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The Levitron is a toy consisting of a magnetic top which can levitate spinning in the air
over a ceramic magnetic base. It was invented by Roy Harrigan, for the history of its
invention see [6]. A theory for the motion of the top has been developed by M. V. Berry
[2]. Berry uses the method of averaging to predict the motion of the center of mass of the
top in an averaged force field. He assumes that both the spin of the top and the precession
of its axis are fast relative to the motion of its center of mass. A similar approximate
treatment has been done in [6]. This paper augments these investigations by studying the
exact model of the full twelve dimensional problem. We are able to predict the interval
of spin rates for which the top is stable. Linear stability of the relative equilibrium is lost
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Abstract

The Levitron is a magnetic spinning top which can levitate in the constant field
of a repelling base magnet. An explanation for the stability of the Levitron using
an adiabatic approximation has been given by M.V. Berry. In experiments the top
eventually loses stability at a critical spin rate which can not be predicted by Berry’s
approach. The present work develops an exact theory of the Levitron with six degrees
of freedom which allows for the calculation of the critical spin rate. The main result is
a complete classification of possible Levitrons that allow for an interval of stable spin
rates. Stability of the relative equilibrium is lost in Hamiltonian Hopf bifurcations if
either the spin rate is too large or too small.

Introduction

when the top spins too slow or too fast.



In Sec. 2 we treat the kinematics of the Levitron. We take the traditional approach [1,3]
of deriving the Lagrangian for the Levitron as the difference of kinetic (Sec. 3) and potential
(Sec. 4) energy. The introduction of local coordinates is delayed as long as possible and
we treat the symmetries of body and space in a coordinate free approach in Sec. 5. We
show that the Levitron has a two dimensional torus symmetry group, hence there are two
conserved quantities, the angular momentum in space and the angular momentum in the
body. However, the orbits of the symmetry group are not always two-tori, but degenerate
into circles for the periodic orbit of the top that we want to analyze in detail: the top
with center of mass at rest on the z-axis, and spinning with its axis aligned with the
z-axis. Technically speaking we encounter the case of singular reduction. Therefore we
introduce local coordinates (Sec. 6) that reduce only one symmetry and are nonsingular
in the neighborhood of the periodic orbit. Using Hamilton’s equations (Sec. 7) we show
that there is a four dimensional invariant set (Sec. 8) in phase space and that it contains
the periodic orbit as a relative equilibrium (Sec. 9). The invariant set induces a block
decomposition of the linearization (Sec. 10) about our periodic orbit. The 8 x 8 system can
be written in complex form as a 2 x 2 second order equation. This leads to our principle
result: a fourth degree polynomial depending on 3 dimensionless quantities whose roots
determine linear stability. The remaining part of the paper deals with the analyses of the
parameter dependence of the roots of this polynomial. The stable region in coefficient space
is determined and the bifurcations (Sec. 11) corresponding to its boundaries are shown to
be Hamiltonian Hopf bifurcations (also called Krein collisions or complex bifurcations).
The coefficient space is decomposed into rays which correspond to changing the spin rate
and a transverse two dimensional Levitron space (Sec. 12) from which the stability behavior
of a Levitron can be determined. The Levitron space captures the essential parameters of
any given Levitron; besides the geometry of the top it only depends on the derivatives of
the magnetic field of the base on the z-axis. In the final section we calculate the critical
spin rates and find good agreement with the experimental values.

2 Kinematics

It is useful to think of two pictures of the top. In the first picture the top is stationary, the
center of mass of the top is located at the origin and its symmetry axis is aligned with the
vertical axis. We refer to this picture as the body coordinate system. In the second picture
the top is moving in a space fixed coordinate system, the laboratory coordinate system. To
produce a motion of the top in space, each point in the top is rotated by a rigid rotation R
and then translated by adding a vector r. Thus a point () in the body coordinate system
is transformed to a point ¢ in laboratory coordinates. The group of all orientation- and
distance-preserving transformations of R? is the configuration space of the Levitron. It is
well known that this space is R® x SO(3) where SO(3) is the Lie group consisting of all
3 x 3 orthogonal matrices having determinant equal to 1. A point in R* x SO(3) is denoted
by the pair (r, R).

A motion of the top is determined by a curve y(t) = (r(t), R(t)) in configuration space.
A point @ in the body traces the curve ¢(t) = R(¢t)Q + r(t) when viewed in the laboratory
coordinate system. The phase space of the Levitron is the (co)tangent bundle of the six
dimensional configuration space.



3 Kinetic Energy

The kinetic energy of the top is the sum of the translational kinetic energy due to the
motion of its center of mass and the kinetic energy associated with the rotation of the top.
In the body coordinate system, the mass density of the top at a point () is assumed to be
an integrable function denoted by m(Q). We assume that the center of mass of the top is
at the origin, and its total mass is m. Thus [ m(Q)QdQ = 0, and [ m(Q)dQ = m.

Now suppose a curve y(t) = (r(t), R(t)) determines a motion of the top in space. A
point @ in the body is transformed to a moving point ¢(t) = R(¢)Q + r(t). The kinetic
energy density associated with this moving point is

1

aT(Q) = Jm(Q)d,d)

with ¢ = R(t)Q + 7(t). The kinetic energy is T = [ dT(Q)dQ. The kinetic energy density
breaks up into three terms,

aT = SmQ) ),
Ty = m(Q)(, RQ),

a1, = Sm(Q)(RQ, k@)

Integrating the first term gives 77 = m(r,7)/2, the contribution from the motion of the
center of mass. Integrating the second term gives

1= [ hQm(@QdQ = (i} [ m(@)QdQ) =o.

