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Abstract

We calculate linear stability boundaries for natural symplectic maps, which are
symplectic mappings derived from Lagrangian generating functions having positive
definite kinetic energy. Simplified stability conditions are obtained in terms of the
Hessian of the potential and applied to a four-dimensional pair of coupled standard

maps.
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1 Introduction

Symplectic twist maps of the form [1, 2, 3]

"= p—-VU
r.-{? =P (1)
qI — q+ B—lpl
where typically p,q € R* or T", U(q) is a smooth potential, and B is a positive definite
constant matrix (the mass matrix), are frequently encountered in physical problems. For

example, coupled standard maps [4, 5] are of this type. The mapping 7" is derivable from

the Lagrangian generating function

F(q,q) = %(q’ —a)"B(d' —q) - U(a) (2)

so that the kinetic part is positive definite in the “velocity,” q' —q. If U(q) = U(—q) the

mapping is reversible. In analogy with established nomenclature for Hamiltonian flows



for “Natural Hamiltonian Systems” of the form [1]

H(p,q) = %pTB‘lp +U(q) (3)

where the matrix B is positive definite and U is a smooth potential, we term such mappings
“Natural Symplectic Maps”.

Stability of fixed points naturally plays a central role in understanding the dynamics
of symplectic mappings, and considerable effort has been expended in developing useful
stability criteria [1, 6]. The purpose of this paper is to derive simplified linear stability
criteria for natural maps, entirely in terms of the invariants of the Hessian of U. We begin
by recalling some basic notions of stability.

A fixed point zg = (po, Qo) of a mapping T is Lyapunov stable if for every neighborhood
U of zo there exists a subneighborhood V' C U such that z € V = T"(z) € U for all
forward time n. It is linearly stable if all orbits of the tangent map £ = DT(zg) are
bounded, and spectrally stable if all eigenvalues \; of £ lie on the unit circle, S*. A fixed
point is linearly stable if it is spectrally stable and all Jordan blocks are trivial [14]. By
the symplectic eigenvalue theorem [1, 7], the eigenvalues of a symplectic matrix occur in
reciprocal pairs as well as complex conjugates.
In general a symplectic map can lose stability in just three ways:
Tangent Bifurcation. A pair of eigenvalues merge at A = 1 and split off S' onto the
positive real axis.
Period-Doubling Bifurcation. A pair of eigenvalues merge at A\ = —1 and split off S* onto
the negative real axis.
Krein Collision. Two pairs of eigenvalues merge at A\, A\, A\? # 1, and split off S, forming a
complex quadruplet. Whether a complex pair can actually leave S depends on additional
invariants, called the Krein signatures [8].

For a natural Hamiltonian flow the critical points of U give precisely the equilibria of

H, for which we have [9, 10, 11]:



Theorem 0 (Dirichlet) Let zo = (0,qo) be an equilibrium of the natural Hamiltonian
system (3), i.e. VU(qo) = 0. Then zy is Lyapunov stable if qo is an isolated local

manimum of U.

For a natural Hamiltonian map the critical points of U give precisely the fixed points

of T', for which we are going to prove the following

Theorem 1 Let zg = (0,qo) be a fized point of the natural symplectic map (1), i.e.
VU (qo) = 0. Then zg is linearly stable iff qo is a quadratic local minimum of U and qo

is a quadratic local minimum of V = $|lq — qo|* — ;U(q).

Note however that we can only prove linear stability, so that our treatment in fact
parallels the theory of small oscillations for Hamiltonian flows, about which Dirichlet
states [9] “... Theorie der kleinen Schwingungen, welche so viele interessante physikalische
Anwendungen in sich begreift, und man muss sich in der That wundern, dass die Wahrheit
desselben bisher nicht mit der néthigen Strenge dargethan worden ist.” ' Having said this
he proceeds to a proof demonstrating Lyapunov stability instead of just linear stability.
Limiting ourselves to linear stability, however, has the advantage that we can obtain “if
and only if” instead of just “if”. We must therefore require a “quadratic local minimum”,
i.e. one with a positive definite Hessian, instead of just an isolated local minimum. The
essential difference from Dirichlet’s theorem is that stability can also be lost by making
the neighborhood of the minimum very “steep” (or rigid in the language of the theory of
small oscillations), thereby destroying the minimum in V.

