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1 Introduction 

The dynamics of a spinning top in a gravitational field is one of the more 
challenging topics in classical mechanics. Its technical definition is the fol- 
lowing. A rigid body is held fixed in one of its points but otherwise free to  
move under the influence of gravity. The motion has three angular degrees 
of freedom. It may be described as the continuous change of the relative 
orientation between a body-fixed Cartesian reference system K', with axes 
(el , ez, es), and a space-fixed Cartesian system K ,  with axes (e,, eg, e,). 
Without restriction of generality we may assume gravity to point along the 
negative z direction, g = -ge,. The system is then symmetric with respect 
to  rotation about the z axis; the corresponding angle cp may be separated, 
and the rest treated as a two-degree-of-freedom system. 

The full configuration space is Q = S0(3), i. e., the set of orientation pre- 
serving orthogonal transformations in R3. I t  is a three-dimensional mani- 
fold with a non-commutative group structure and a non-trivial topology. A 
point 4 E Q may be parametrized by Euler's angles, 4 = (p ,  29, G), where 
cp E S1, E S', and 0 5 29 5 X. This choice of coordinates has singularities 
a t  29 + 0 and X, where the tori of (cp, G) coordinates degenerate to  circles 
with coordinates cp + $ and cp - G, respectively. Unfortunately, SO(3) does 
not admit for a global system of three coordinates that would be free of 
singularities. The phase space T'SO(3) = SO(3) X R3 consists of coordi- 
nates 4 and canonical momenta .rr = (X,, X,J, X$) which will be combined as 
six-dimensional variables X ( 4 ,  T). The Hamiltonian %(X) = X($, T) is 
a real function on T'SO(3) which defines the canonical time development. 



The five-dimensional surfaces of constant energy X = h will be called en- 
ergy surfaces Eh. 

The reduced configuration space, obtained after separation of the cyclic 
angle cp at constant value of the angular momentum n, = 1, is a Zsphere, 
Ql = S2. Like in the case of S0(3) ,  there do not exist singularity-free 
global coordinates on S2. Moreover, the sphere does not even carry a group 
structure. I t  has therefore become customary to  think of S2 as embedded 
in R3, with coordinates y = (71,72, 73) in the body-fixed frame of ref- 
erence K'. These three coordinates together with the three components 
l = (l1, 12, 13) of the angular momentum provide a convenient description 
of the reduced phase space T*S2 as embedded in a space P1 = R3 X R3, 
with points y G ( y , l ) .  The number of dimensions of P1 is again six, but 
it will be shown in Section 2 that by construction of this space, all motion 
is effectively restricted to  four-dimensional subspaces with topology T*S2. 
Energy surfaces in the (y, 1) phase space should correspondingly be under- 
stood as three-dimensional manifolds &hl. This corresponds to the fact that 
the reduced system has only two degrees of freedom. 

We only mention the fact that for the purpose of numerical calculations 
and graphical simulations of the spinning top, it is convenient to use yet 
another set of variables. As is well known, the universal covering manifold 
of SO(3) is the 3-sphere S3 in which each point of SO(3) has two represen- 
tations (corresponding to two spin states). Considering S3 as embedded in 
R4, rotations of the physical configuration space SO(3) may very elegantly 
be described if R4 is equipped with the structure of quaternion multipli- 
cation. The use of this apparatus for practical applications was strongly 
advocated by Klein and Sommerfeld [19], but these authors did not care to 
work out a Hamiltonian formulation on that basis. The more recent math- 
ematical development of rigid body theory seems to have neglected this 
powerful approach. It will be presented in our forthcoming book on spin- 
ning tops [29], and though it does not appear on the surface of our film, 
it dominates the background computations. Its advantage over the (4, T) 
equations in T*S0(3) is that it is free of coordinate singularities and of 
trigonometric functions; compared to the ( y , l )  equations in PI ,  it has the 
benefit of including the cp motion. 

Before considering the equations of motion in detail, we mention a prac- 
tical problem. In order to fix a point of a rigid body in space and yet allow 
for free rotation of the rest of it, some kind of Cardan suspension is usually 
employed, where all three angles (p, 29, G) may vary independently along a 
complete circle. In the presence of such a frame, the configuration space 



assumes the topology of a torus T3 which is fundamentally different from 
SO(3). It is by no means trivial to recover SO(3) dynamics from T 3 dynam- 
ics in the limit where the mass of the frame tends to  zero: a system with a 
massless frame is topologically different from a system with no frame. This 
difficulty casts some doubt on the very possibility of observing true SO(3) 
motion in physical reality, except for the special case of an Euler top where 
the fixed point is the center of mass. In that case, one may think of a free 
rigid body in an inertial frame of reference; in all other cases, it should 
be kept in mind that the absence of a suspending frame involves a severe 
idealization [28]. 

But even so, the typical motion defined by this setting is highly com- 
plicated. In fact, for almost all choices of principal moments of inertia 
01 ,02 ,  0 3 ,  relative to the fixed point, and centers of gravity c = (cl, a, c3), 
in the body-fixed system, the motion is non-integrable. There exist only 
three special cases where each energy surface Eh C T*S0(3) is foliated by 
invariant tori T3, and each energy surface Ehl C T * S ~  by tori T2:  

1. The Euler case of a rigid body fixed in its center of mass so that 
gravity plays no role, (cl, c2, cs) = (0,0,0). 

2. The Lagrange case of a symmetric heavy rigid body: two moments of 
inertia are equal, and the center of mass lies on the axis of symmetry, 
as for 01 = 0 2  and c = ce3. 

3. The Kovalevskaya case where two moments of inertia are equal and 
twice as large as the third, with the center of mass in the plane of 
the equal moments. By a suitable identification of principal axes this 
case can always be characterized as 01 = 0 2  = 203 and c = -tel. 

The discovery of this last integrable case in 1888 was a most remarkable 
achievement by the Russian mathematician Sonja Kovalevskaya [21, 221. 
It brought her immediate fame and earned her the prestigious Prix Bor- 
din of the Paris Academy of Science [g]. She was able to work out the 
analytic solution of the equations of motion in terms of hyperelliptic func- 
tions, but nonetheless it took generations of mathematicians to uncover 
the full complexity of the different types of motion that the equations con- 
tain. To mention only a few, we cite F. Kijtter [20], N. E. Zhukovsky [34], 
G. G. Appelrot [l], M. P. Kharlamov B. A. Dubrovin [10], E. Horo- 
zov et al. [16, 171, A. I. Bobenko et al. [6], A. T.  Fomenko [15], A. A. 
Oshemkov [26], D. Lewis et al. [23], M .  kudin [3], and H. R. Dullin et 
al. [ l l ,  121. l 



With suitable scaling of the physical quantities involved, the Hamiltonian 
of the Kovalevskaya top has no free parameter; hence mathematically there 
is only a single case to be considered. In phase space T*S0(3), the Hamil- 
tonian reads 

whereas in the reduced phase space, it is 

Note that the stable equilibrium position yl = 1 is obtained for Euler 
coordinates (29,q) = ( r / 2 , ~ / 2 ) ,  with arbitrary 9. This means that the 
body-fixed axis el points downward in the gravitational field, in agreement 
with the assumption made about the position of the center of mass. The 
unstable equilibrium 71 = -1 is given by (6,741) = (n /2 ,3~ /2 ) .  While in 
the reduced phase space T*S2 both equilibria are single points, there exist 
whole 9-circles of equilibrium points in T8S0 (3). 

To obtain a physical realization of the Kovalevskaya top, we may proceed 
as follows, See Figure 1. 

Fig. 1. Physical model of a Kovalevskaya top 



Take a ring of mass 2m and radius r ,  and let its symmetry axis be el .  
Its center is chosen as fixed point and origin of the two frames of reference 
K and K'. The axes e2 and e3 lie in the plane of the ring. The moments 
of inertia of the ring are (6'1, 02,03) = (2,1, l )mr2.  Now fix two weights on 
the 3-axis, such that each one has moment of inertia mr2 with respect to 
the axes el and e2, and a third weight on the l-axis, again with moment 
of inertia mr2 with respect to the axes e2 and e3. Adding up, we find that 
the total arrangement has moments of inertia 

and the center of mass is on the l-axis, c = -cel (the negative sign comes 
in by definition). If M is the total mass, then Mgc is a convenient unit for 
energies, and d m  a convenient unit for time. Angular momenta are 
then measured in units of d m ,  and moments of inertia in units of 03.  
With this choice of scales, the model is described by the Hamiltonians (1) 
or (2). 

At low energies, 0 5 h + 1 << 1, the motion may be discussed in terms 
of an expansion of the Hamiltonian around the stable equilibrium position, 
(29, $) = (n/2, n/2). To second order in the phase space variables, using 
629 := 29 - n/2 and 61) := $ - n/2, we find 

This separates in the three coordinates (p, 29, $). If all available energy h+  l 
is spent in only one of the three degrees of freedom, the system performs 
the corresponding pure type of motion: 

1. p-rotation about the vertical axis, with frequency W, = m. 
2. 6-oscillation about the axis e2 which does not move but may point in 

any horizontal direction. The frequency of these oscillations is we = 
114. 

