F1J∇F2

so that the time evolution of any function can be written as

Ḟ = ∇F ẋ = ∇FJ∇H = {F,H}.

A Hamiltonian system is completely integrable if the following conditions hold:

1. There are N smooth constants of motion Fi, i.e. {Fi,H} = 0, i = 1, ..., N .

2. The Fi are in involution, i.e. {Fi, Fj} = 0.

3. The Fi are independent, i.e. rank(∇F1...∇FN ) = N almost everywhere.

A point x in P is called a critical point if rank ∂F /∂x|x < N where F = (F1, ..., FN ).
The corresponding c = (c1, ..., cN ) = F (x) is called a critical value. The set

Mc := {x ∈ P |F (x) = c}. (1)

is a manifold if c is not critical since the tangent space of Mc then has dimension N
at every point. If the∇Fi are linearly independent, so are the J∇Fi. As the gradient
is perpendicular to Mc, and ∇Fi · J∇Fi = {Fi, Fi} = 0, the N linearly independent
vectors J∇Fi give a local coordinate system (they locally span the tangent space).

The first condition merely states that a constant of motion is to be invariant un-
der the flow gt

H , generated by the Hamiltonian. Mc is invariant under the flow of
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H because the Hamiltonian vector field is always perpendicular to all the gradi-
ents: ∇Fi · vH = ∇FiJ∇H = {Fi,H} = 0 by assumption. This is a geometrical
interpretation of the Poisson bracket.

The second condition requires that every constant of motion is invariant under the
flow of every other one. The flow generated by Fi is denoted by gt

i and corresponds to
the vector field vi := J∇Fi = dgt

i/dt|t=0. So in the above argument we can replace
H by any other constant of motion. It turns out that this is the main ingredient of
the proof and of our application to calculate actions (see figure 1 for an illustration),
although it might seem strange to look at these flows because they have no physical
meaning. Condition two has yet another geometrical interpretation that is just as
important: the Lie bracket of any two of the above vector fields is zero, [vi,vj ] = 0
which can be deduced from {Fi, Fj} = 0 using the Jacobi identity. Thus the flows
commute, i.e. gt

ig
s
j = gs

jg
t
i – see [1] for the details.

Finally, the third condition requires that the critical points of F : P → RN have
measure zero. We already used this in order to establish that for the generic non
critical case Mc is a manifold of dimension N . The condition makes sure that there
are regions where Mc changes smoothly under a change of c, and that action-angle
variables can be defined in these regions. In general there can be an arbitrary
number of disjoint component manifolds for one fixed c. Even for a critical value
there can exist non critical components. We shall denote a non critical connected
component of Mc by M0

c . For N = 2 critical components are equilibrium points,
isolated periodic orbits, and separatrices. Note that a point x on a separatrix is in
general not a critical point (the dimension of the tangent space is N), but there is a
critical point on this component: the unstable periodic orbit. Therefore a separatrix
is not a manifold.

3 Liouville-Arnol’d Theorem

The Liouville-Arnol’d theorem states:

If an integrable Hamiltonian system has a compact1 invariant manifold M0
c then M0

c

is an N -Torus TN . There exist angle variables which trivialize the flow, and which
can be found by quadratures. In a neighborhood of M0

c which does not contain
critical points a new symplectic coordinate system – the action-angle variables – can
be introduced [1, 6].

Since the constants of motion Fi are in involution all the flows gt
i form a commutative

N parameter group Gt := gt1
1 ...gtN

N . For every flow gi there is a time ti, so that
t = (t1, ..., tN ) ∈ RN . The space RN is now considered as a commutative group and
is used to define an action on M0

c by

G : RN ×M0
c → M0

c

(t, x0) 7→ Gtx0.