The paper is organized as follows. In section 2 we employ the quadratic form &7JLE
to analyze linear stability. This “Krein form” is shown to lose definiteness only when
A = *1, demonstrating that tangent and period-doubling bifurcations can occur, but

not Krein collisions. Explicit conditions for stability boundaries are given in section 3

lfree translation:... the theory of small oscillations, which encompasses so many interesting physical

applications, and it is surprising that a sufficiently rigorous proof has not yet been carried out.



in terms of D?U alone, including the Krein boundary (which cannot be crossed). The
resulting stability boundaries are much simpler than those previously derived for a general
symplectic map [6], and are worked out in detail for dimension 2, 4, and 6. Section 4
applies the results to the 4D Froeschlé map, for which a simple formula is found for the
stability of all period-one fixed points. In addition an apparently previously unrecognized
pitchfork bifurcation is discovered, giving birth to a pair of fixed points which can be

stable for negative coupling.

2 Linear Stability and Quadratic Forms

In general, finding stability boundaries for an arbitrary symplectic map is complicated by
the possibility of Krein collision of eigenvalues, requiring knowledge of the Krein signa-
tures, as well as additional conditions to eliminate irrelevant merging of complex eigen-
values off the unit circle [6]. For natural maps, as for natural flows, the positivity of
the kinetic energy precludes Krein collisions, making it possible to derive much simpler
stability conditions.

For a Hamiltonian flow the preservation of energy is crucial to the proof of Dirichlet’s
theorem. For a 2n-dimensional symplectic map there is no preserved energy. The closest
analog is the preserved quadratic form in tangent space obtained from the symplectic

two-form [1, 12, 13|, which we dub the “Krein Form”

Q) =¢rJe =¢"JcLe (4)
where the tangent vector £ € R?" and

0 I
J = (5)
~10

with I the n x n unit matrix. The symplecticity of £ guarantees that ) is constant on

orbits of £. We call 2 the Krein form to emphasize that the signature of its restriction



to an invariant subspace of L is exactly the Krein signature. (Note that (4) defines a
quadratic form even though the matrix JL£ is not symmetric.) From (1) it follows that,
in block form
1 -D*U
L= . (6)
B~' I—-B'DU
As in the theory of small oscillations the mass matrix B can be removed by a canonical

transformation

A 0
M = (7)
0 (A—l)T
where A is determined from B = AAT, which is always possible for positive definite
matrices. (In some cases it may be desirable to retain the mass matrix, for example to

preserve the periodicity of U [15].) The tangent map now becomes simply

f-vem= | T 8)
I I-H
where
H=A"'DUA N =H" (9)
is the transformed Hessian of U. Again as in the theory of small oscillations a second
symplectic transformation M = diag(R, R) with orthogonal R can be used to diagonalize
‘H. For calculating stability this step can be omitted because the stability criteria in
Theorem 2 only involve the invariants of /. But in the proofs we will assume a diagonal
‘H whenever convenient.

In evaluating © it is convenient to take zo = (0,0), so that £ = (p,q). In the new
coordinates, p = Ap, § = (A7")"q, the quadratic form (4) becomes

Q) = IIpll* - p" Ha+a"Ha. (10)

From now on the transformed variables Z = Mz will be always used, so that, e.g., H =

DQU(Q). Completing the square and dropping the hats, we have
1 1
2(€) = lIlp - FHall* + o' H(I - JH)a. (11)

5



Thus, the definiteness of €2 hinges upon the positive definiteness of the n x n matrix
1
W=H(I- Z’H,) (12)

Recall that a symmetric matrix M is positive definite if the quadratic form x” Mx > 0
for all nonzero x € R".
Equation (12) suggests that linear stability might depend on # alone. The following

Lemma provides the needed connection between the eigenvalues and eigenvectors of H

and L.
Lemma 1 The eigenvalues v; of H are related to the eigenvalues \; of L via

where p; = \; +1/X; is the stability index [6]. The eigenvectors of L are linearly indepen-
dent iff A2 # 1.