3. $-oscillation about the axis e3. Again there is degeneracy with respect 
to all horizontal directions. The frequency is W@ = 1. 

In action representation, this low energy limit of the Hamiltonian reads 

X(I,, I*, Ill,) = ;I; + &I* +Ill,. 



If the energy h + 1 is shared among the three modes of motion, we observe 
linear superpositions. However, as h increases, the system is no longer sepa- 
rable in configuration space, and although it remains integrable, the motion 
becomes very complex. 

At high energies, we may neglect the potential energy; all spatial direc- 
tions become equivalent. The system approaches the behavior of a sym- 
metric Euler top. As is well known, the non-symmetric Euler top performs 
stable rotations about the two principal axes with minimum and maximum 
moments of inertia; rotations about the axis with the intermediate O are 
unstable. In the film, we observe stable rotations about the 3-axis, but 
when initial conditions are chosen such that the body rotates about the 
l-axis, we find that the residual influence of gravitation causes precessional 
motion, and that the stability of this motion depends on the height of the 
center of mass in the gravitational field; it is unstable if the center is too 
high. 

These are but the first indications of complex behavior. In order to  get a 
comprehensive understanding, the system will be subject to  detailed inves- 
tigation. In Section 2, we begin with a discussion of the equations of motion. 
For almost all calculations it will be preferable to work in the reduced phase 
space, i.e., we shall treat the Kovalevskaya top as a two-degrees-of-freedom 
system, with 1 as a parameter. Our aim is to  obtain a survey on all possible 
types of energy surfaces Ehl, including the different ways in which they are 
foliated by invariant tori T2. This task is broken down in two parts. In 
the first part, Section 3, we analyze the topology of Ehl and show that de- 
pending on (h, l),  there exist four different non-trivial types. In the second 
part, Section 4, we study the nature and organization of tori within a given 
Ehl. Their complicated scheme of bifurcations gives rise to altogether ten 
different types of foliation. To represent the tori pictorially, two approaches 
are used. First, single tori are considered in projection to  configuration or 
angular momentum space. This gives a fair impression of their bewildering 
complexity but is no good starting point for a survey on all possible tori. 
The second approach, developed in Section 5 ,  involves the use of Poincar6 
sections Chl or Phi across all tori of a given energy surface. With this tech- 
nique, the foliation of surfaces Ehl may be grasped in a single picture. In 
a last step, and the last part of the film, we attempt to generate a picto- 
rial impression of the complete energy surfaces Eh in terms of animation 
series where all surfaces Ehl for given h are shown, with angular momenta 
1 varying continuously from 0 to  their maximum possible values. 



2 Basic Equations in Reduced Phase Space 

The Hamiltonian U(x) = U ( 4 ,  T) of a heavy rigid body with a fixed point 
may be found in any textbook on classical mechanics. Let us recall the main 
steps in its derivation. First, the kinetic energy of rotation is expressed in 
terms of the body's angular velocity W = (wl, w2, w3) = (p, q, T ) ,  as1 

Second, the connection between W and Euler angles is derived from the 
kinematics of orthogonal transformations, 

s i n  s i n  ~ ~ ~ $ 0 )  (i) 
W =  (H) = (cos+sin* - sin+ 19 =: *#l. (7) 

cos 'l9 0 1 

Third, one identifies the canonical momenta through 

Expressing T as a function of #l and T, the kinetic part of Equ. (1) is 
obtained, if = 0 2  = is used together with proper scaling. To obtain 
the potential energy, use V = Mgy . c = -Mgcyl and yl = sin + sin 19. The 
equations of motion are then derived with the standard symplectic structure 
matrix J ,  

This will not be done explicitly in the following, as the reduced description 
is much more convenient. 

However, the components (y,  1 )  of the reduced phase space Pl are not 
canonically conjugated. Hence the energy function (2) is not a Hamiltonian 
in the canonical sense. But if the standard symplectic structure matrix J is 
replaced by a suitable Poisson structure matrix J P ,  the simple function (2) 
can again be considered a Hamiltonian. To derive the appropriate matrix 
JP, consider the transformation (4, T) e (y ,  1 )  given by the identities 

sin + sin 19 (9) = (cos+sinO) and (2) = (z") = )=rltir. (10) 
COS 'l9 @ 3 ~  

'we  stick to the classical notation (p, q, T) even though nowadays one might 
prefer the notation (wl , wz, wg). 

39 



Let M be the Jacobian matrix of this transformation, 

it is then straightforward t o  see that 

where I' and A are antisymmetric matrix representations of 7 and 1, re- 
spectively, 

The equations of motion are then obtained from the Hamiltonian (2) with 

These equations are known as Euler-Poisson equations. The structure ma- 
trix J P  has two Casimir functions C, = 7 . 7  and Cl = 7 .  l .  These functions 
are constants of any motion, by construction of the equations (14): For any 
phase space function F(y) ,  Equ. (14) implies 

. dF dE 
F = - . JP-- =: {F ,  E )  

all 
P ,  

and for the Casimir functions we have 

Hence {C,, E ) ,  = {Cl, E ) ,  for arbitrary Hamiltonians E .  The first Casimir 
constant reduces the three-dimensional 7-space to  a two-dimensional 7 -  
sphere, and for each 7 the second Casimir constant defines the cotangent 
plane 7 . 1 = const in l-space. Any motion is therefore restricted to  a four- 
dimensional submanifold of P1. The standard choice for the values of the 
Casimir functions is C, = l and Cl = 1.  



It is customary to write the Euler-Poisson equations in terms of angular 
velocity variables (p, g, r ) .  For the Kovalevskaya case this gives the two sets 
of equations 

(ii) = (2 :;) and ( ) = (-rp' .) . (17) 
471 - P72 7 2  

The transformation (4, T) U (y ,  l )  in Equ. (10) is not invertible. From 
y we may recover 6 and $, and from l the canonical momenta T = +tl. 
But all information about cp has been discarded; the rank of the Jacobian 
matrix M is 5. To find cp we must add to (17) its equation of motion from 
Equ. (g), 

. 83t .rr, - .rr+ cos 6 1 - 1373 YIP + 729 
p = - =  - - 

an, 2 sin2 6 
(18) 

Once the time course of (7, w )  has been determined, cp(t) is obtained by 
quadrature (of hyperelliptic integrals!). 

Equations (17) have four constants of motion. Two of them are the 
Casimir constants 

the other two are the Hamiltonian X and the Kovalevskaya constant K ,  

The easiest way to check their constancy is to compute the Poisson bracket 
{F, X}, of any of these functions F with X.  The existence of these four 
conserved quantities, via the Liouville-Arnold theorem [2], implies that for 
generic values of (h, 1, k2) the motion in reduced phase space is restricted 
to one (or several) invariant 2-tori Thlk. Note that h can assume any value 
h > -1, and that by Equ.(20) we have k2 2 0. 

The equations of motion (17) are not invariant under time reversal T ,  

except for 1 = 0. The operation T leaves C,, X ,  and K constant but changes 
the sign of Cl. This behavior allows us to  obtain results for 1 < 0 from those 
at l > 0. Therefore we shall restrict the discussion to  1 2 0. 



There are two discrete symmetries that involve time reversal together 
with certain spatial reflections. One is 

It is easy t o  see that this transformation leaves (h, 1, k2) invariant. Less ob- 
vious is the fact that each individual invariant torus respects this symmetry 
as well. The operation 

is also a symmetry in the sense that (h, 1, lc2) are left invariant. But it turns 
out that individual tori may break this symmetry. If so, they occur in pairs 
G,, cllk S U C ~  that = 

When the motion of p is added via Equ. (18), the invariant 2-tori in 
T*S2 become 3-tori in T*S0(3).  Thus a general orbit has two frequencies if 
considered in reduced phase space, and three in the full phase space. Several 
degrees of criticality are possible where tori become degenerate and change 
their topological character: 

1. A torus Zlk C T*S2 turns into a circle. The motion is periodic in 
the reduced phase space and generically quasi-periodic, with only two 
frequencies, in T*S0  (3). 

2. A torus C T*S2 degenerates to  a point. This is called a relative 
equilibrium. In the reduced phase space there is no motion at  all, the 
full motion is nothing but a rotation in p. 

3. The motion may come to  a complete stop. This happens a t  absolute 
equilibria of which there are only two cases, stable equilibrium at  
(h, 1, lc2) = (- 1,0, l ) ,  and unstable equilibrium a t  (h, 1, lc2) = (1,0,1). 

3 The Four Types of Energy Surfaces 

3.1 Relative Equilibria 

As stated above, relative equilibria are defined as fixed point solutions of 
Equ. (17), i.e., j = l = 0. They exist only for special combinations of (h, 1) 
which shall now be determined as lines in a (h, 12) bifurcation diagram. It 
will be shown that the energy surfaces Ehl change their topological character 
across these lines. 