The term 75 is zero because the center of mass of the top in the body coordinate system is
at the origin. To integrate the third term we make use of certain properties of SO(3) and
its Lie algebra so(3). Recall that SO(3) = {R: RR' = I,det R = 1} where Ris a 3 x 3
matrix, and I denotes the 3 x 3 identity matrix. As a set, SO(3) may be viewed as a three
dimensional submanifold of the 9 dimensional space of all 3 x 3 matrices. The Lie algebra
of SO(3) is associated with the tangent plane to this manifold at the identity matrix I.
Tangent vectors arise as the velocity vectors associated with curves in a manifold. Thus
given a curve R(t) in SO(3), since R(t)R'(t) = I we have R(t)R'(t) + R(t)R'(t) = 0 by
differentiating. It follows that the matrix R(t)R*(t) is skew symmetric. If R(0) = I, then
R(0) is skew symmetric and thus the Lie algebra so(3) is the space of all skew symmetric
3 X 3 matrices.

Definition 1 The cross product map is a linear isomorphism g : R® — so(3) defined by
the formula g(a) = a1S1 + a2S2 + a3 Sz with

0 0 01 0 -1 0
51: 0 0 -1 ,SQZ 0 0 0 ,Sg— 1 0
0 -1 0 0 0

The matrices S1, Sa, S3 form a basis for so(3).
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The map g is called the cross product map because it was constructed to turn the vector
cross product into matrix multiplication.

Lemma 1 The cross product map has the following properties, with a,b € R3:
axb=g(a)b, g(axb)=g(a),g(b)], g(Ra) = Rg(a)R’

These properties may be verified by short computations. The second property is well
known, and has a very interesting interpretation. The right side of the equation is the Lie
bracket in so(3) defined by [A, B] = AB — BA. Thus the vector cross product from vector
calculus is actually the Lie bracket operation on so(3). This is apparently why sometimes
the notation [a, b] is used instead of a x b, e.g. in Arnold [1]. In the following we will need
the standard identity

{a x b,a x by =b'g(a)'g(a)b = —b'g(a)*b = b'(I|a|* — aa’)b = |a|?|b|* — {(a, b)>.

One can easily derive other cross product identities like (a,b x ¢) = (c,a x b) via the
corresponding matrix calculation using g. The computation of 73 now goes as follows:
Inserting R'R gives

1 7 . )
Ty = 5 [(RR'RQ, RR'RQ)m(Q)dQ.
Because RR' € s0(3) we can define w = g~ '(RR"); w is the angular velocity of the spinning

top in the laboratory frame. We use below the fact that matrices in SO(3) preserve inner
products, (Rz, Ry) = (z,y). Hence

T, = 5 [(x RQ.w x RQm(Q)Q
= 5 JUPIRQP — (o, RQ)m(@)dQ
= [ (71QP ~ ' RQQ' R hm(@)dQ
Now define Q = R'w, the angular velocity in the body fixed frame. Note that
9(Q) = g(R'w) = R'g(w)R = R'RR'R = R'R.
Introducing € into Ty gives
T = 5 [{910%0 - 2QQ)m(Q)dQ
= 0[P~ QQ)m(@d)0
The 3 x 3 matrix O is the inertia tensor given by
6 = [(1QP1 - Q@)m(Q)dQ,

such that .
T = EQt@Q.
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Because O is a symmetric matrix, the body coordinate system can always be chosen such
that the inertia tensor becomes diagonal, © = diag(©;, ©4, ©3), which we assume in the
following. In our case we additionally have the symmetry of the body, i.e. ©; = ©,. Finally
the total kinetic energy of the top is

1 1 :
T= 5m<7=, 7y + 59*@9, with Q = g7 (R'R).

4 Potential Energy

The potential energy U(r, R) consists of two terms, the gravitational potential energy and
the magnetic potential energy. The former is mgz, where m is the total mass of the top,
and z is the height of the center of mass of the top above the z-y plane. The magnetic
field of the ceramic base at a point 7 = (z,y, 2) in space is specified by the vector B(r).
Let e, denote the direction of the z-axis, e, = (0,0,1)*. Then the vector Re, is the unit
vector pointing in the direction of the axis of the top. A (negative) parameter p models
the strength of the dipole field of the top, and it is assumed that the symmetry axis of
the top is aligned with the magnetic axis of the top. Furthermore it is assumed that the
position of the dipole is the center of mass. The magnetic moment of the top is described
by the vector pRe,, pointing downward if the top is pointing upward. In this orientation
the top is repelled by the base. The magnetic potential energy —(B(r), uRe,) is the inner
product of the magnetic field of the ceramic base at position r with the dipole vector of
the top. The total potential now is

U(T‘, R) =mgz — <B(’f‘), ,U‘Rez): M < 0.