Proof. In the basis (p1,q1, -.., Pn, Gn) £ takes the simple form

L= diag(Bl, B2, ceey Bn) (14)
where
1 —U;
1 1-— v;

The characteristic polynomial of B; is then equivalent to (13), so that the eigenvectors
corresponding to the A\F are (v;,1 — AF) or (0,1) for \; = 1. If all A # 1 each B is
diagonalizable and the eigenvectors of £ are linearly independent. If some A2 = 1 the
corresponding B; is not diagonalizable. For A; = +1, B; is a nontrivial Jordan block, while
for \; = —1, B; is similar to a nontrivial Jordan block [14]. QED.

This takes us to our principal result:

Theorem 1 Let T be a natural symplectic map with potential U(q). Then a fized point
zo = (0,qo) is linearly stable iff the Hessian H of U at qo and the matriz I — %’H are
both positive definite.



Proof. Assuming that H has been transformed to diagonal form, we immediately find
Wy = I/Z(l — _Vi)a (16)

where w; and v; are corresponding real eigenvalues of W and H, respectively. Thus W
and therefore €2 is positive definite iff H and I — i’H are both positive definite. The
orbits & = L&, of the tangent map are bounded because €2 is a conserved quantity for
the tangent map, (&) = Q(&), and if Q is positive definite it can be bounded e.g. by
the sphere containing the ellipsoid (&) = €2(&;). Conversely, suppose that zg is linearly
stable, i.e. £ has a basis of 2n eigenvectors and all eigenvalues lie on S* [14]. By Lemma
1, this is equivalent to 0 < v; < 4. It follows from (16) that all the w; are positive and W
is positive definite. Q.E.D.

Note that determining the definiteness of the matrix I — %’H is tantamount to deter-
mining the types of the critical points of the “complementary potential”

1

V(a) = 5lla—aoll* ~ 3U(a) a7)

so that W = D?U D?V. Thus, we may paraphrase Theorem 1 as follows:

Theorem 1 Let T be a natural symplectic map with potential U. Then a fized point
zo = (0, qo) is linearly stable iff qo is simultaneously a quadratic local minimum of U

and the complementary potential V.

Now suppose that U depends smoothly on parameters p. Then the implicit function
theorem guarantees the existence of a unique critical point qo = qo(u) provided that
det H # 0. For natural flows this coincides with the condition for no tangent bifurcation.
The essential difference in the case of natural symplectic maps is that stability might be
lost without the Hessian becoming singular, but instead by [ — i?—[ having an eigenvalue

pass through zero. The possible bifurcations are the content of

Corollary 1 Let T be a natural symplectic map with potential U with a fized point (0, qo).

The Hessian H of U losing positive definiteness corresponds to a tangent bifurcation and
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1 . “g e . . . . .
I — 7H losing positive definiteness corresponds to a period doubling bifurcation of the fized

point. Krein collisions are not possible.

Proof. From Lemma 1, v =2 — p and p = A + 1/X. Therefore v = 0, ( H losing positive
definiteness) corresponds to A = 1, and v = 4 ( I — ;H losing positive definiteness)
corresponds to A = —1. Since H is symmetric, its eigenvalues are all real, which implies
that the stability index p is real, which in turn means that either A € R or A € S
Equivalently, the positivity of €2 implies that it is positive on any subspace, so that all
Krein signatures are equal. It follows that complex bifurcations (Krein collisions) cannot
occur. Q.E.D.