From 7: = 7 2  = 0 all relative equilibria must have 7 2  = 0, and from p = 0 
we infer qr = 0. Let us distinguish the cases r = 0 and q = 0. 

With r = 0 we conclude y3 = 0 (from q = 0) and q = 0 (from = 0). 
Altogether, 

From the two Casimir functions we get y? = 1 and 2pyl = 1 .  This specifies 
two possible types of motion: 

H :  yl = 1: The potential energy assumes its minimum value -1, the top 
rotates around its axis el as a "sleeping top in hanging position". 
Considering 1 as a free parameter, we have 

U :  yl = -1: The potential energy assumes its maximum value +l, the 
top rotates around its axis el as a "sleeping top in upright position", 

It will be seen that the sleeping motion in hanging position is stable whereas 
in the upright position it is always unstable. The type of instability in the 
latter case is different for l2 < 4 and l2 > 4. The transition between these 
two types of behavior is marked by the existence of a third line of relative 
equilibria where r # 0, cf. Figure 2. 

This line is obtained with q = 0 and, using q = 0 and y2 = 0, 

From the second equation we infer immediately k2 = 0: in these relative 
equilibria the Kovalevskaya constant assumes its minimum possible value. 
Moreover, it is obvious that yl 5 0 which means the top is at least half 
upright. The center of mass is lifted above the fixed point and rotates along 
a circle of constant height around the z axis. As there is no further rotation, 
the motion is reminiscent of a merry-go-round. With y i  = 1 - y; we obtain 
r2p2 = 1 - p2 which leads to the following parametrization of the third 
bifurcation line: 



The value of p varies in the range 0 5 p2 5 l; the sign of p determines 
the sign of 1. For p 4 0, the line goes to infinity along the direction h z 
12/2 + 1/212. As p grows towards p, = m = 0.7598, it reaches a cusp 
determined from dhldp  = 0 = dlldp. The location of the cusp is 

(h,, 1:) = ( A ,  1 6 A / 9 )  = (1.7320,3.0792). (29) 

At slightly lower p, namely for p2 = = 4 - l, the line intersects the 
bifurcation line (26) in the point 

(hi, 1;) = ( 2 h  - l, 8 ( h  - I))  = (1.8284,3.3137). (30) 

(But note that in the full space of constants (h, 1, k2),  there is no intersection 
because the values of k2 are different along the two lines.) For p, < p < l, 
we obtain a short line segment between (h,, 1:) and the point 

where the third bifurcation line merges with the upright sleeping top. 
The value of yl for the merry-go-round motion is 

The + sign applies to the long branch where y; varies from 0 a t  infinity 
(center of mass a t  the same height with the fixed point) to -l/& at  the 
cusp. Here the axis el forms an angle of 54.7" with the vertical. On the 
small segment, the - sign applies, and as h 4 2, y; approaches the value 
-1 corresponding to  upright position of the center of mass. With y; we 
know the frequency of the cp-rotation, 

We shall see that the merry-go-round motion M is stable along the long 
branch (which will be called sM), and unstable along the short 'branch 
(uM) of the bifurcation line. 

3.2 Bifurcations of Energy Surfaces 

It is important to  realize that the three bifurcation lines so determined 
divide the (h, 12) plane into five regions with topologically different energy 



surfaces Ehl.  One of them is trivial: for h < -l + 12/4 the energy surface 
is the empty set, i.e., to the left of the line (25), no real motion exists 
(the rotational energy would exceed the total available energy). The other 
four topological types are given in Figure 2. They are a 3-sphere S3 in the 

Fig. 2. (h, 1 ' )  bifurcation diagram of energy surfaces Ehl .  - In the film, the size 
of region is exaggerated for better visibility. 

low-h, high-l region; a projective space R P 3  1: SO(3) in the high-h, low-l 
region; a direct product S1 X S2 in the high-h, intermediate-l region, and 
a somewhat complicated manifold K3 in the tiny region between the cusp 
of the third bifurcation line and its common points with the second. How 
can we determine the topology of the various Ehl? 

According to Smale [33], the manifold structure of an energy surface is 
most readily understood as a bundle (with singular fibers) over the ac- 
cessible part of configuration space. Considering the reduced configuration 
space after separation of the cp motion, we have a system with two degrees 
of freedom and variables 7 E Q1 1: S2. For given 1, there exists an effective 
potential function Veff(7) on this sphere which combines the influences of 
gravity and of fictitious inertial forces cx 1'. Let the total energy be h, and 



consider a point 7 .  If h - Veff(7) =: T ( 7 )  > 0, then T is available as kinetic 
energy, and its value, together with the Casimir constant Cl, determines 
a circle in the space of momenta 1 .  If T ( 7 )  = 0, this circle shrinks to a 
point - the motion comes to  a stop at  this 7 -, and if T (y )  < 0, 7 can- 
not be reached at  this energy. Let Qhl be the set of accessible points in 
configuration space, 

then the manifold Ehl is obtained by attaching a momentum circle to  each 
interior point of Qhl,  and a momentum space point to  each point of 8Qhl. 

From a list of various possible cases given in Bolsinov et al. [7], we infer 
that 

1. Ehl E RP3 
E SO(3) if Qhl is a sphere S2 

SO that 8Qhl is empty; 

2. Ehl S3 if Qhl is a disk D2 or, equivalently, a punctuated sphere 
S2 \ D2; 

3. Ehl E S1 X S2 if Qhl is an annulus D2 \ D2 or, equivalently, a sphere 
with two holes S2 \ 2D2; 

4. Ehl K3 if Qhl is a disk with two holes D2 \ 2D2 or, equivalently, a 
sphere with three holes S2 \3D2. The manifold K3 can be understood 
as a connected sum of two manifolds S1 X S2 where a solid ball D" 
has been removed from each copy and the two copies are then glued 
together along the boundary surfaces S2. 

Let us now see how these four types of Qhz, and thus the correspond- 
ing energy surfaces, occur in the Kovalevskaya system. The simplest case 
is l = 0 where the effective potential Veff(7) = -yl is nothing but the 
gravitational potential. Its level sets on the 7-sphere are the parallel circles 
yl = const, with critical levels h = - 1 and h = 1. The lower critical level is 
the stable absolute equilibrium; it marks the transition from an empty set 
to  Qhl E D2 and Ehl S3. The upper critical level is the unstable absolute 
equilibrium; it marks the transition from Qhl E D2 

E S2 \ D2 to  Qhl E S2, 
and hence from energy surfaces S3 t o  RP3. 

To determine the effective potential for l # 0 notice that the boundary 
8Qhl for given (h, 1 )  is characterized by the requirement that j = 7 X W = 0, 
or that W be proportional to 7, 



where the real number X is obtained by taking the scalar product with 1 :  

The last expression is twice the kinetic energy. But when j = 0, there 
is no kinetic energy in the 7 motion; the energy X112 is therefore to be 
interpreted as the centrifugal potential for given l and 7 .  Writing (35) as 
l = XOy, we obtain 

With 8, := 7 . a ~  being the moment of inertia for rotation about the 7 axis 
(which is nothing but the space-fixed z-axis viewed from the moving body), 
this relation may be read as l = 8,X whence we see that X is the angular 
velocity of the cp motion. Writing the centrifugal potential X112 = 12/28, 
and combining it with the gravitational potential, we find 

where in the last equation the special moments of inertia of the Kovalevskaya 
case have been inserted. (The same result is obtained from the Hamiltonian 
(1) if the effect of n, = l is separated into gyroscopic and centrifugal forces.) 
Eliminating 7 2  with C, = 1, we can express and draw the level lines as 
functions yl = yl (y3), 

On the circle 73 = 0 the effective potential decreases linearly with yl,  
whereas on the circle 7 2  = 0 or 732 = l - 712 we have 

Depending on 12, this may or may not have relative extrema in the range 
-1 < yl < 0, giving rise to critical points in the system of equipotential 
lines, and hence to topological changes of the accessible parts Qhl on the 7-  
sphere. By elementary analysis, one determines four qualitatively different 



systems of contour lines, cf. the schematic drawing of level lines in the 
neighborhood of the north pole yl = -1 in Figure 3.2 

1. For l2 < 1: = 3.0792, the effective potential is everywhere decreasing 
with increasing yl.  Thus the two sleeping tops at yl = &l with 
h = -71 + 12/4 are the only critical points on the y-sphere. For 
h < l + 12/4 the accessible part of Q1 is a disk, hence &h1 .- S3, for 
larger energies Qhz is the whole sphere, hence Ehl RP3. 