As G is commutative, we can reach any point on M0
c : since M0

c is a non critical
component we can locally reach any point x1 in the neighborhood of x0 with say

1If instead of compactness completeness of the flows on Mc is assumed, one can show that instead
of tori one obtains cylinders T k ×RN−k
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Gt1 , using the local coordinate system generated by the flows gi. We can do this
again, starting from x1, reaching any nearby x2 with Gt2 , and so on. Since G
is commutative the final point then is x = GTx0 where T =

∑
ti. The flows are

complete, i.e. defined for all times, because M0
c is compact and non critical; therefore

we can reach any point on M0
c , and the map G(·,x0) is surjective. Since M0

c is by
assumption compact and RN is not, the map can not be injective: there must be
times for which the corresponding group action maps x0 onto itself. They form the
so called stationary subgroup of RN for any fixed x0:

L =
{
t ∈ RN

∣∣∣ Gtx0 = x0

}
(2)

L is independent of x0 because the flows commute. Since dim(M0
c ) = dim(RN ) = N

we must have dim(L) = 0, thus L is a discrete subgroup of RN (it is commutative
since G is), and therefore it is generated by N linearly independent vectors li,

L =
{
t ∈ RN | t =

∑
mili; mi ∈ Z

}
,

and forms a lattice in RN since lattices are the only discrete subgroups of RN . To
complete the proof we transform the generators li of L into the generators (unit
basis vectors) zi of ZN by a linear change of coordinates:

li = Azi, A = (l1...lN ) ∈ RN×N .

We have thus constructed a diffeomorphism that maps the N -Torus TN = RN/ZN

to M0
c .

Less formally, the above procedure can be viewed like this: the t give a local co-
ordinate system. The coordinate lines are given by the integral curves of the flows
(see figure 1). Since the flows commute, almost every linear combination of them
also gives a local coordinate system. These coordinate systems can be turned into
a global one by making each new coordinate line close on itself. This is achieved by
the above transformation matrix A. Instead of t we use A−1t as coordinates. Since
each new coordinate line is a circle S1 it is natural to measure length in radians,
thus introducing

ϕ = 2πA−1t

as new coordinates. In figure 2 the coordinate lines ϕi (ϕj = const,∀j 6= i) are
shown. Compare these to the coordinate lines ti which are of course the solutions
of our Hamiltonian equations shown in figure 1. The coordinate lines of ϕi can
be viewed as a flow φi expressed in the t coordinates as (introducing the curve
parameter τ)

φτ
i := GAeiτ = Gliτ = gτli1

1 ...gτliN
N

with the unit vector ei in RN .

Every coordinate line ϕi is an irreducible path γi around the torus. It can be
constructed by using the generators li of L which tell us which flows to integrate for
what times if we are to go around M0

c once, and they give us N different ways to
do this.

New constants of motion can now be chosen in a way that they generate the flows
that evolve on the coordinate lines ϕi. These are the actions that are given by
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measuring the symplectic area of the torus

Ii :=
1
2π

∮
γi

p dq.

One usually proceeds to show that a generating function exists which achieves the
transformation to these canonical variables. In our context, however, we are done.
Having constructed the paths γi we can evaluate the path integral numerically and
thus compute the actions.

On a given torus we can now express the original flows, especially the Hamiltonian
flow, in the angle variables and obtain the frequencies. By definition we get the
differential equation for the flow corresponding to Fi in the t coordinates

dtj
dτ

= δij with solution

gτ
i t0 = t0 + eiτ.

If we transform to angle variables we find

gτ
i ϕ0 = ϕ0 + 2πA−1eiτ. (3)

In particular we obtain for the time derivative of the angle variables generated by
the Hamiltonian (H = F1)

ϕ̇ = ω = 2πA−1e1.

The lattice contains all the information about the frequencies. E.g. for N = 2 we
obtain explicitly the rotation number ν

ν :=
ω1

ω2
=

(A−1)11
(A−1)21

=
l22

−l12
.

Besides the natural interest of physicists in frequencies they are also useful for the
graphical display of the energy surface in the space of action variables, as they are
by definition normal to that surface.

Note that the group action G defines a map from the fundamental cell to the torus
and thus gives an explicitly computable parametric representation of that surface.