Nevertheless the Krein boundary plays an important role in delineating the stable
region for natural maps. In general this boundary is readily calculated from the vanishing
of the discriminant of Py,(A\) = det(L — AI). As we shall see in Theorem 2, this is
equivalent to the vanishing of the discriminant of the characteristic polynomial @, (v) of
the Hessian of U. On the Krein boundary multiple eigenvalues of £ occur, so that there is
a danger of £ not being semisimple. However, Theorem 1 shows that £ is linearly stable,
even on the Krein boundary (excluding points where \> = 1). Thus, linear stability
prevails even in the case of multiple eigenvalues )\ so long as A2 # 1. Besides the case of
semisimple £, in spite of multiple eigenvalues we also find the opposite situation, in which
multiple eigenvalues lead to nontrivial Jordan blocks of £. In the latter case one has
spectral, but not linear stability, as shown by Lemma 1. For natural maps it corresponds
exactly to the case of a degenerate minimum of U or V. By Lemma 1, for v = 0 or 4
there is an eigenvalue pair A = +1 or —1, respectively. Since all eigenvalues are on S?,
we have spectral stability, but linear instability because of the nontrivial Jordan blocks.

It is of course possible for a (non-natural) symplectic map to be linearly stable in

spite of the indefiniteness of €). For example, consider the 4D map analogous to a pair of



counter-rotating oscillators:

A —B
M = (18)
B A
where
16 0 0
A = ! ; B = /61 (19)
0 —ay 0 —05

and oy, ay, B1, and [, are real numbers with 3; > 0 and o? + 3? = 1. Tt follows that

Q= 610} + a}) — Bo(p; + &) (20)

The eigenvalues of M are a; &+ i3;, so the motion is linearly stable.

Since Lemma 1 connects the eigenvalues of the Hessian H with the eigenvalues of L it
is possible to obtain the type (a mixture of elliptic £, hyperbolic H, and inverse hyperbolic
Z) of a fixed point from the index [7] of the critical points of U and V. By the index
ind(U, qg) we mean the number of negative eigenvalues of the Hessian of U at the critical

point qg, similarly for V. With this notation we have the important

Corollary 2 Let (0,qo) be a fized point of a natural symplectic map T. The linearized
map L has ind(U, qq) hyperbolic pairs of eigenvalues and ind(V,qp) inverse hyperbolic
pairs of eigenvalues. If qo s a nondegenerate critical point of U and V' then the remaining

etgenvalues are elliptic.

Proof. If v; < 0, then p; = 2 — 1; > 2, and since p = A 4+ 1/ this implies A > 0. Thus
ind(U, q) gives the number of pairs of positive eigenvalues. The eigenvalues n of D*V =
I - i?—[ are related to the those of # by n = 1 — v/4 since H can be assumed diagonal.
Thus, if n; < 0, then p; = 2 — 4(1 — ;) < —2, and this implies A" < 0. Hence ind(V,qp)
gives the number of pairs of negative eigenvalues. Since there are no complex quadruplets

the remaining eigenvalues are elliptic, because nondegeneracy excludes A2 = 1. Q.E.D.



3 Stability Criteria

While Theorem 1 yields complete necessary and sufficient conditions for the stability of
natural maps in arbitrary dimension, they can be cumbersome to implement for dimension
greater than two. For example one could utilize the well-known fact that a matrix is
positive definite iff its principal minors are all positive [16]. Fortunately, the results of
Lemma 1 suggest an easier way. In fact the stability properties of T are encapsulated in

the characteristic polynomial
Quv) =v" — A" P+ A" 2 ()4, (21)

of DU, which is half the degree of P,,(\). Similarly we denote the characteristic polyno-
mial of D2V by Q,, (n). Analysis of @, yields a set of stability conditions similar to, but
much easier to calculate, than those derived in [6], which we shall refer to as Ref I. The
treatment here roughly follows that of Ref I, to which the interested reader is referred for
proofs and other details. From Corollary 1 it is obvious that the the symplectic matrix
L is linearly stable iff all the eigenvalues v lie in (0,4). Thus, it can be shown that the
stable region is simply connected.