2. For 1 in the small range 1: < 1: = 3.3137, Veff(y2 = 0) has two 
critical points yf ,  y? in the range -1 < yl < 0. This implies that 
besides the absolute minimum a t  yl = 1, there are two maxima at 
y = (y?, 0, & ,/m), two saddles at y = (ys, 0, & d m ) ,  
and a maximum at yl = -1. The maximum a t  yl = -1 has higher 
effective potential than that a t  yl = y?. Consequently, we find the 
following succession of Qhl types, as h increases: 

The corresponding succession of energy surfaces is 

3. For 1: < l2 < 1; = 4, the situation is similar except that the maxi- 
mum at yl = -1 has lower effective potential than that at yl = y r .  
The succession of Qhl types is 

the corresponding succession of energy surfaces is 

4. For l2 > 4, Veff(y2 = 0) has a relative minimum at yl = 1, and a 
maximum at yl = y? in the range (-1,O). This implies that the y-  
sphere carries an absolute minimum a t  yl = 1, a saddle at yl = -1, 
and two maxima a t  y = (y? , 0, &,/m). The succession of 
Qhz types is 

'There are thick and thin level lines on the 7-sphere in our film. The thick 
lines are chosen at equidistant levels of VeE. The thin lines are taken at one 
tenth that level distance. 
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The corresponding succession of energy surfaces is 

E h l :  s3 + s 1 x s 2  + w3. 

Fig. 3. The four types of level lines on the y sphere (schematic drawing). For 
representative values 12, the critical level lines of the effective potential are drawn 
as full lines. For given (h, 12), the shaded fields are the energetically not accessible 
regions. In each little diagram, the central dot is the north pole; the other dots 
are relative maxima. At low values of h, the entire neighborhood of the north 
pole is forbidden. As h increases, the holes in the y sphere become smaller and 
develop a pattern depending on 12. Eventually, in the (h, 1') range marked W3, 
all y are possible. 

The values of h where the Qhl and hence the Eh1 change their topology 
are the critical values of VeR(y2 = 0) for given 1. From the critical points 
yl = *1, we recover the bifurcation lines H and U of Section 3.1. The 
critical points y y  and yf are the analytic extrema of the polynomial 

P(y1) = 2 ( h + ~ l ) ( l  +T:) - 12, (41) 

cf. Equ. (40). They bifurcate at points (h,l) where the discriminant A 
vanishes, 



The same condition is obtained from Eqs. (28) if p is eliminated as a para- 
meter. We see that relative equilibria and bifurcations of the energy surface 
give the same bifurcation lines. This is generically true. 

4 Invariant Tori  a n d  The i r  Bifurcations 

4.1 Liouville- Arnold Tori 

The foliation of the reduced phase space T*S2 into invariant energy sur- 
faces Ehl is only the first step in the phase space analysis. The existence 
of Kovalevskaya's constant K implies that the Ehl are further foliated into 
two-dimensional invariant manifolds Thlk. The Liouville-Arnold theorem 
asserts that these manifolds are tori T2.  In full phase space T*S0(3), the 
corresponding invariant manifolds are tori T3,  the additional circle repre- 
senting the cp motion. 

The main goal of our film is to  elucidate the nature of these invariant 
tori, starting with a look a t  individual tori, and then analyzing the manner 
in which they foliate the energy surfaces Ehl. 

A natural way to  represent a torus ThIk is to select an initial condition 
compatible with parameters (h, l ,  k) and to  generate a trajectory by inte- 
grating the equations of motion. Unless the winding number happens to  
be rational, this trajectory will eventually fill the torus densely. Various 
projections may be chosen for visualization. The film illustrates this with 
a trajectory for (h, 12, k2) = (1.2,1.58,1.41) which is shown in projection 
onto the y sphere, and into the space of angular momenta 1. The y projec- 
tion gives an idea of how the rigid body moves in real space, except that it 
ignores the cp motion. Because of its two-dimensional nature, it cannot give 
a fair impression of the toroidal nature of Thlk. This is possible in the l pro- 
jection, but even there, self-intersections along certain lines, and changes 
of orientation a t  these lines, cannot be avoided. To make these changes 
visible, the interior side of a torus is represented in dark, the outside in 
light colors. 

Besides the mere existence of invariant tori Thlk, the Liouville-Arnold 
theorem provides a canonical set of corresponding coordinates, the ac- 
tion angle variables (01, 02, 11, 12). There exists a canonical transformation 
(4, X )  e (8 ,  I )  by which the Hamiltonian assumes the form 'H = %(I ) .  
The associated equations of motion show that the Ii are constants of mo- 
tion, and that the 0i change at constant rates Bi = d'H/dIi. The Ii may 
be viewed as labelling the invariant tori while the closed loops Oi = const 



are a natural set of coordinate lines on them. In practice, it is a difficult 
problem to  determine these lines [13]; the film does not address these mat- 
ters explicitly. However, the animated sequences with tori of varying k2 a t  
given (h, 1) were produced with a parametrization of the T h ~ k  in terms of 
just these lines of constant Bi. They were determined numerically, using an 
algorithm described in [13, 11, 121. 

For each energy surface Ehl there is a range of physically allowed values 
k2 of the Kovalevskaya constant. To get a first impression of the foliation of 
fhl by the corresponding tori, we start with the torus of maximum value, 
k2 = k;,,, and gradually lower k2 towards the minimum value k$,. The 
maximum ki,, cannot easily be given in closed form; it is most conveniently 
expressed in terms of parameters h and p w l ,  

1 = 2p(p2 - h), 

k;,, = l - 2p2h+3p4 = 1 + l p + p 4 ;  
(43) 

the range of p values is 

The minimum values are 

k2. = 
(12/2 - h)2 if h < 0 or l2 > 2h, 

-ln { 0 if h > 0 and l2 < 2h. 

For k2 = ki,, and k2 = k i in ,  the tori Thlk are critical, i.e., they degenerate 
to circles. The motion in reduced phase space is periodic, the full motion 
quasiperiodic, with a second period for the cp motion. In the 1 projection, 
a critical torus is a closed line (which sometimes degenerates to a line 
segment because the projection superimposes two halves of the loop). In 
the simplest cases, h < 0, no further criticality occurs between ki,, and 
k i in .  Critical tori a t  (local) maximum and minimum values of k2 are always 
stable isolated periodic orbits. This is a result of Dirichlet's theorem as 
stated, e.g., in Siege1 and Moser [32]. 

In a more typical case, another critical torus occurs a t  an intermediate 
value of k2, and there are various ways in which this may happen. In the 
first example of the film, (h, 12) = (1.2,1.58), where k;,, = 5.468 and 
k i i n  = 0, an unstdble periodic orbit appears a t  a value k2 = kk, = 0.168. 



I t  forms the center of a separatrix between different types of foliation. There 
is one torus X l k  for each value k2 > kk,, but two tori for each k2 < k&,. 
The tori bifurcate as k2 is lowered through kk,. The two families of tori 
a t  k2 < k&, are related by the symmetry S3, see (23); in the 1 projection 
they are mirror images under l3 + -l3. At the minimum value k2 = 0 each 
family ends in a critical torus representing stable periodic motion in the 
reduced phase space. 

Fig. 4. Bifurcation diagram of energy surfaces and their foliations. The inset is a 
blowup of the rectangular region marked in the main figure. The dots refer to  the 
choice of parameters (h, 1 ' )  in the series of Poincark sections shown in Figures 9 
on page 66. - The corresponding picture in the film is slightly deformed in order 
to  better exhibit the fine structure in the blown-up region. 



In general, as we vary the values (h, l) across the bifurcation diagram, the 
number and/or nature of critical tori changes a t  bifurcations of the energy 
surface Ehl.  Moreover, tori may become critical within a given topolocical 
type of Ehl. This gives rise to four further lines in the (h, l) bifurcation 
diagram, as shown in Figure 4. A detailed discussion of these lines is given 
in the following subsection. The figure shows that the set of all bifurca- 
tion lines defines 10 distinct regions in the (h, l) bifurcation diagram. We 
call them (h, 1) phases and introduce a scheme of letters A . . . J to name 
these phases. Each one represents a particular type of foliation of Ehl. The 
example (h, 12) = (1.2,1.58) is taken from phase B. 

4.2 Appelrot Classes and Kharlamov Regions 

The set of all critical tori provides a kind of backbone around which the 
other tori are organized. Their identification and characterization has been 
a lifetime's work for G. G. Appelrot [l] who distinguished four classes I 
through IV, with many subtypes. Appelrot's analysis was based on the 
representation of Kovalevskaya's dynamics in terms of hyperelliptic func- 
tions [29]. A more straightforward method to  obtain the bifurcation dia- 
gram was applied by M. P. Kharlamov 1181 who studied critical values of 
the energy-momentum mapping (7, l )  I+ (h, k, Cl, C,). Kharlamov intro- 
duced a scheme of numbers i through v to denote regions in (h, 1, k) space, 
called (h, 1, k)-phases, which are connected and free of critical points, i. e., 
the corresponding tori in phase space can be smoothly deformed into each 
other. The Appelrot classes form the boundaries of the Kharlamov regions. 