4 Calculating Actions

The proof shows that the problem of finding the paths is equivalent to finding
generating vectors li of the lattice L in t-space. To do so we introduce a metric d on
phase space P and define a map D which measures the distance from x0 to Gtx0 in
phase space

Dx0 : RN → R

t 7→ d(x0, G
tx0)

for any fixed x0. A Hamiltonian system does not have a natural metric associated
with it in phase space. For our purpose we are free to chose any metric, e.g. the
Euclidean one. By definition of L we have Dx0(t) = 0 for t ∈ L. Thus we need to

6



find the zeroes of D(t) in RN . Since L does not depend on x0 the zeroes of D do not
depend on it and we omit the index x0. We only need to find N zeroes li that are
linearly independent, and form a basis of the lattice L. There are different sets of
generators that produce the same lattice. All these generators can be transformed
into each other via matrices from SLN (Z), the N × N matrices with det = 1 and
coefficients in Z. Any set of generators A defines a valid set of action-angle variables.
Rules for the selection of a specific fundamental cell for N = 2 are presented in the
next section.

Finding minima in N dimensions is a formidable numerical problem. We can, how-
ever, use the following simplification which reduces the computation time for the
function evaluation considerably.

Consider a zero of D:

0 = D(t) = d(x0, g
tN
N ...gt1

1 x0)
⇔ x0 = gtN

N ...gt1
1 x0

⇔ g−tN
N x0 = g

tN−1

N−1 ...gt1
1 x0

⇔ 0 = d(g−tN
N x0, g

tN−1

N−1 ...gt1
1 x0).

For N = 2 this means that we integrate the flow of F1 = H forward in time, and
the flow of the second constant of motion F2 backward in time until we find an
intersection of the two trajectories.

In general the function

D′(t1, t2) := d(g−tN
N x0, g

tN−1

N−1 ...gt1
1 x0)

will not be periodic, but the zeroes of D′ still are. D′ does depend on x0 but its
zeroes do not. We can picture D′(t) as a contour plot (figure 3).

Let n be the number of points calculated by the ODE solver on a typical trajectory.
By the above trick the dependence of computing time on n reduces from quadratic
to linear for N = 2, and in general by one order.

In our implementation of the method we calculate actions not just for one, but for
all tori on a given energy surface. Using a continuation method we then have a good
guess for the zeroes of D′. Therefore we construct “almost angle variable type” flows
φ̃i: let l̃i = (̃li1, ..., l̃iN )t be the guessed zeroes. Analogous to (3) we define

φ̃τ
i := gτ l̃i1

1 ...gτ l̃iN
N and for the vector fields

ṽi :=
N∑

j=1

l̃ijvj

If the guess is correct, i.e. l̃i = li, we have φi = φ̃i. The search for zeroes of D′ is done
by integrating the flows φ̃i. In these coordinates the zeroes are expected to be close
to the corners of the unit cube in RN . If there is no guess available we set l̃i = ei

and reobtain the original flows gi. Since D′(t) ≥ 0 always, numerically we look for
the minima of D′(t) close to zero, instead of looking for the zeroes themselves.
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5 Algorithm

The central part of the numerical procedure for finding the actions, frequencies and
parametrization of tori can now be summarized as follows:

1. Choose an initial condition x0 on a non critical torus.

2. Cover “time space” RN by a grid tm1,...,mN = (m1τ1, ...,mNτN ), where τi (> 0)
is a suitable time step and mi = 0, 1, ...,Mi depending on some estimation for
the maximum time necessary to integrate the flows. If there is some estimate
available for the li, only a grid in the neighborhood of the li is necessary.

3. By integrating the vector fields J∇Fi, transport x0 to the phase space grid
points gm1τ1

1 ...g
mN−1τN−1

1 x0, e.g. by first generating a 1-D grid xm1 = gm1τ1
1 x0,

then generating a 2-D grid xm1,m2 = gm2τ2
1 xm1 and so on until an (N-1)-D grid

xm1,...,mN−1 is produced; also generate a trajectory xmN = g−mN τN
N x0.

4. Find the zeroes (minima which “are zero”) of the the scalar function D′ on the
N dimensional grid (xmN ,xm1,...,mN−1). Additional intermediate points to find
the zeroes with better precision are calculated, e.g., by spline interpolation.

5. Identify the generators li as the vectors which generate the lattice of zeroes
of D′, i.e. check that they are linearly independent and that they do not only
generate a sublattice.

6. Construct the irreducible paths γi in phase space by integrating the vector
fields

∑
k likJ∇Fk for time t = 1 with initial condition x0, and calculate the

actions by numerically evaluating
∮
γi

p dq .