Now let II,, be the set of polynomials @), satisfying
i. (=1)"Q,(0) = det D*U > 0 (= 0 means Tangent Bifurcation)
ii. (—4)"Qn(0) = Qn(4) = 4" det D?V > 0 (= 0 means Period-Doubling)

By Theorem 1 linear stability of £ implies positivity of W, hence det D?U and det D?*V
are both positive, so that @, € II,. Conditions (i) and (ii) define hyperplanes in the
space of coefficients of (), which, together with the discriminantal surface of @,, form
the boundary of the stable region. The latter is part of the linearly stable region, while
the former are excluded. Even for n = 2 (see Fig. 1) these conditions are not sufficient
and have to be supplemented by the absolute bounds on the A;. The absolute bounds on

the polynomial coefficients are obtained by setting all v; either to zero or to 4, yielding
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n
0< A, < 4F . However, for n > 3 the conditions to be in II,, even together with
k

the absolute bounds are not sufficient. For example, in 6D there is an additional “wedge
region” which would not be excluded.

A set of sufficient conditions could be obtained by checking that all principal minors
of the two factors of W are positive. Alternatively, one could use Sturm’s theorem to
derive a set of necessary and sufficient conditions that the zeros of (), lie in the interval
(0,4). But this method is equally unwieldy for n > 3. Once more there is an easier way.
We have seen that a fixed point is stable iff the matrices H and I — i?—[ are both positive
definite. Since complex eigenvalues are impossible, this is true only if all eigenvalues of

D2U and D?V are positive. Now write

Qu(n) =n" — A™ 1+ -+ (-)"A,, (22)

and by direct computation we find, using n =1 — v/4 in (21), that

. g n—op A
A=2 iy (23)
p=0 n—q

where by definition Ay = 1. This enables us to formulate simple stability conditions for

natural symplectic maps in

Theorem 2 A fized point of T is linearly stable iff all coefficients Ay, Ay of Qn(v) and

Qn(n) are positive.

Proof. Recalling that the A, and Ay are just the symmetric functions of the v; and 7;,
direct application of Descartes’ rule of signs shows that the 1; are all positive iff the Ay
are all positive; the 7; are all positive iff the A, are all positive. Descartes’ rule gives the
exact number of positive roots because we know that there are no complex roots because
D?U and D?V are symmetric. But the positivity of v; and 7; together guarantee that
0 < v; < 4, so that 2 is positive definite and L is linearly stable. Q.E.D.
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This yields a set of 2n inequalities which are much simpler to calculate and evaluate
than the equivalent number found from Sturm’s theorem. Moreover the conditions are
linear in the Ay and the highly nonlinear discriminant of () need not be calculated. Let
us now work out the explicit stability boundaries for natural maps of dimension two, four,

and six.

Two-Dimensional Maps (n = 1)

Here # = U,, and (11) becomes

1 2

1
Q&) =~ §quq)2 + Ugg(1 — Zqu)q

(24)
which is clearly definite only in the range 0 < U,, < 4. For the standard map U(q) =
— K cos g and we recover the familiar result that the central fixed point at gg = py = 0 is

stable for 0 < K < 4.

Four-Dimensional Maps (n=2)

In this case the fixed point is stable if the 2 x 2 matrices H and I — i?—t are positive definite,
which requires that the determinant and trace of each be positive, that is detH > 0,
det(I — 3H) >0, and 0 < trH < 8 . Setting 7 = tr % and A = det A, these conditions
reduce to

0<7<8, A>4(r-4), A>0, (25)

which are equivalent to A; > 0 and fli > 0. Fig. 1 shows the stable region in the 7 — A
plane, which is to be compared with Fig. 2 of Ref. 1.
Alternatively, these conditions may be obtained by setting @2(0) > 0, @2(4) > 0 in

the reduced characteristic polynomial
Q:v) =1 —Tv+ A (26)

together with the absolute bounds. The boundary for Krein collisions is given by disc(Q2) =
0,ie. A= 72 Since 72 — 4A = (Upy — Uyy)? + U2, > 0, we confirm that a stable fixed

12



point cannot cross the Krein boundary. The next section applies these results to the 4D
Froeschlé map.