A third method, based on the analysis of isolated periodic orbits in an 
appropriate Poincark map, was introduced in [ l l ,  121. Its advantage is the 
explicit characterization of the various types of tori in each region of the 
bifurcation diagram. 

A comprehensive and quantitative representation of all critical tori re- 
quires a three-dimensional (h, l ,  k) bifurcation diagram, but this is cannot 
easily be produced. Instead, we offer, in the series of pictures on page 62, 
two-dimensional slices at 8 typical values of energy h, corresponding to 
different types of energy surfaces Eh. We call these slices (1, k) bifurcation 
diagrams. 

Figure 5 is an example of such a slice, with h = 0.8, in the "natural" 
variables l and k2. The entire range of positive and negative values of 1 
is shown to exhibit the symmetry under 1 + -1, and the way in which 
the lines continue across 1 = 0. In the series of Figures 6, the 1 < 0 part 



is omitted, and instead of k2 we plot k in order to have all individual 
pictures on the same scale. Note that this transformation turns the smooth 
minimum a t  the junction of green and blue lines, at (1, k) = (d%,O) ,  into 
an artificial cusp. 

The figures exhibit lines in four colors, called Appelrot lines. They corre- 
spond to the four classes of critical orbits defined by Appelrot: I (orange), 
I1 (green), I11 (blue) and IV (red). Full lines are stable, lines carrying dots 
are unstable critical tori. Points where Appelrot lines intersect transver- 
sally, in the (1, k2) representation to be precise, mark bifurcations of Ehl,  
i. e., relative equilibria. Tangencies of Appelrot lines indicate bifurcations 
of critical tori as discussed below on page 57. The corresponding values of 
1 separate different (h, 1) phases A . . . J, cf. Figure 4. Regions enclosed by 
the Appelrot lines are Kharlamov's (h, 1, k)-phases. In Figures 6, they are 
given the colors red (i), green (ii), yellow (iii), blue (iv), and purple (v). 
Some of these phases appear disconnected in a given (1, k) slice, yet in the 
full (h, 1, k) space they form a single connected region. 

The pictures of Figures 6b contain blow-ups (even two successive stages 
in case of h = 1.42) in order to  display the very intricate features in the 
parameter range 1 < 1, h < 2. 

Explicit expressions for the Appelrot lines of classes I through IV have 
been derived in [ll, 121, using the Poincark surface of section discussed in 
Section 5. Here we only collect the results, including statements about the 
stability properties of the respective critical orbits in reduced phase space. 

I: k = 0 in the l-range 0 < 1 < a, h > 0. The corresponding critical 
tori are elliptic. 

11: k = 12/2 - h in the l-range max(0, h) < 12/2 < 2(h + 1). Critical tori 
of class I1 have k2 = kii,  for given (h, l), hence they are also elliptic. 

111: k = h - 12/2 in the l-range 0 < 12/2 < h, h > 0. For energies h > fi 
and l-values in phase E, 

this Appelrot line does not correspond to critical tori. The special 
feature of these tori is that they are characterized by elliptic rather 
than hyperelliptic functions, but this is only of analytic, not of topo- 
logical interest. These segments are therefore not shown in Figure 6. 
All critical tori of class I11 are hyperbolic. 



IV: This is really a collection of different lines. Appelrot lumped them 
together because they are all parametrized by 

cf. Equ. (43); they differ in the ranges of p. The piece where k2 = kk,,, 
as defined in Equ. (44), is the only one with positive p; in regions A 
and B there is no other Appelrot line of class IV. The other pieces, in 
phases C . . . J ,  derive from p in the range -h < p < 0 of negative 
values. The following is a description of the respective pieces in the 
eight different types of energy surfaces. 

1. h < 0: stable critical tori (i.e., elliptic isolated periodic orbits) 
f o r o < p < m .  

2. 0 < h < 1: stable critical tori for h < p < m (uppermost 
branch) and -h < p < -m (second branch from above 
in phase C); unstable critical tori (i.e., hyperbolic isolated pe- 
riodic orbits) for -m < p < 0 (third branch). The cusp at 
p = -m marks a saddle-node bifurcation upon the transi- 
tion between phases B and C. (The parameter range 0 < p < 
gives Appelrot line segments with negative 1.) 

3. 1 < h < a: the same as above, but here the third branch 
intersects the Appelrot line of class I11 at the transition from C 
to D (Ehl changes its topology). In region D, the tori of the third 
branch are inverse hyperbolic orbits. 

4. < h < 1.5: almost the same as in case 2, except that the 
second branch from above is hyperbolic in region E, i.e., for 
-1/1L < p < -1/1+. At the endpoints of this interval, the in- 
stability is transferred to critical tori of class 111. 

5. 1.5 < h < fi the second branch is stable for -h < p < -1/1L 
(region D) and unstable for -1/1L < p < -m (regions E,  H, 
J ) ;  the third branch is stable for -m < p < -1/1+ (regions 
H and J ) ,  unstable for - 1/1+ < p < 0 (regions E and D). 

Up to here, the cusp a t  p = -m has physical reality as a saddle- 
node bifurcation because it occurs for k2 > 0. For larger values of h, 
the range -p2 < p < -p1 with = h F 1/= is spared out as 



it would lead to unphysical k2 < 0. The two pieces p < -p2 (upper 
branch) and p > -p1 (lower branch) are disconnected. 

6. & < h < 2 f i  - l: the second branch is stable for -h < p < 
-1/1L (region D) and unstable for -1/1L < p < -p2 (regions E, 
H, J, I) ;  the third branch is stable for -p1 < p < -1/l+ (regions 
H and J ) ,  unstable for - 1/1+ < p < 0 (regions E and D). 

7. 2-\/2 - l < h < 2: same as in case 6 except that the order 
of the topological changes of Ehl, as l grows, is changed. The 
second branch is stable for -& < p < -1/1L (region D) and 
unstable for -1/l- < p < -p2 (regions E, H, G, I);  the third 
branch is stable for -p1 < p < -1/1+ (region H), unstable for 
-1/1+ < p < 0 (regions E and D). 

8. h > 2: the second branch is stable for -h < p < -1/lL (phase 
D) and unstable for -1/1L < p < -m (phases E,  H, G, 
F);  the third branch is stable for -p l  < p < -1/l+ (region H), 
unstable for -1/l+ < p < 0 (regions E and D). 

An additional important piece of information is that the number of dif- 
ferent tori for a given triple of values (h, 1, k) depends on the Kharlamov 
region. It is one in region i (red), two in regions ii (green), iii (yellow), iv 
(blue), and four in the tiny region v (purple). 

4.3 Fomenko Graphs and Their Bifurcations 

Given the information collected in the previous subsection, it is straightfor- 
ward to derive the type of foliation of Ehl for each given phase A . . . J .  A 
qualitative picture of these foliations may be given in terms of a classifica- 
tion scheme developed by A. T.  Fomenko [15]. There an energy surface Ehl 
is depicted as a graph in which each point represents a torus. We choose 
the height of a point in the graph to indicate the value of the Kovalevskaya 
constant. The tori of a continuous family form an edge of the graph. End 
points correspond to stable, branch points to unstable isolated periodic 
orbits. The Fomenko graph associated with (h, l) = (1.2,1.58) is charac- 
teristic of the (h, l)-phase B and has the form of a letter Y turned upside 
down. Figure 7 on page 64 collects the graphs for all 10 phases. 

From our discussion of the stability properties of critical tori (especially 
of Appelrot class IV) it is clear that the Appelrot classification has no direct 
topological interpretation. On the other hand, the nature of a critical point 
in Fomenko's diagrams tells a great deal about the corresponding critical 



torus and its neighborhood in phase space. From the topological point of 
view, the Kovalevskaya system possesses (again) four different types of 
critical tori. Figure 6 on page 65 collects them together with sketches of 
the organization of their phase space neighborhoods. The pictures must 
be interpreted as transverse intersections of the critical tori (and, in case 
of hyperbolic orbits, of the associated separatrices) in the energy surfaces 
Ehl.The four topological types of critical orbits are the following. 

e: Free end points of edges. They correspond to elliptic isolated periodic 
orbits and are surrounded by nested tori. (In Fomenko's nomenclature 
they are called atoms A.) 

h: Branch point where three edges meet. In phase space, this corresponds 
to  an hyperbolic isolated periodic orbit with two homoclinic connec- 
tions forming the separatrix between three families of tori. (Fomenko's 
a tom  B.) 

h*: Critical point where two  edges meet. The isolated critical orbit is 
inverse hyperbolic and has one homoclinic connection which separates 
two families of tori. (Fomenko's a tom  A*.) 

h2: Branch point with four emanating edges. In phase space there are two 
hyperbolic isdated periodic orbits, with four heteroclinic connections 
separating four families of tori. (Fomenko's a tom  C2.) 