7. The frequencies ω of the Hamiltonian flow in action-angle variables can be
determined by the first column of the inverse of A = (l1...lN ).

8. The torus in phase space can be parametrized by using the flows Gliτ , 0 ≤
τ ≤ 1, using the procedure outlined in 3 (generating an N dimensional grid
xm1,...,mN instead of the (N − 1) dimensional one, however).

9. If desired repeat the procedure with a slightly changed parameter using a
continuation method for the zeroes of D′. This might be an intrinsic parameter
of the Hamiltonian, the energy or any other constant of motion. Observe that
usually this implies that also x0 has to be changed in order to keep the other
constants at the same values. As described in the next section for a two degree
of freedom system this could mean: keep the energy constant and change x0

in such a way that another torus with a different second constant of motion is
selected.

For the integration, minimization and interpolation we use standard methods as e.g.
presented in [7].
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6 Calculating Energy Surfaces for N = 2

Once a set of linearly independent zeroes has been found, the question whether these
are the “right” ones has to be addressed. This question can only be answered in a
meaningful way in the context of the energy surface as a whole. We have chosen the
following properties for the fundamental cell:

1. On stable isolated periodic orbits we require one action to be zero.

2. The fundamental cell varies smoothly under smooth changes of c (c non crit-
ical).

3. If there is a smooth path of non critical values of c connecting one stable peri-
odic orbit to another we require different actions to be zero at the endpoints.

We think that these rules can be fulfilled for all energy surfaces.

What happens to the lattice, respectively the fundamental cell, at the critical values
of c? Near stable periodic orbits we know that the distance measured along the
short path around the torus becomes zero. Thus the function D (or D′) has flat
valleys along the corresponding direction, and all contour lines are approximately
parallel to this direction. The action corresponding to this direction should be zero.

Close to the unstable fixed points (respectively separatrices) the time of integration
goes to infinity and therefore also the points on the lattice L. This corresponds to
the singularity of the frequencies on the separatrix. In our numerical experiments it
turned out that the lattice generators tend to infinity on a linear asymptote. The
direction of this asymptote seems to be the same on both sides of the separatrix.

To calculate the energy surface of any system we have to make sure that we choose
initial conditions x0 for the action calculation on every torus in P. For systems with
two degrees of freedom an efficient way to do this is to start on a Poincaré surface
of section.

Assume that it is possible to find a Poincaré surface of section that contains ev-
ery torus of a given energy surface. The Poincaré surface of section itself can be
obtained as a contour plot of the second constant of motion restricted to the inter-
section of the energy surface and the Poincaré surface of section – without doing
any integration. The separatrices divide the surface of section into regions. In each
of these regions we can introduce a smooth set of actions (see figure 4). Define a
path that transversally crosses every torus of that region. Let the path start and
terminate at the periodic orbits inside or at the border of this region. Let us con-
sider these paths as the edges of a graph. At the endpoints of each edge (i.e. at the
vertices of the graph) there are stable or unstable periodic orbits. If there is a stable
periodic orbit the graph has an endpoint there. If there is an unstable periodic orbit
the graph has a node and can branch into any number of edges. Draw the graph
in such a way that points corresponding to the same value of the second constant
of motion have the same height. The graph constructed in this way is actually a
topological invariant of an integrable Hamiltonian system, as is shown by Fomenko
[8]. The energy surface in P can be pictured as the graph with a torus attached to
every point of the edges. Fomenko also classifies the possible invariant sets at the

9



vertices of the graphs, corresponding to the critical values of F . For our purposes
we just use the edges of the graph to do a continuation algorithm for the actions
defined in these regions.

7 An Example

In order to show the applicability of our method we have chosen a Hamiltonian
showing a 2-2 resonance as described in Walker and Ford [3], which gives rise to a
phase space divided by separatrices. For this system the actions and therefore the
energy surfaces can be determined by other means and then compared to the results
of our method.

The Hamiltonian is given by

H = J1 + J2 − J2
1 − 3J1J2 + J2

2 + αJ1J2 cos(2ϕ1 − 2ϕ2)

Ji and ϕi are the action-angle variables of the unperturbed system (α = 0) and are
related to Cartesian variables via

qi =
√

2Ji cos ϕi

pi = −
√

2Ji sinϕi.