The magnetic field of the base can be written as the gradient of a scalar potential,
B(r) = =VV(r), because we have a static magnetic field. The potential V' (r) must be a
harmonic function, AV (r) = 0, so B(r) fulfills Maxwell’s equations. Moreover, we assume
cylindrical symmetry of the magnetic field, and therefore require that

V(r) = Vo(z) + pVi(2) + p*Va(z) +. . .,
where p? = 22 + y2. The function V is harmonic provided that
AV(r) = V5 (2) + oV (2) + Vi(2) Ap + oV, (2) + Va(2)Ap” + ... = 0.

Using the formula Ap = n?p"~2 and setting the terms with equal powers of p equal to zero
gives V;(z) = 0 for j odd and V5;42(2) = —(1/(25 + 2)2)‘/2';(,2) for j even. Introducing the
notation

we obtain

and the magnetic field becomes

2®5(2)/2 + O(p’)
B(r)=-VV(r) = y®(2)/2 + O(p°)
—®1(2) + p*®3(2) /4 + O(p*)
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Since we want the magnetic field to repel the top, we require it to be pointing upward on
the z-axis, i.e. ®1(z) < 0. In order to be able to start the top spinning on a plastic plate
close to the base the field can point in the opposite direction close to the base. Combining
the gravitational and magnetic contributions we find to quadratic order in z, y

U(r, R) = mgz — (%@2(2)(35313 4 yRay) + (—®1(2) + %(aﬂ + )B4 (2)) Ras + .. ) .

For the field generated by a disk of radius a with a hole of radius w following Jackson [4]

we obtain .

Vet 22 Ja+ 22)'
The potential of a square slab of side length 2a with a hole in the middle has been given
by Berry [2]. We refer to this as Berry’s second model, see Fig. 4 and Fig. 7.

Vo(z) = 2m2(

5 Symmetry and Conservation Laws

The gravitational and magnetic fields in the problem have rotational symmetry around the
vertical axis. Further, the top is symmetric with respect to rotation about its axis. These
symmetries may be formally expressed as an action of the group S' x S' on R? x SO(3).
The action is

(r,R) = (', ') = (R.(a)r, R.(c)RR.(B))

where R,(t) is the rotation matrix about the z-axis,

cost sint O
R,(t)=| —sint cost 0
0 0 1

Note that this action has orbits which are tori parameterized by o and 3 except when r
is on the z-axis and when Re, = e,, i.e. the top rotates about its symmetry axis on the
symmetry axis of space. The symmetry group action on configuration space extends to an
action on its tangent bundle via the tangent map, such that

(7, R) — (", R") = (R,(a)7, R,(2)RR,(0)).

The behavior of the top is conveniently modeled using Lagrangian mechanics. Hamil-
ton’s principle states that the path of motion in phase space is one which is an extremal
for the integral of the Lagrangian £. The function £ is the difference between the kinetic
and potential energy of the moving top,

m

£=3

1
(r,7) + §Qt®Q —U(r, R).
That the above symmetry is indeed the symmetry group of the Levitron is shown in

Theorem 1 The Lagrangian L is constant on orbits of the torus action on T(R? x SO(3)).



Proof: We must show that L(r, R, 7, R) =L, R, 7, R’), with (7', R', 7, R’) given above.
a) The equation (7,7) = (', 7') holds because R,(«) is an orthogonal matrix.

b) By symmetry of the magnetic field we have B(R,(«a)r) = R,(a)B(r). Hence

(B(r'), R'e.) = (R:() B(r), R:(a) RR.(B)e.) = (R.(c) B(r), R;(a) Rez) = (B(r), Re.).

¢) To compute the new kinetic energy of the top we calculate
R'R' = R(B)R'R.(a) R.(a) RR.(5) = R.(5)R'RR. (D).

From the fact that g(Rv) = Rg(v)R' for R € SO(3) it follows that Q(R,R) =
R.L(B)SUR, R). Because the matrix © is diagonal and ©; = ©, it commutes with
R,(B), therefore Q'(R', R)OQ(R', R') = Q'(R, R)OQ(R, R).

Hence the Lagrangian £ is invariant under the action of the symmetry group. O

By Noether’s theorem we know that there exist two conserved quantities for the system
of differential equations which govern the motion of the top. Using the method of Lanczos
[5] to calculate them we find

K, = (zy—yi)m+ (Q,0R',)
L3 = <Q, ®€z>

K, is the angular momentum about the z-axis in space and L3 is the angular momentum
about the symmetry axis in the body. K, is the sum of contributions from the motion of
the center of mass and from the motion of the top.

The fact that the orbit of the symmetry group is just a circle instead of a torus if we
start on the z-axis, r = (0,0, z) and rotate about the body axis, R(t) = R,(t), causes the
two conserved quantities to coincide on this cylinder in configuration space.

6 Local Coordinates

Recall that if £: TM — R' is a smooth Lagrangian on the tangent bundle of a manifold
M, and if ¥ : R* — M is a local coordinate system on M, then T¥ : R* x R* — TM
is a local coordinate system on 7M. Lagrange’s equations in local coordinates (¢, v) with
v = ¢ are

d oL oL

dt avk N 8qk )
Thus in order to derive equations of motion for the top, local coordinates on T'(R? x SO(3))
must be introduced. To fully explore the symmetry it would be appropriate to introduce
a coordinate system which has the angles a and # as coordinates. This coordinate system
would use the classical Euler angles, see e.g. Goldstein [3], and both angles would be cyclic
in the Lagrangian, thereby reducing the 6 degrees of freedom Levitron to a system with
4 nontrivial degrees of freedom and 2 parameters K, and L3. However, this coordinate
system is singular exactly on the periodic orbit we are most interested in, i.e. the top
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spinning about its axis which is aligned with the z-axis and with its center of mass at rest
on the z-axis.