The Appelrot classes I and I1 are always of topological type e. Class I11 
is of type h in phases B, C, G, H, I, J ,  and of type h2 in phase D; in 
phase E the class I11 tori are not even critical. Appelrot class IV comes in 
three different topological types: type e in all phases for k2 = kkax, and 
furthermore in phases C, D, H, J as centers of the blue and violet families 
of tori, respectively; type h in phases C, E,  F, G, H, I, J ;  type h* in phases 
D and E. This makes it obvious that Appelrot's analytical and Fomenko's 
topological viewpoints reveal different aspects of a system's dynamics. 

While Figure 6 illustrates the various ways in which critical tori organize 
the bifurcation of noncritical tori, we shall now address the bifurcation be- 
havior of critical tori, i. e., of isolated periodic orbits of the reduced system. 
In other words, we consider the changes of Fomenko graphs, or types of foli- 
ation, between neighboring phases. Such changes occur whenever Appelrot 
lines in Figure 6 intersect or have a tangency. Transverse intersections in- 
dicate bifurcations of the energy surface &h1 whereas ordinary bifurcations 



of isolated periodic orbits (without a topological change of &hl) involve 
tangencies of Appelrot lines 181. 

When Ehl changes its topology, at relative equilibria, the foliation may 
be affected in a variety of ways. Let us consider the cases identified in 
Section 3.1. 

H: The sleeping top in hanging position sits at the intersection of two 
elliptic Appelrot lines of classes I1 and IV. This corresponds to its 
being doubly elliptic in a linear stability analysis. The transition may 
be described as 2e H 0. 

U: The sleeping top in upright position involves four different transitions, 
depending on the value of h  = 1 + 1'14. For h  > 2, between phases A 
and F,  the intersecting lines are elliptic and hyperbolic, respectively, 
corresponding to an elliptic-hyperbolic stability character. The tran- 
sition is e H 2e + h, as in an elliptic pitchfork bifurcation, see below. 
For h < 2, on the other hand, all intersecting lines are hyperbolic, 
corresponding to the doubly hyperbolic instability of U. In the range 
1.5 < h  < 2 ( I  H G and J H H), the transition is h + h H h + h, 
whereas for 1 < h  < 1.5 ( C  H D) it is h + h  H 2h*+h 2.  

M: The merry-go-round motion occurs at the intersection of the elliptic 
line of Appelrot class I with stable or unstable segments of class 
IV. Between G and H or I and J the transition is 4e H 2e + 2e, 
corresponding to the elliptic-elliptic stability (sM). Between B and I 
the transition is 2e H 4e+ 2h, corresponding to an elliptic-hyperbolic 
character (uM) . 

There are no general rules for the bifurcations of periodic orbits when 
the topology of the energy surface changes simultaneously. If, however, a 
periodic orbit bifurcates whithout an equilibrium point being involved, then 
there exist only a few generic types of bifurcations [24]. The Kovalevskaya 
system provides (again!) four examples of these generic scenarios: 

SN: saddle-node bifurcation 0 H e + h; a pair of elliptic and hyperbolic 
periodic orbits appears out of nothing. 

ePF: elliptic pitchfork bifurcation e H h + 2e; an elliptic orbit becomes 
hyperbolic and gives birth to two new elliptic orbits. 

hPF: hyperbolic pitchfork bifurcatin h H e + h2; an hyperbolic orbit turns 
elliptic and gives birth to two new hyperbolic orbits. 



hPD: hyperbolic period doubling bifurcation h* t, e + h; an inverse hyper- 
bolic orbit becomes elliptic and gives birth to a hyperbolic orbit of 
twice the old period. 

(The obvious fifth candidate in the above list, the elliptic period doubling 
bifurcation ePD: e t, h* + e does not occur in the Kovalevskaya system.) 

From figure 6 and our description of the Appelrot lines it is easy to 
identify where in (h, 1, k) space these bifurcations of critical tori are to  be 
found. 

Saddle-node bifurcations occur a t  the transitions B t, C and B t, J, 
along the line 

SN: 1' = 2(2h/3)3, k2 = 1 - h2/3, 0 < h < &. (48) 

Elliptic pitchfork bifurcations occur a t  transitions A t, B and F t, G, 
along the line 

In Appelrot's classification, this is the transition from class I1 to class I11 
orbits. 

Hyperbolic pitchfork bifurcations occur at the transition E t, D, along 
the line 

with h > for 1' = 12 and fi < h < 1.5 for 1' = 1:. 
Hyperbolic period doubling bifurcations occur a t  the transition E t, H, 

along the line 

To sum up, we have analyzed three kinds of bifurcation diagrams: 

The full three-dimensional (h, 1, k) bifurcation diagram where each 
point represents one, two, or four invariant tori Thlk, depending on 
the Kharlamov region. The xlk are T 2 in reduced phase space T*S2, 
and T3 in the full phase space T*S0(3). The five Kharlamov regions i 
through v are separated by two-dimensional surfaces of critical values 
(h, 1, k), corresponding to  critical tori. The critical tori come in four 
analytically defined Appelrot classes I through IV, or in four topo- 
logically defined types e, h, h*, h2. Counting each Kharlamov region 
according to  its multiplicity, we find 1 X 1 + 3 X 2 + 1 X 4 = 11 different 
families of non-critical tori (with positve values of 1). 



Two-dimensional (1, k) bifurcation diagrams which are slices of the 
(h, 1, lc) bifurcation diagram at fixed values of the energy h. These 
are convenient representations of entire energy surfaces Eh, of which 
there are eight different kinds. The critical tori form Appelrot lines. 
Their topological character as well as the multiplicity of tori in the 
Kharlamov regions is made explicit by translating lines of constant 1 
into Fomenko graphs. These graphs may be interpreted as represen- 
tations of reduced energy surfaces Ehl. They change their character 
at values (h, l) where critical tori bifurcate. 

Two-dimensional (h, l)  bifurcation diagrams which are projections 
onto the (h, 1) plane of the lines in the (h, 1, lc) bifurcation diagram 
where critical tori bifurcate. These lines define 10 phases A . . . J of 
reduced energy surfaces Ehl, or Fomenko diagrams. The three lines 
H, U, M represent relative equilibria and mark topological changes 
between four kinds of Ehl. The other four lines SN, ePF, hPF, hPD 
indicate standard bifurcations of critical orbits without changes of 
the topology of Ehl. 

The film attempts to illustrate the nature of the phases A . . . J in terms 
of animated l-space projections of Ehl foliations, for typical value sets (h, 1) 
from all (h, 1) phases except G and J.  Tori of a continuous family are given 
the same color for easy identification. (Symmetry related families of tori 
are not distinguished by color.) 

The first example is phase B with (h, 1) = (1.2,1.58). The symmetric tori 
at lc2 > lckp are shown in red. The red family occurs for all sets of (h, l), for 
sufficiently high values of lc2. It starts with a critical torus of topological 
type e and Appelrot class IV at k2 = l&,,. At lc2 = kg there is a critical 

5 orbit of type h. The pairs of symmetry related tori at k < lc& are shown 
in green. The two green families exist in the neighborhood of kP= 0, for all 
(h, 1) except phases A and F. They end in critical tori of topological type 
e and Appelrot class I. 

The simplest phase is A, with only one type of (red) tori. Its Fomenko 
graph is a single edge. The film shows all tori for (h, 12) = (-0.5, l), from 
lck, = 1.711 (type e, Appelrot class IV) down to kkin = 1 (type e, Appelrot 
class 11). Phase B emerges from A by an elliptic pitchfork bifurcation of 
the critical torus at k2 = kLin = 0. 

The next example is (h, 12) = (0.9,0.34) from phase C. When lc2 is low- 
ered from lck,, = 2.998, a new family of tori (blue) appears out of a saddle- 
node (or tangent) bifurcation at lc2 = 0.826. The red and blue families meet 



in a separatrix of type h, at k2 = 0.796, which contains an unstable critical 
torus, of Appelrot class IV. On the other side of the separatrix, for k values 
0.796 > k2 > 0.533, there exists a third family of (orange) tori. It ends at 
k2 = 0.533, in another separatrix of type h whose center is again a hyper- 
bolic periodic orbit. For k values still lower, we recover the two symmetry 
related green tori. The Fomenko graph C is a convenient summary of this 
scenafio. 

The four (h, l)-phases A, B, C, J are different foliations of Ehl E S3; the 
three phases D, E,  H are different foliations of Eh[ E W3; the two phases 
F,  G are different foliations of Ehl E S1 X S2, and phase I is only one where 
Ehl E K3. 

The transition from C to D involves a bifurcation of the energy surface 
Ehl, from S3 to  W 3 .  This goes along with a different organization of tori. 
For the case (h,12) = (1.2,0.4) from phase D we start with kkax = 3.901 
and see the blue family emerging at k2 = 1.151, as in phase C. But the 
merging of red and blue tori is different: the separatrix at k2 = 1 is of type 
h2 and contains two hyperbolic orbits of Appelrot class 111, out of which 
two symmetric yellow families of tori develop. These tori become critical 
again at k2 = 0.828, with two independent separatrices of type h*, each 
containing a hyperbolic orbit of Appelrot class IV. On the low-k side, these 
turn into the familiar green families. 