We therefore only allow Ji ≥ 0. As in the discussion of Walker and Ford the energy
will be restricted to the range 0 < E < Ec where Ec is the lowest critical energy.
Assuming that 0 ≤ α ≤

√
5 we find that Ec is given by (3 + α)/(13 + 6α + α2). We

also choose the branch of the allowed energies for which the Ji tend to zero as the
energy vanishes.

With α > 0 the Ji are no longer constants of motion. However, the system is still
integrable, and in addition to the Hamiltonian the combination I = J1 +J2 is easily
identified as a new constant of motion. Using a suitable canonical transformation
the Hamiltonian is separable, with I already being one of the new actions. The
second action can then explicitly be found by quadrature, and the integrals can be
solved numerically or – after some manipulations – using elliptic integrals.

In order to employ our method we follow the program outlined above. We find that
a Poincaré surface of section with ϕ1 = 3π/2 gives a complete overview of phase
space and its foliation by tori for all allowed energies (the alternative ϕ2 = 3π/2
does not). As illustrated in figure 4, phase space is split into four regions, each of
them centered around a simple stable periodic orbit. The central periodic orbit Γ1

as well as the two (distinct) periodic orbits Γ3,Γ4 intersect the surface of section
transversally. The fourth periodic orbit Γ2 does not intersect transversally but lies
entirely in the surface of section, it is the boundary of the energy shell in this section.
The four regions around the stable periodic orbits are separated by separatrices.

In the Poincaré surface of section the critical points of the constant of motion I are
given by ∇I = 0 – corresponding to rank(∇H,∇I) < 2 in phase space. In order to
find the central periodic orbit and the periodic orbit on the boundary by this method
we have to resort to the original variables (pi, qi) because the transformation from
(pi, qi) to the action-angle variables (Ji, ϕi) is not invertible at these points. We find

10



the following distinct critical points

Γ1 : J2 = 0
Γ2 : 0 ≤ ϕ2 < 2π (degenerated to a line)

J2 =
−1 +

√
1 + 4E

2
Γ3,4 : ϕ2 = 0, π

J2 =
(1 + α)(3 + α +

√
9 + 6α + α2 + E(39 + 31α + 9α2 + α3))
(39 + 31α + 9α2 + α3)

Γ5,6 : ϕ2 = π/2, 3π/2

J2 =
(1− α)(3− α +

√
9− 6α + α2 + E(39− 31α + 9α2 − α3))
(39− 31α + 9α2 − α3)

Γ1, Γ2, Γ3 and Γ4 are stable periodic orbits while Γ5 and Γ6 are unstable periodic
solutions. The regions centered around Γ3 and Γ4 are equivalent, i.e. they contain
the same type of tori and allow the introduction of the same kind of action-angle
variables. In the following only one of these regions will be considered.

In order to find initial conditions on all tori we introduce three paths in the regions
R1, R2 and R3: c1 = Γ5Γ1, c2 = Γ5Γ2 and c3 = Γ5Γ3. They are not necessarily
straight but have to be transversal to all tori crossed. Instead of joining the critical
points themselves we may join critical points corresponding to stable periodic orbits
and separatrices carrying the same critical values as the unstable periodic orbits
(compare to figure 4).

For a set of initial conditions on these paths the two vector fields v1 = J∇H and
v2 = J∇I are integrated forward and backward in time. Intersections of these
trajectories are found using the Euclidean metric in the pi, qi variables. Note that
we do not use the knowledge that I already is an action and therefore generates closed
trajectories by itself. However, this effect is unavoidable for separable systems, which
we need here for comparison. To illustrate the method I is treated like any other
constant of motion.

Using the procedure outlined above we then determine the actions I1 and I2 for a
given energy. Figure 5 contains the results from direct quadrature and from our
method for E = 0.2 and α = 0.1. For comparison the results were transformed by
appropriate matrices from SLN (Z). They agree perfectly well. Although the actions
are discontinuous at the boundaries of the regions there are sum rules satisfied that
can be read off the Poincaré surface of section: I2(Γ5 ∈ R2) = I2(Γ5 ∈ R1)−2I2(Γ5 ∈
R3). In figure 5 action I2 of region R3 is multiplied by −2 to make this relationship
more obvious. A comprehensive picture of the energy surfaces in action space for
different energies and parameters is given in figure 6.