Siz-Dimensional Maps (n=3)

For dimension greater than four it is advisable to directly use the conditions on A, and
Ay,. Denote the characteristic polynomial of by

Qs(v) =1 =1 +ov - A (27)

where 20 = (tr )2 — tr(#?). Working out the A and noting that A, = 7, 0, A > 0, we
find

~ 1
A1:3—ZT>0 = 0<7<12

1 1
Ay =3— -7+ —0>0 = 0<o>8(1—6)

2 16
~ 1 1 1
A3 =1—-- —0— —A A<4(oc—4 16). 2
3 4T+160 5l >0 = 0<A<4(0—47+16) (28)

Figure 2 depicts the stable region in the space of invariants 7, o, and A, bounded by the
tangent bifurcation plane Y15 (4s = A = 0), the period-doubling plane Xpp (A5 = 0),

and the two-sheeted, quartic discriminantal surface Xy, given by
(9A — 70)* = 4(7* — 30) (0 — 3TA). (29)

Again note that although (29) is useful for delimiting the stable region, it is not really
needed to determine stability. The effect of the plane o = 8(7 — 6) is to eliminate the
unstable wedge region between ¥y and X pp, which intersect tangentially along the line
(1,0,A) = (1,8(7 — 6),16(7 — 8)). It is easily seen that 11 = vy = v3 along the cusped
ridge joining the two sheets of X.

In the general case of a non-natural map a full set of necessary and sufficient stability
conditions can be found by applying Sturm’s theorem to the characteristic equation.

Unfortunately, the 6D stability conditions given in Ref. I are incomplete, although Fig.
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3 of that paper is correct. The missing stability condition is |B + 1| > A + C/2, where
A, B, and C' are coefficients of the characteristic equation.

Finally we briefly remark on the question of codimension and unfolding about de-
generate fixed points. As explained in Ref. I, for a general symplectic map there may
be “avoided collisions.” For natural maps, while Krein collisions are forbidden, double
eigenvalues can nevertheless occur on S away from 41 as well as at 1. But for natural
maps both configurations are codimension one and therefore generic. This is in contrast
to the general case where a collision of eigenvalues having the same Krein signature is
codimension 3. The same configuration is codimension 1 for natural maps because the

signatures are automatically definite.

4 Application to the Froeschlé Map

Various forms of coupled standard maps have been devised to study the transition to
global chaos in higher dimensions [4, 17, 5, 18]. We shall adopt the version

(

p, = p;— Kisinz — hsin(z +y)
py, = py— Kasiny — hsin(z +y)

T: X (30)

¥ = x+p

LV = v+,

which has the underlying averaged potential
U(x,y) = —Kjcosz — Kycosy — heos(z + ), (31)

where K7 and K are real amplitudes and h is the (positive or negative) coupling constant.
Since U is even, T is reversible. Without loss of generality we may take K, Ky > 0, since
shifting x, y by m changes the signs of K;, Kj; by exchanging z and y we can always
achieve K; > Ky. Moreover, shifting both z and y by 7 and changing h to —h transforms
U to —U. Note however, that this only applies to U, but not to the complementary
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potential V', so that the stability of T" behaves in a more complicated way upon changing
the sign of h.
The fixed points of T" are py = 0 and the critical points qo = (g, o) of U, i.e. the

simultaneous solutions of

Kisinzg + hsin(zo+1y) = 0

Ky sinyg + hsin(zg +y) = 0. (32)
There are two families of period-one fixed points, the four primary fixed points at {x, y0} =
{0, 7}, and pairs of secondary fixed points which bifurcate from these at certain values
of the coupling constant h. Let us now trace the metamorphosis of the level sets of
U, which yields the tangent bifurcations of the fixed points of 7. The reader may find

it helpful to consult the suite of contour plots in Fig. 3, generated for the parameters

K; = 0.5, Ky =0.3. The type of each critical point is given by the the signs of
A =det D’U = K;K,coszgcosyg+ hcos(zy + yo) (K cos zg + Ky cosyp)
T=tr D°U = K,cosz+ Kycosyy+ 2hcos(zy + yo)- (33)

For A < 0, U has a saddle; for A > 0 there is a minimum if 7 > 0 and a maximum if

T < 0.