Since we already remarked that the two conserved quantities are not independent on
this orbit, it does not make sense to try to reduce both of them for studying this orbit.
We choose to reduce the angle 3, i.e. we reduce by the symmetry of the top.

Definition 2 The following system of local coordinates is constructed to reduce with respect
to the symmetry of the top. Define

R* — SO(3); R(¢, 9, ¢) = Ra(9) Ry (9) R, ().

The matrices R, It,, R, are rotations about the z, y, and z axes respectively; R, was
given explicitly in the last section. The entries in the third column of the matrix R(v, 9, @)
are given by

Re, = (sin ¥, cos 9 sin ¢, cos ¥ cos ¢)" .
Therefore the potential energy is independent of ¥. To calculate the kinetic energy 7" in

local coordinates set & = (1,9, ¢). Then from Q = g~*(R'R) we find

0 —sinty —cosvcosy
Q(&,6) = C(6)E with C(€) = 0 cost®p —cosdsiny
-1 0 —sin

Even though C(£) does depend on %, the kinetic energy of the top Q2'©Q/2 does not
because ©; = O,.

7 Hamilton’s Equations

Suppose that a Lagrangian in local coordinates (g,v) € R* x R" has the form L£(q,v) =
Lv'M(q)v — U(g), where M(q) is an n X n invertible symmetric matrix. The classical
Legendre transformation is obtained by setting py = (0/0vx)L(g,v) and then defining a
Hamiltonian H by the formula H(q, p) = p'v—L(q, v) where v is assumed to be an implicitly
defined function of ¢ and p. In this case, p = M(q)v and thus

H(q,p) = %vtM(q)v +U(q) = %ptM‘l(q)p + Ul(q)-

By this transformation the Lagrangian equations of motion are replaced by the Hamiltonian
equations

OH(¢,p) .  OH(q,p)

G =—F > DPe=—""F7 -
Opx, gy

The Lagrangian for the Levitron has the form

L0, #,6,8) = 05, 7) + L€M) - U(r,)

where M (&) = C*(£)OC(£). When the Legendre transformation is applied, the resulting

Hamiltonian is ]

H(r,&p,n) = 5—(p,p) + %ntM‘l(S)n +U(r,£).



We have p = mr,n = M(§)§ with 7 = (py, s, Py). The kinetic energy of the top is most
efficiently written using the angular momenta in the body fixed frame defined by

L=C7"(&)n = 09(¢,&(n)).
Then the kinetic energy reads n'M 'n/2 = L'©~1L/2, and

1 1 Py — P Sin'ﬂQ
H(r,&pm) = —(pi+P§+P§)+2—@1<p5+(w cos? 0 )

2m
Py
+—+U(r,9,
20, (r, 9, )
By construction, the Hamiltonian does not depend on %, so py is conserved. Hamilton’s
equations take the following form, where we use subscripts on U to denote partial deriva-
tives. We set r = (x,y, 2) and p = (pg, py, p,)- Then

. b
Fo= Z
m
;D = _Ur (Ta 19, 90)
. p’lﬁ Sin/ﬁ .
pry _— T — /19 -
v O3 * ©; cos? (p; sin Po)
g — P9
9 = o,
. _71( sind — p,,)
vo= ©, cos? ¥ Py Pe
py = 0
) 1 . .
Po = ooy Pesin? = )y sind = py) = Us(r, 0, 0)
pw == _Ucp(ra 19: QO)

Note that these equations are regular around ¢ = 0. The conserved quantities in these
coordinates are Ls = —p, and

K, =ap, — yp, +1, with | = (l;,1,,1,)' = RL = RC ' (&)n.

8 Invariant Set

Due to the symmetry of our problem not only is the Lagrangian invariant under a torus
action, but additionally in phase space there is a four dimensional invariant set of solutions
where the spin axis of the top is vertical and its center of mass is on the z-axis.

Proposition 1 The set Z given by
I:{{L‘:yzo’ 19:@0:0’ pm:pyzo’ pﬁ:pcp:O}

s an invariant set for Hamilton’s equations of the Levitron.
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Figure 1: Phase portraits for the Hamiltonian 7 on the invariant set Z

Proof: One must check that the time derivatives of each of the eight variables used to
define Z are equal to zero at each point in the set Z. For example, £ = p,/m, and since
p: = 0 on Z, it follows that & is zero at each point of Z. Further, we have p, = 0 on
7T because the potential energy function U is cylindrically symmetric and consequently
U.(0,0,2,0,0) = 0. One inspects the Hamiltonian system of equations above to verify that
each derivative is zero. O

The vector field on the invariant set Z is given by the following decoupled equations:

z = pz/ma pz = _UZ(OaOaZaO:O)
d) = p¢/63::0; p'lﬁ = Oa

where we introduced the spin rate o of the top, which is constant on orbits in the invariant
set. The dynamics on Z can be obtained from restricting the Hamiltonian

1 1
Hlz = Hz(2,%,p2s py) = %Pz + 2—@31712p +mgz + p®i(2).
The phase portraits for the integrable system Hz with the magnetic potential of a disk
shaped base magnet without central hole are shown in Fig. 1.