In the transition from D to E, the blue family disappears in an hyperbolic 
pitchfork bifurcation: one stable and two unstable critical orbits turn into 
a single unstable orbit. Phase E is illustrated with (h,12) = (1.85,1.43). 
Starting at kkax = 7.850, the red family transforms directly into the two 
yellow families. The hyperbolic orbit a t  k2 = 1.394 is of type h and Appelrot 
class IV. The transformation of yellow into green orbits at k2 = 0.601 
proceeds as in phase D (topological type h* and Appelrot class IV). 



Figure 5. (1, k2) bifurcation diagram for h = 0 
k 

I 

Figure 6. (1, k) bifurcation diagrams for eight different values of the energy h 
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Figure 7. Fomenko graphs for the ten different types of Eh1 foliations. The colors 
identify continuous families of tori. Also shown are numbers I through IV to 
denote the Appelrot classes of critical tori, and numbers i through V to denote 
Kharlamov's (h, 1, k)-phases. 



Figure 8. Four types of bifurcation points in Fomenko graphs, and corresponding 
local structure of phase space. e: elliptic orbit surrounded by one family of tori; h: 
hyperbolic orbit with separatrix and three f a m i l i ~  of tori; h*: inverse hyperbolic 
orbit with separatrix and two families of tori (the two loops inside the figure oo 
belong to the same torus); h2: two hyperbolic orbits connected by a separatrix 
and surrounded by four families of tori. 



Figure 9. Typical Poincark surfaces Phi for the six (h, 1)-phases 4 . . . F. From 
top left to  bottom right: A: (-0.5,l) B: (1.2,1.58) C: (0.9,0.34) D: (1.2,0.4) 
E: (1.85,1.43) F: (2.5,5.3) 



Figure 9. (cont.) 'Phi for the (h,  1)-phases G . . . J and, in the bottom line, C and 
D with E = 0. From top left to bottom right: G: (2.5,4.82) H: (1.85,3.29) 
I: (1.8,3.26) J: (1.8,3.23) C: (0.9,O) D:(1.2,0). 



In phase F, the energy surface has the topology of S' X S2. Except for this 
difference, the foliation by invariant tori is similar to  that in phase B. For 
the example of (h,Z2) = (2.5,5.3), the film first shows the 1 projection of 
all tori, and then the physical motion corresponding to the critical tori. At 
k;,, = 15.00, periodicity in the reduced phase space means synchrony be- 
tween $-rotation and 6-oscillation; the full motion is quasiperiodic because 
the period of the p-precession is incommensurate with the period of the 
other two angles. While this motion is stable, the separatrix a t  k2 = 0.616 
contains an unstable periodic orbit (type h and Appelrot class IV) with 
similar physical appearance. At k;i, = 0.0225 there are two stable crit- 
ical tori (type e and Appelrot class 11). Their symmetry relation via S3, 
see (23), may be described as an exchange of the two weights on the axis 
e3. 

The last two examples of foliations are taken from the neighborhood of 
the point (h,Z2) = (hi,lp), see (30), where all four topological types of 
energy surfaces meet. With (h, Z 2 )  = (1.85,3.29), we are close to that point 
in phase H. Starting at k;,, = 9.741, the red family survives almost the 
entire range of I; values, down to the separatrix of type h a t  k2 = 0.0786, . 

containing a critical torus of Appelrot class IV, where two yellow tori appear 
in a symmetry breaking bifurcation. At k2 = 0.0420 these tori develop into 
separatrices of type h containing Appelrot orbits of class 111. Each of these 
gives birth to  two families as k2 decreases, one violet, the other green. The 
violet tori end in a stable critical orbit a t  k2 = 0.0254 whereas the green 
families persist down to k2 = 0. (When the stable critical tori of the violet 
family are continued, with increasing Z 2 ,  until I;' = 0 a t  the transition to  
phase G, they develop into the stable merry-go-round motion.) 

For (h, 1') = (1.8,3.26), we are in phase I. The energy surface K3 derives 
from an accessible region in configuration space which is a sphere with 
three holes. This is the most complicated situations of all even though it . 
appears only in a tiny part of parameter space. The red family extends from 
k:,, = 9.475 down to k2 = 0.0289, where a critical torus of type h and 
Appelrot class I11 gives birth to  a symmetric pair of tori shown in turquoise 
color. These tori bifurcate again, a t  a separatrix with k2 = 0.0104, of type 
h. Both pairs extend down to k2 = 0 where they end in stable periodic 
orbits (type e, Appelrot class I). 



5 Poincarh Surfaces of Section 

5.1 General Considerations 

Poincar6 had the idea to visualize the dynamics on three-dimensional en- 
ergy surfaces in terms of well-chosen cross-sections [27]. In the case of &hl 

he would have proposed to identify a two-dimensional surface Chl C &hl 

that intersects the tori zlk in one-dimensional manifolds, either in single 
topological circles, or, in case of multiple intersections, in collections of cir- 
cles. In a convenient representation of such a surface of section, essential 
features of the complete foliation can be observed in a single picture. 

Let the Poincar6 surface of section be defined by a condition S(x) = 0, 

Starting the phase space flow in a point X E Chl, and waiting for the next 
intersection of the corresponding trajectory with Chl, one generates a dis- 
crete map P : Chl -+ Chl, called the Poincare' map. Such maps were studied 
intensely by Birkhoff [4, 51, and played an important role in the analysis 
of non-integrable motion. The Moser twist theorem [25] starts from this 
discrete version of the phase space dynamics. The method has found wide 
application ever since it became possible to  produce graphical renderings 
of Poincar6 maps with the help of computers. For examples with different 
physical systems see the IWF films C1574 and C1654 [30, 33.1. 

Ideally, a Poincar6 surface of section should have the following properties: 

1. Chl ought to be a manifold; 

2. Chl ought to be everywhere transverse to the phase space flow; 

3. Chl ought to be C-complete, i.e., ensure that each point X E Ch has 
a t  least one image P(x) and one preimage P-'(X) in Chl; 

4. Chl ought to be &-complete, i.e., ensure that every orbit in Lhl has 
an intersection with Chl. 

I t  turns out that as a rule, not all four requirements can be met [14, 71. 
However, if tangencies are accepted, it is possible to fulfil1 condition 1 and 
the two completeness conditions. A surface of section will be called complete 
if it is C- and &-complete. 

The Kovalevskaya system can be analyzed in these terms. I t  was shown 
in [ll, 121 that 



defines a complete surface of section Chl. From the effective potential 
Veff(y2 = 0) in (40) we can identify the topological nature of C h l ,  using 
a similar reasoning as for the identification of the four types of energy 
surfaces &h[ in Section 3.2. Depending on the accessible part Qhl of config- 
uration space, the condition 7 2  = 0, reduced to the y-sphere, gives either 
a circle S1 (at high energies) or from one to three intervals D1. Combining 
these with the appropriate momentum circles, we obtain 

1. C lh  E T2 where &hl P R P 3 ;  

2. C l h  S2 where &h1 S3; 

3. C l h  E 2S2 where &h! .- S' X S2; 

4. Clh N 3S2 where Ehl P K3. 

The surfaces of section 7 2  = 0 are orientable manifolds with insides 7 2  < 0 
and outsides 7 2  > 0. (If y2 were an angular variable, 7 2  E S], such a 
statement would be meaningless. It is important that the set of 7 2  forms 
an interval, 7 2  E D'.) A trajectory that enters the inside has to come out 
again, and vice versa. Hence all trajectories are still captured if we record 
them on their way out, i.e., we impose the additional condition j2 2 0. 
The surface of section Chl is cut in two pieces (or two sets of pieces) CLl . 

and CLl along the line(s) j 2  = 0 of tangential flow. The part(s) C t 1  where 
j 2  2 0 may be conveniently represented in two-dimensional projection. 

The conditions 7 2  = 0, j 2  2 0, are invariant under the symmetry trans- 
formation S2, but S3 turns the inside out, as j2 2 0 changes into j2 < 0. 

In terms of Euler angles, these conditions are expressed in two parts, one 
for yl > 0, the other for 71 < 0: 

and 4 I 0 (y1 > O ) ,  
= {;!;2 and 4 2 0 (y] 0). 

(54) 

5.2 Foliations of s3 
In the film, the concept of a Poincar6 surface of section is introduced and 
illustrated with values (h, 1) from the three phases A, B, C, where Ehl E S3 

and Chl P S2. TO obtain a topologically fair representation of &hl and its 
foliation by invariant tori, the following procedure has been implemented. 