Primary Fized Points

As argued above, we can restrict attention to positive h and positive K; > K, for the
discussion of the critical points of U. Introducing s; = cos(zy) and se = cos(yo), which
take only the values +1 on the primary fixed points, we find

A = h(SQKl + 81K2) -+ 6‘182K1K2

T = 25182h + 81K1 —+ SQKQ. (34)

qo = (0,0). Since A > 0 and 7 > 0 the origin always is a minimum of U. The stability of

the corresponding fixed point depends on V.
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qo = (0, 7). Since A < 0, qq is a saddle. The corresponding fixed point is always unstable.
q = (m,0). Here A = —K 1Ky + h(K; — Ky) and 7 = —(K; — K3) — 2h < 0, so
that qo changes from a saddle to a maximum upon increasing h through the critical
value h_ = K;K,/(K; — K3). The secondary fixed points are destroyed in this tangent
bifurcation. This primary fixed point is always unstable.
qo = (m, 7). Here A = K1 Ky—h(K;+K>) and 7 = —K; — Ky+2h, so that qg changes from
a maximum to a saddle upon increasing h through the critical value hy = K1 Ky /(K1+K>).
At h = h, we find 7 = —(K? + K3)/(K, + K,) < 0 always. The secondary fixed points
are created in this tangent bifurcation. This primary fixed point is always unstable.

The stability of the primary fixed points is mostly determined by U, with the exception
of the origin, where it depends on V' having a minimum, which is the case if A > 4(7 —4)

and 7 < 8, yielding
(Ky +h—4)(Ky+h—4)>h* and 2h+ K, + K, <8. (35)

Thus, the origin is stable with zero coupling only if it is stable in both decoupled maps
(K; < 4). Stability can be lost in a period-doubling bifurcation upon increasing h through

the critical value

1 1 1
- = . 36
b 1-K,  1-K, (36)

When K; = Ky = K < 4, we find stability for 0 < h < (4 — K)/2. At h, a transition

from £E to £T takes place. If both decoupled maps are unstable (K; > 4), the origin is
77 for small h and changes to £7 at h = h,. If one of the decoupled maps has a stable
origin, and the other one an unstable one, the origin of the coupled map is £Z for small

h and can turn into Z7 at h,, provided that 7 > 8.
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Secondary Fized Points

Next we consider the stability of the bifurcated pair of fixed points which migrate from

(m,m), to (m,0) as h increases from hy to h_. From (32) it follows that

"To\K2 h K) “PYT\®K T h K

and sinyy = (K;/K>s)sinzy. The second primary critical point of U is given by q¢ =
(—xo, —Yo). It can be shown that for both points

N | (R
1 1
= (mrg) .

so that, for A > 0 the secondary fixed points are unstable because 7 < 0. The product
runs over all four sign combinations. In summary, for K; > K5 > 0 the Froeschlé potential
undergoes the following metamorphosis as h increases from zero, as shown in Fig. 3. When
h increases through h, a pitchfork bifurcation (in U) takes place, the maximum at ()
becoming a saddle and giving birth to two new maxima. When h = K5 and K; two global
bifurcations occur (reconnections) in which the critical points of U do not change type.
When h increases through h_ an inverse pitchfork bifurcation takes place at (7, 0). For
positive h this scenario does not greatly affect the dynamics of the mapping itself, as the
bifurcated maximum points of U correspond to unstable fixed points of T. Of the four
principal fixed points, only that at the origin is ever stable, when eq. (35) is satisfied.
However, if we allow for negative h, apart from the shifting of z and y the type of
the critical points changes from minimum to maximum, while a saddle stays a saddle.
Thus, the (shifted) origin is now a maximum, therefore unstable. Most important, the
primary points giving rise to the secondary points are now minima before they bifurcate,
therefore potentially stable, similarly for the secondary points. In order to clarify the

whole scenario, in Fig. 4 we draw the curves (7(h), A(h)) for all the fixed points. For the