9 Relative Equilibrium

A relative equilibrium is a periodic orbit of Hamilton’s equations that appears as an equi-
librium in the reduced system. In the reduced system the symmetry is made explicit by
introducing an angle in the local coordinates that becomes cyclic in the Hamiltonian. The
corresponding conserved momentum can be treated as a parameter and the systems num-
ber of degrees of freedom is effectively reduced by one. In our case we would need to
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Figure 2: The equilibrium condition mg = —u®,

look for an equilibrium of Hamilton’s equation ignoring the trivial equations for w and py
equations.

However, since we have already established the existence of an invariant set Z which
contains the trivial ¥-dynamics plus the nontrivial z-dynamics, we only need to find an
equilibrium in the z-dynamics. By the invariance of Z this automatically gives an equilib-
rium of the reduced Hamiltonian.

Considering the Hamiltonian 7 on Z we see that the equilibrium condition is given
by the critical points of the potential Uz(z) of Hz, i.e. by

Uz(z) = mg + u®y(z) = 0.

For a typical base magnet without central hole the function ®,(z) starts out at zero, rises
to a maximum value and then decreases monotonically to zero as z goes to infinity. For
the disk shaped base magnet it is pictured in Fig. 2. Note that the exact formula for V4 (2)
is not important, but rather the shape of the function ®5(z2).

As long as the constant mg in this equation is less than the maximum value of the
function, there are exactly two real solutions z, < zs;. The bottom equilibrium solution
is unstable and the higher critical point is stable in the invariant set Z, see Fig. 1. The
force along the z-axis is positive on the interval (z,, z5;) and is negative below z, and above
zs. Thus if the top is placed below the lower equilibrium or above the upper equilibrium
gravity predominates and it is pushed downward. If it starts between the equilibria the
magnetic repulsion between the base and the top predominates and it is pushed upwards,
compare Fig. 1.

We are interested in the equilibrium that is at least stable in the z-dynamics. Vertical
stability is obtained if we are at a minimum of Uz(2), i.e. if

Ul (z) = p®s3(z) > 0.

This holds for the upper equilibrium point z = z,. The periodic orbit in full phase space
Z = (x,Y,2,9,9, 0, Dz, Py, Dz» Py P, P) that corresponds to the higher relative equilibrium
is given by

Z(t) = (0,0, z5,0t,0,0,0,0,0,003,0,0).

The frequency of (linear) oscillation in the z direction around this equilibrium is (u®3(z,)/m)*/2.
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10 Linear Stability

At relative equilibrium the center of mass of the top is at rest on the z-axis, and the
top is spinning with its axis fixed along the z-axis. The linearized equations of motion
near the relative equilibrium must be stable in order that the nonlinear equations have
the possibility of being stable. We have already seen that the periodic solution Z(t) is
vertically stable inside the invariant set, now we must establish the conditions under which
the remaining transverse 4 degrees of freedom (horizontal motions of the center of mass
and rotations other than around the z-axis) are also stable. Note that in the general case of
a relative equilibrium we would need to deal with a 5 degree of freedom linear system. The
existence of the invariant set allows us to reduce to a 4 degree of freedom linear system.

A general Hamiltonian system of equations in 2n dimensions has the form Z=JH 72(2),
where J is the symplectic matrix. If Zy(¢) is a solution to this system, then the linearized
system of equations associated with this solution is the system W = JHz(Zo(t))W with
W =7 — Zy= AZ. For the Levitron we take the above relative equilibrium as a solution.

We could write the linearized equations as a first order 12 by 12 system. However, since
the solution Z(t) is contained in a 4 dimensional invariant set, the linearized equations
decouple into a 4 by 4 system which linearizes the equations restricted to this invariant set
and an 8 by 8 system of equations in the remaining variables. Because the Hamiltonian
does not depend on the variable 1, the 8 by 8 system of equations has constant coefficients.
It has the form ¢ = L(, where ¢ = (Az, Ay, A9, Ap, Ap,, Apy, Apy, Ap,). We have used
the algebraic manipulation program Maple to compute the matrix L. It is a surprise that
this matrix has so few non-zero entries:

0 0 0 0 1/m 0 0 0

0 0 0 0 0 1/m 0 0

0 0 0 0 0 0 1/6; 0

I 0 0 py/©1 0 0 0 0 1/6,

puds/2 0 1Py /2 0 0 0 0 0

0  uds/2 0 puds/2 00 0 0
p®/2 0 pd —pi/0; 0 0 0 0 —py/61

0 pudy/2 0 pd, 0 0 0 0

Besides the mass m, the moment of inertia ©; and the (negative) dipole strength p, the
linearized equations essentially depend on the angular momentum p, = 0©3; and on the
properties of the magnetic field encoded in the derivatives ®; evaluated at the critical point
z, on the z-axis. .