8 Conclusion

Our method is an efficient recipe to calculate action variables, frequencies and cor-
responding energy surfaces by purely numerical methods. Furthermore the tori of
integrable systems are easily parametrized. Besides giving the correct results for the
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trivial example of a separable system, it has also proved to be applicable to the com-
plicated case of Kovalevskaya’s top; the results will be published in a forthcoming
paper [5].

Currently we have implemented the algorithm for the case of two degrees of freedom,
a third degree of freedom is allowed if one variable is cyclic and the corresponding
constant of motion is an action. The algorithm is easily extended to the truly three
degree of freedom case, although with a significant increase in computing time for
the generation of irreducible paths. Also the one dimensional scan of the tori, which
corresponds to scanning the values of the second constant of motion in the different
regions, becomes a two dimensional scan in the two constants of motion.

In the current state a good knowledge of the bifurcations in phase space (e.g. in the
form of Fomenko’s graphs) has to be supplied. Future work is directed towards the
complete automation of the method in the sense that for two degrees of freedom the
Fomenko graph corresponding to the system is generated numerically. Complicated
phase space topologies could then be identified and analyzed. The method can then
be applied as a black box function to experimentally relevant systems, and e.g. serve
as a basis for the calculation of energy levels in a semiclassical approximation.
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Figure 1: This figure (as well as figures 2 and 3) has been obtained from the Ko-
valevskaya top. It shows projections of the flows of the Hamiltonian (left) and the
Kovalevskaya constant of motion (right) covering the same torus. The orbits can also
be viewed as the coordinate lines of the (tK , tH) coordinates on the torus. Obviously
they do not generate a global coordinate system, although the flows are in this case
almost “orthogonal” on the torus. Expressing these flows by linear combinations of
the ones shown in figure 2 means a transformation to action-angle variables. See
figure 3 for the preimages of these lines in R2.

Figure 2: The same torus as shown in figure 1 – using the same projection – covered
by a grid of coordinate lines of the angle variables. 10 coordinate lines of ϕ1 (left)
and 30 coordinate lines for ϕ2 (right) are shown. These coordinate lines can also be
viewed as the orbits of a flow given by a linear combination of the flows shown in
figure 1. We determine angle variables and thus actions by numerically calculating
this transformation. See figure 3 for the preimages of these lines in R2.

Figure 3: The function D′ on (tK , tH)-space as a contour plot. Note that the zeroes
form a periodic lattice L while the function itself is only “almost periodic”. G
maps the fundamental region indicated onto the torus. The lattice corresponds to
the torus shown in figures 1 and 2. Two corners of the fundamental cell give the
transformation from t to ϕ coordinates. The orbits (respectively coordinate lines) ti
shown in figure 1 correspond to the tK- and tH - axis of this picture. The coordinate
lines ϕi (respectively orbits) shown in figure 2 correspond to lines parallel to the
edges of the fundamental parallelogram.

Figure 4: The Poincaré surface of section of the Walker and Ford Hamiltonian, with
coordinates (q2, p2) corresponding to (ϕ2, J2) for energy E = 0.2 and α = 0.1. The
separatrices and the critical points Γi are shown. The pictures of the energy surfaces
(figure 6) are obtained by scanning the paths ci in the regions Ri as indicated. We
have chosen c1 and c2 as described in the text. c3, however, is chosen differently: it
connects Γ3 and the separatrix, thereby crossing all tori in region R3 transversally.
On the right the corresponding Fomenko graph is shown.

Figure 5: The energy surface of the Walker and Ford Hamiltonian for E = 0.2 and
α = 0.1. The results of a standard (circles) and our computational method (crosses)
are both shown. The three pieces of the energy surface correspond to the three
regions Ri.

Figure 6: The energy surfaces of the Walker and Ford Hamiltonian for an energy
range 0.01 to 0.22 in steps of 0.01. Figure a) shows the unperturbed case, α = 0 –
the energy surface is smooth. For b) α = 0.1 is chosen. As in figure 5 each energy
surface is split in three pieces.
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