17



primary fixed points we just find the straight lines
2A = (81K1 + SzKQ)T - K12 - K22 (39)

In Fig. 4 the position of zero coupling is indicated by a dot on the line. The secondary
fixed points are described by

AN = - (L _K22>272+2(K2+K2) — (K7 + K3)*/7* (40)

K2+ K2 1 2 1 2 5

and the relevant part of this curve connects the intersections of the lines (39) with the
line A =0 at 74,5, = (K? + K2)/(51K1 + s9K>). For positive h these intersections are in
the region with A < 0, so that the secondary fixed points are of type HH. However, for
negative h the bifurcation scenario depends on the location of 7, < 7, _ relative to 7 = 4.
If both are smaller than 4, the secondary fixed point is always stable. If 7, <4 < 7y _,
the secondary fixed point loses stability in a period-doubling bifurcation, as in Fig. 4. If
both are larger than 4, the secondary fixed point is always unstable of type £Z. Note
that in the latter case, for which 7, > 4 is sufficient, the map does not have stable fixed

points for any value of h.

5 Discussion

We have presented a simplified method for obtaining linear stability criteria for natural
symplectic maps of arbitrary dimension. We began by showing that linear stability is
equivalent to the positivity of the Krein form, 2. This led us to examine the spectrum
of the Hessian of U and its complementary potential V = L||a — qo||* — 1U. Requiring
that the eigenvalues of D?U and D?V be positive then yielded simple conditions linear in
the invariants of D?U, in contrast to the general case of a symplectic map with indefinite
kinetic energy, where complicated nonlinear inequalities must be evaluated. In addition,
a proof of the impossibility of Krein collisions in natural maps was obtained. Finally,

stability boundaries were found for maps of dimension 2, 4, and 6 and applied to the 4D
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Froeschlé map. With our new method we were able to calculate the complete bifurcation

scenario, including a previously unrecognized pitchfork bifurcation.
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Figure Captions

Fig. 1. Stability diagram for 4D natural maps in the 7 — A plane. The stable region is
the triangular area bounded by the 7 axis, the line A = 4(7 —4), and the Krein boundary
A= iT2, which cannot be crossed. The wedge regions to the right and left of the stable
region are eliminated by the absolute bounds 0 < 7 < 8.

Fig. 2. Stability diagram for 6D natural maps in the space of invariants 7, o, and A.
The stable region is bounded by the tangent bifurcation plane, 75, the period-doubling
plane, ¥pp, and the two-sheeted quartic discriminantal surface ¥, which is tangent to
Ypp and transverse to Y7p. Only the portions of the surfaces actually bounding the
stable region are shown.

Fig. 3. Level sets of Froeschlé potential (31) for K; = 0.5, K» = 0.3 and (a) h = 0.2,
slightly above h, = 0.1875, so that the fixed point at (7, 7) has undergone a pitchfork
bifurcation, (b) A = 0.3, first reconnection, (c) h = 0.5, second reconnection, and (d)
h = 0.6. The secondary fixed points are now approaching (7, 0), where they will coalesce
and disappear when h = h_ = 0.75.

Fig. 4. Stability of the fixed points of the Froeschlé map for K; = 1.3, K, = 0.8 in the
plane 7— A. The dots indicate the position for h = 0. The straight lines correspond to the
primary fixed point, the curves connecting their intersection with the 7-axis correspond

to the secondary fixed points. The stability boundaries of Fig. 1 are also shown.
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Figure 1: Howard/Dullin
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Figure 2: Howard/Dullin

Figure 3: Howard/Dullin
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Figure 4: Howard/Dullin
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