The system of equations ( = L( can be written as the following much smaller system
of second order equations in two complex variables. Define v = Az + 1Ay, v = A + iAp.
Then the linearized 8 x 8 equations are equivalent to

u_%/%quoo i
i)_%%v Oiag—i’ v ]

This equation has the form % = Aw + Bw, with w = (u,v)* and solutions of this equation
have the form w(t) = e*wy with wy a constant complex column vector. For w(t) to be a

[Co
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solution, the equation (A + AB — A\?I)v = 0 must be satisfied. Therefore A is a root of the
polynomial

, 2B, By — B2

) P P
—\4_ 3 _ _1 _3 2 ) _3
P(\) = A" —iop) u( + ))\ —|—zagu2 A+ p Amoe,

@1 2m
where p denotes the ratio of the moments of inertia, 9 = ©3/0;. The original problem
given by the eigenvalue equation of L has A and X\ as solutions. The multipliers of the
periodic orbit Z(t) are then given by exp(AT") where T is the period T = 27 /0.

Stability requires that the exponents A are on the imaginary axis. However, by making
the change of variables A = ioot, and dividing by (00)*, a new polynomial N (¢) is obtained.
Note that the roots of N(¢) are related to the winding numbers v of the periodic orbit.
The v are defined through the formula exp(AT) = exp(2imv) and this gives v = tp. By the
above calculations we obtain

Theorem 2 If the polynomial
N(t) =t* — 3 + (g1 + g3)t* — gst + 9193 — g>
with dimensionless coefficients given by

_ p®1(zs) go = (1 Pa(zs) g3 = (1P3(zs)
o 02020, 777 20202/m®; 0 202¢°m’

and z; determined by
mg + ,U'q)2(zs) =0 and :U'q)3(zs) >0,

has four distinct real roots, then the periodic orbit Z(t) of the Levitron is linearly stable.

11 Bifurcations

If the polynomial N(¢) has 4 real roots, then this condition is maintained as the coefficients
g; change until a double root of N(¢) occurs, i.e. when the discriminant G(g1, g2, g3) of N ()
vanishes. It is given by

G(g1,02,93) = 4p®+27¢°, where
3p = —gi— 149195 — g5 + 1295 — 393
27 = 2¢7 + 295 + 2795 — 6(g1 + g3) (119195 + 395 — 1263).

The equilibrium condition u®s; = —mg requires u®, < 0, hence go < 0. In order to have
stability in the vertical motion of the top we need u®; > 0, hence g3 > 0. We already
remarked that the magnetic field B = —VV is pointing upward on the z-axis. Therefore
—®; > 0, and hence ¢g; > 0.

Definition 3 The coefficient space is the set of all possible g’s with go < 0 and g1, g3 > 0.
Clearly this space is an octant contained in R®. Define a subset G of coefficient space to be
the set where the polynomial N(t) has 4 real roots.
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Figure 3: Bifurcation diagram in Levitron space. The cuspoidal region bounded by Dy = 0
(solid) contains Levitrons which have an interval of stable spin rates. The curve C3 = 0
(long dashed) indicates a zero winding number. The numbers in the connected regions
indicate the number of critical spin rates for rays emerging from these points. The corre-
sponding bifurcations are listed in Table 1. Crossing D, = 0 (dashed) does not change the
number of roots. The cusp is located at (—1/5,2/5), and the intersection with the go1-axis
is located at 1//12.

The boundary of the set G is contained in the set {G(g1,92,93) = 0} U {g5 = 0}.
Although we do not model the effect of weak dissipation on the motion, it is clear that
its main effect is a slow decrease of the spin rate. Once the top is set into motion all the
parameters except the spin rate o are constant. As the spin rate changes, a ray through
the origin in coefficient space is determined. The intersection of this ray with the set G
determines the critical spin rates; for points on the ray inside G the relative equilibrium is
stable.

The ray (g1, 92, 93) with [ as a parameter intersects the set G for special values of
determined by the zeroes of the polynomial L,

L(l) = G(lgl, lgg,lgg)/l3 =0

where the trivial zeroes [> = 0 have been removed, and the remaining polynomial is of
degree three. The explicit form of L can easily be calculated with Maple. We just remark
that the indefinite factor of the highest power coefficient is

Cs(91, 92, 93) = 9193 — G5-

Hence, one winding number v is zero if C3 = 0, because then N(0) = 0 and correspondingly
one multiplier is equal to one.

Each positive critical [ given by L(l) = 0 corresponds to a critical spin rate that is
proportional to +1/ V1, at which a bifurcation occurs. A given ray usually intersects the
set G in a closed interval or not at all. Exceptional rays intersect G in a point. These
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#{l > 0} bifurcations for increasing o
CQEE
CQRCQ — CQEE
CQEE — EEEE — CQEE
CQCQ — CQEE — EEEE — CQEE

W N = O

Table 1: Transition of multipliers with increasing spin rate o depending on the number
of critical spin rates on a ray, see Fig. 3. EFE denotes a pair of elliptic multipliers, C'()
a complex quadruple. The stable region EEEFE is always entered/left by a Hamiltonian
Hopf bifurcation.

rays are given by the double roots of L(l), i.e. by the discriminant D(gi, go, g3) of L. The
polynomial D is a homogeneous polynomial in the g;,

D(gb 92, 93) = —169§D1 (91; g2, 93)2D2(91, 92, 93)3
D1(91, g2, 93) = 0193 — gg - 9§
Ds(g1,92,95) = 1089y — 9g5(97 + 149195 + 95) + 8g3(g1 + g3)°

Because the factor D; appears squared in D, it can not change the sign of the discriminant.
Therefore it’s vanishing is of minor importance for the bifurcation scenario.

Rays in coefficient space can be coordinatized by the inhomogeneous coordinates go; =
—g2/g1 and g3; = —g3/ g1, i.e. dividing C3, Dy and D, by g8 where deg is the respective
degree of the homogeneous polynomial. In the quadrant go; > 0, g3; < 0 the three curves
defined by the dehomogenized curves Dy, D,, and C5 are shown in Fig. 3. We observe
four regions with different sequences of critical spin rates. The vanishing of D; does not
change these sequences. By calculating the multipliers of the Poincaré map transverse to
the periodic orbit for one value in each interval between the critical spin rates for each
region we obtain Table 1. All bifurcations are Hamiltonian Hopf bifurcations, also called
Krein collisions. At this bifurcation two pairs of elliptic multipliers (real t) collide on the
unit circle and move off from the unit circle, forming a complex quadruple of multipliers
(complex t).

For ¢ = 0 the polynomial P()) never has 4 imaginary roots because the coefficient
of \? is negative. For ¢ = oo inspection of the matrix L shows that there are nontrivial
Jordan blocks and hence instability.

12 Levitron Space

Definition 4 The set of all possible rays in coefficient space is called the Levitron space
or L-space. It is coordinatized by the inhomogeneous coordinates g1 = —ga/g1 and gz =

—93/91-

The minus signs in the definition of go; and g3; are meant to cancel the minus sign
in @, such that sgn(gs;) = sgn(®Ps2) and sgn(gs;) = sgn(P3). For Levitrons inside the
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L-curves and stable region
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Figure 4: L-curves in the bifurcation diagram describing two concrete realizations of Levi-
trons. The curves are parameterized by equilibrium height zs or, equivalently, mass. Min-
imal z; = 2. (maximal mass) corresponds to the point on the go1-axis. As zs limits to
infinity (vanishing mass) the curves approaches the origin. The long dashed L-curve cor-
responds to Berrys first model, the other one to his second model (o = 0.0075). The solid
curves are Dy, D, and Cj.

cuspoidal region Dy < 0 there exists a range of ¢ for which the relative equilibrium of
the top is linearly stable. In order to decide whether a given Levitron is capable of stable
motion we simply draw the curve

(931(25), g21(25)) = ( o P3(2s) Dy (2,) >

Y90, (2,) 20y (2,)

and find out whether it intersects the stable region. The “effective length” « is defined
by ©; = ma?. Such an L-curve in L-space describes a particular realization of a Levitron
with fixed geometry of the base and of the top. The exact position on the L-curve can be
adjusted by changing the equilibrium height z,, which is practically done by changing the
mass of the top with the washers. The approximation that putting washers onto the top
does not change « is very good. The L-curves for both models of magnetic fields introduced
by Berry are shown in Fig. 4. The equilibrium height z, is the the same as in his adiabatic
description.

The parameterization of an L-curve starts with the special z, for which ®3(z.) = 0. This
minimal z, corresponds to the top with maximal weight at which the vertical equilibrium
appears in a tangent bifurcation. A requirement for stability therefore is

(1)2 (Zc) 1
2.) = —« < ,
921( C) 2@1(20) /—12
It seems possible to have L-curves start outside the stable region Dy < 0 and only enter

it for z; > z., but as we will see go1(2.) has to be smaller then —0.1 in order to have a
sufficiently high upper critical spin rate (see Fig. 6). The two L-curves corresponding to the

where ®3(z.) = 0.
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fields proposed by Berry are shown in Fig. 4. Increasing the height z;, hence decreasing the
mass m, the stability is lost upon leaving the cuspoidal region. In Berry’s analyses stability
is already lost a little earlier upon crossing of the curve C'3. The two curves are reasonably
close to each other, so that Berry’s adiabatic stability analyses gives a surprisingly good
result. Moreover we have shown that this curve corresponds to a multiplier equal to one,
(even independently of o) so that nonlinear instability due to resonance in the neighborhood
of this line is possible.

13 Critical Spin Rate

Our main addition to Berry’s analyses is that we can calculate the critical spin rates. For a
given Levitron we calculate g; as given in Theorem 2 and g¢o; and g3; as given in Definition
4. This determines a ray [(g, g2, g3) or equivalently [(1, —go1, —g31) and the critical [ are
now calculated from L(l) =0, i.e. from

—16(g3; + gs1) (931 + 2931 + 1+ 495,)*1°

+4(1595,95, + 1293, + 2293, + g1 + 1295, 931 + 3193, 95, + 95,
+4995,931 + 1293, + g3, + 369, )1

—(8g31 + 32031 + 3695951 + 2795, + 1263,951 + 8931)1 + 493, = 0.

The two smallest positive roots Iy, I; (by definition /s < I;) give the critical spin rates o1, 09
(01 < 03). The critical spin rates correspond to the points (I;, —l;g21, —l;¢31) in coefficient
space. Now we take the definition of g, substitute ©; = ma?, and use the equilibrium
condition ®y(z,;) = —mg/u to eliminate ®,; solving for o2 gives

2 _ g _ 1 mgo.
2000°(—g2)  20(—g2) O3

The last expression has the form of torque divided by moment of inertia, where the length
« measures the effective horizontal radius of the top. If we replace g, by the critical value
—l;g01, where [; is found by solving the above cubic equation, we obtain the critical spin
rate o; as

o

29 9 —%(z)
' 200%gnl; 202021 Py(z,) '

It is now obvious that the critical spin rate only depends on the dimensionless quantities
921, 931, and o and on the effective length a. Figure 5 shows contour plots of the minimal
and maximal critical spin rates o; in the stable region in Levitron space.

From Fig. 5 we see that the lower critical spin rate o; does not change very much on
the L-curve. Hence we can safely calculate it at the critical height z. where ®3(z.) = 0.
There [; is given by a quadratic polynomial

L(l; g3 = 0)/1 = 16(1 + 4¢2,)%1> + 4(1 + 3692, )] — 279y .
Since go1 < 1/4/12 is necessary for stability we expand the solutions of this equation in g9
and find o7

(1+9g3), b= Zggla

RN

51%
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contours of minimal critical spin rate contours of maximal critical spin rate
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Figure 5: Minimal and maximal stable spin rates o1/(27) and 02/(27) in Hz as a contour
plot on the stable region of the bifurcation diagram. For definiteness the constants are
\/9/(2ap?)/(2m) = 2. The values of the contour lines in both pictures are from top to
bottom {6,7,8,9,10,12, 14,16, 18, 20, 25, 30, 40, 50}.

where the approximation for [y is very good, while that for [y (i.e. the upper critical spin
rate) is poor for go; > 0.15. For the critical spin rates calculated at the critical height we
finally find

-
Pn2—d 4 1(z) v
@0?go1(2c) Dy(z.) oo
and . ,
02,\,3 9 :E — P4 (2) g _ o
27T 2Taggn(2)? 27\ @y(2) ) ale® T 27g3

The exact dependence of the critical o for g3 = 0 is shown in Fig. 6.
For a cylinder of radius b (neglecting its height) we have ©; = mb*/4 and ©3 = mb?/2,
such that @ = b/2 and ¢ = 2. For Berry’s first model we have z, = a/2, and —®,/®5 = 5a/6

o critical spin rates for gz=0

0.05 0.1 0.15 0.2 0.25

Figure 6: Critical spin rates for g3 = 0
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Figure 7: Critical spin rates for Berry’s second model in the dependence on equilibrium
height z;. The small interval of stable z; translates into an even smaller interval of stable
masses via the equilibrium condition. This is why the stability of the Levitron depends so
delicately on the mass. Note that this shows the values from the contour plots along the
corresponding L-curve.

and find o7 = 10ga/(3b%); choosing b = 0.3 a, and a = 0.05 as measured from the Levitron
gives the lower critical spin rate o,/(27) = 13.6Hz, which is a little too low. Taking the
more realistic second model proposed by Berry, we find o1/(27) = 17Hz, which nicely fits
the experimentally observed value of 18Hz [6].

Considering the advice that “the top should barely lift of the plate” indicates that
in experiment we are probably using it close to the critical height/mass. The complete
dependence of the critical spin rate on the mass respectively on the equilibrium height is
shown in Fig. 7 for Berry’s second model.

14 Discussion

We develop and study an exact model of the Levitron. Two symmetries of the system are
fully exploited and lead to the study of a relative equilibrium which is contained inside a
four dimensional invariant set in a 12 dimensional phase space. The fact that there is a
whole family of degenerate orbits of the symmetry group can be viewed as the origin of
the invariant set. Because we encountered a case of singular reduction it is not possible
to reduce by both symmetries for the study of this particular orbit. We choose to reduce
by the symmetry of the top. It would be slightly more general to reduce by symmetry of
space, because then one could even make the top slightly asymmetric. However, since the
resulting equations are more complicated, we did not use them. It is interesting to note
that eigenvalues \ of the two reductions are not the same, only the multipliers exp(27 /o)
of the orbit are the same. The difference between the two reductions accounts for a twisting
of the fibers of the quotient space.

The invariant set induces a block decomposition of the linearization, and the nontrivial
8 x 8 part can be written as a 2 x 2 linear complex second order equation. The stability of
the motion depends only on 3 dimensionless parameters. Separating the spin rate from the
Levitron geometry leads to a Levitron space in which every possible Levitron is represented
by a point. The critical spin rates can then be determined from Fig. 5. This information
can be used to optimize Levitrons. Since a hand spun top should be initially stable, the
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upper critical spin rate has to larger than ~ 25Hz. Since the top should be stable for
a while, the lower critical spin rate should be smaller than ~ 20Hz. These conditions
determine a rather small range of operation for g¢;, see Fig. 6. The main lesson to be
learned is to make go; as large as possible without passing o, &~ 25Hz, since this makes o,
as small as possible, so that the Levitron spins a long time.

Watching the Levitron shows that often it does not stay on the periodic orbit we
described, but rather makes large excursions around it. Part of it we have captured in the
invariant set: analytic solutions that describe the spinning top bouncing up and down can
be found. These solutions are two-tori within the 6 degree of freedom system, equivalently
they are periodic orbits of the reduced 5 degree of freedom system. It would be interesting
to study the stability of these two-tori. Another set of two-tori are the non-degenerate
equilibria corresponding to motions where the spin axis precesses.

Another concern is the validity of linear stability analysis. Linear stability is the
strongest result that can be proved for high dimensional Hamiltonian dynamics since
Arnold diffusion can not be ruled out. However, if diffusion occurs, then it happens slowly,
and evidently on a time scale which is long compared to the few minutes when the top is
spinning in the air.
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