In the first step, the accessible region of configuration space Qhl is mapped 
to a disk D2 (X, y) . We know from (39) that at given (h, l ) ,  the minimum 



possible value of 71 occurs for 7 3  = 0 and is 7yin = 12/4 - h. Defining the 
angle 8 via 71 = cos8, we have 8 5 em,, < K,  where  COS^,^, = 7 ~ ' " .  The 
mapping from the 7-disk to the (X, y)-disk is defined by 

The point 7 = (cos19,~,, sin em,, 0) is thereby mapped to (X, y) =: (X,,,, 0) 
In the second step, we attach to each point (X, y) its momentum circle 

from 1 space, using the equation of motion i. = 7 X W and the Jacobian of 
the mapping (55): 

The set of all points (X, y, v,, vy) C R4 so constructed is homeomorphic to 
the energy surface Ehl = S3.  

The third step is a stereographic projection of this S3 from its outer- 
most point (X, y, v,, vy) = (xmax, 0,0,O) into R3 (Y, V,, Vy) by means of the 
equations 

The point (X,,, 0,0,O) is thereby mapped to a 2-sphere at infinity. Finally, 
in the last step, we pull the Euclidean (Y, V,, Vy) space into a ball of radius 
2 by means of the contraction 

4 r = \I- c) r = - arctanr. 
K 

(58) 

The result is a homeomorphic representation of Ehl inside this ball, except 
that the point (X,,, ,0,0,O) is represented as the surface of the ball. Its 
advantage as compared to the projection into Gspace is that tori do not 
intersect themselves, nor do they intersect each other. The nature of the 
foliations becomes accessible to intuition. (We better avoid to pick out the 
torus which contains the point (X,,, ,0,0,0) .) 

For (h, 1) values from phase A, the situation is particularly simple. The 
two critical tori are two entangled circles, and as k is moved away from the 
critical values, the corresponding tori enclose each other. 



The Poincark surface of section Chl is neatly seen to be intersecting all 
tori. Cutting away those parts of the tori which lie outside Chl, we obtain 
a particularly good impression of the complete foliation. 

The foliations in phases B and C are more complicated, due to the ex- 
istence of further critical tori, and several families. In phase B there are 
an unstable and three stable critical tori. They appear to be mutually en- 
tangled, and the tori of the three families are arranged around them in a 
rather complicated way. Again, the main features of this arrangement are 
best seen by looking into the intersecting Poincark sphere, after the exterior 
parts of the tori have been discarded. 

In phase C, with four stable and two unstable critical tori, the foliation 
becomes irritatingly complex. For this reason, we gave up to try and show 
the last case of S3 foliation, phase J. We also do not show examples with 
different types of energy surfaces. Corresponding mappings into R3 would 
require cutting and identification along certain surfaces which we think 
would overly strain the imagination. 

5.3 Complete Set of Poincare Surfaces of Section 

To simplify the picture and yet retain the essential information about the 
organization of tori, we turn to the last level of abstraction and restrict the 
view to  the Poincark surface Chl. More precisely, we take the half C:, where 
trajectories leave the interior y2 < 0, and consider it in projection onto the 
( 6 , ~ ~ )  plane. Since on Chl we have sin6 = yl and ns  = &l2 = f 2q, 
this projection is equivalent to a (yl, q) projection. But note that the two 
pieces I) = n/2  and I) = 3x12 (or yl > 0 and 71 < 0) project to the same 
part of the ( 6 , ~ ~ )  plane. In order to  have a 1:l projection, we let 6 vary, . 
formally, between -n/2 and 3x12, i.e., we take 6 = arcsinyl if y3 2 0, 
and 6 = n - arcsin yl if 7 3  < 0. The projection so defined is continuous at 
6 = 0 and 6 = n.  It is an annulus S1 X D1 if Chl N T 2,  and one, two, or 
three disks D2 if Chl is one, two, or three 2-spheres. 

Let 'Phl denote this projection of Chl to the (6, r e )  plane. Its boundary 
dPhl is defined by h = 0; with (17) this implies p73 = ryl ,  and using the 
constants of motion we find 

As h and 1 are fixed, this defines a boundary in the (71, q) plane which is 
symmetric with respect to  q H -q (or n* H -X*) and 29 e n - 6 (because 
of yl = f sin6, at y2 = 0). The completeness of the surface of section 



implies that topological changes of the energy surfaces Eh1 are reflected 
in topological changes of dPh l .  It is empty for h < 12/4 and turns into a 
circle as h increases beyond 12/4 (sleeping top in hanging position). The 
transition associated with the sleeping top in upright position occurs when 
dPhl  reaches the point (yl,q) = (-1,O). The merry-go-round motion can 
be obtained from a consideration of the number of zeroes of the polynomial 
(59) on the line q = 0; the same polynomial was discussed in Eqs. (41) and 
(42). 

The film displays Poincark surfaces 'Phl in continuous coloring, see Fig- 
ures 9 on page 66. Each family of tori is given a basic color (red, orange, 
blue, yellow, green, turquoise, violet). Within a given family, the value of 
the Kovalevskaya constant is indicated by brightness: dark for low k2, light 
for high k2. Stable critical tori can be recognized as dark and light centers, 
separatrices show up as color discontinuities. Unstable critical tori appear 
as intersections of these discontinuities. 

In [l11 it was shown how the contour lines of constant k2 can be obtained 
as integral curves of an appropriately constructed two-dimensional flow. 
The complete analysis of Appelrot classes and their bifurcations may be 
given in terms of the behavior of critical points of this flow. The results 
collected in Section 4 were obtained with this method. 

If 'Phl gives an idea of how the reduced energy surface Eh1 is foliated by 
tori, then a picture of the complete energy surface Eh is obtained by varying 
l2 from zero to its maximum value a t  fixed h; l;,, = 4(h + 1). (Positive 
and negative 1 give symmetric pictures.) The film does this in a continuous 
manner, showing animated sequences for four values of energy h. In the 
first case, h = -0.2, there exits only one family of tori, the red ones. The 
reduced energy surfaces Ehl are 3-spheres S3, the surfaces of section Chl are 
2-spheres S2, and their projections 'Phl are disks D2, see Figure 9A. With 
increasing 12, the disk shrinks to a point, corresponding to the critical torus 
where the top sleeps in hanging position. 

The second series shows the case h = 1.2. At low values of 12, the reduced 
energy surface Ehl N RP3 ,  the Poincark surface Chl  N T2,  and its projection 
Phl is an annulus D1 X S'. Figures 9DO and 9D are taken from this part 
of the animation. As l2 increases beyond 4(h - l ) ,  Ehl changes into S3, 
and the yellow tori disappear. At the point of transition, they develop into 
a separatrix which contains three hyperbolic periodic orbits: one of them 
the sleeping top in upright position, the other two sitting in the border 
between red, blue and green regions (there are neither yellow nor orange 
tori a t  the transition point). With l2 growing further, we see foliations of 



types C, B, A. 
A few comments are in order about the relationship between the families 

of tori involved. The red and blue families are images of each other under 
time reversal. They appear as a symmetric pair at 1 = 0, and to each Phz 
there corresponds a picture of Ph,-1 where (i) blue and red are interchanged, 
(ii) the coordinates are inverted a t  the center (note that the condition 
j2 > 0 changes sign under time reversal). As long as blue and red tori 
coexist, for given 12, they share a range of k2-values. For k2 greater than 
the maximum value in the blue family, the red family continues smoothly. 
For k2 smaller than the minimum value in the blue family, the red tori 
cease to exist, and orange takes over. The distinction between red and 
orange tori vanishes a t  the tangent bifurcation from region C to region B; 
thus red and orange tori have the same symmetry properties, yet in phase 
C they are held apart by a separatrix. In phase B, see Figure 9B, there 
are four dark green centers, hence it appears as if there are four green tori 
rather than two. This is not the case; each of the two green tori has two 
intersections with Phi, the Poincar6 map at the green centers has period 
two. (The centers on the yl axis belong to the same ~ r b i t . ) ~  

The third series, h = 2.5, is representative for high energies. The se- 
quence of reduced energy surfaces is Ehl E RP3 ,  then Ehl N S1 X S2, and 
finally Eh1 S3. The Poincar6 surfaces of section Chl are, respectively, 
2-tori, then two 2-spheres, then a single 2-sphere. The corresponding pro- 
jections Phi are an annulus (in phases D, E, H), then two disks (in phases 
G, F),  then a single disk (in phase A). In the transition from D to E, the 
blue tori disappear in an hyperbolic pitchfork bifurcation: a stable and two 
unstable critical orbits combine to a single unstable orbit, at the center 
of a separatrix between yellow and red. The transition from E to H is of 
a different kind. It involves a period doubling of the two inverse hyper- 
bolic periodic orbits in the separatrix between green and yellow; they each 
develop into a stable center (violet) and a normal hyperbolic orbit with 
twice the original period, and two intersections with the Poincar6 surface 
(transition h* -+ e + h.) Between H and G, cf. Figure 9H and 9G, the 
projection Phi decays into two disks, reflecting the change of topology of 

3 ~ h e n  an orbit develops a little loop in configuration space, this may induce a 
period doubling of the PoincarQ map even though the orbit does not bifurcate 
in phase space. Due period doubling as in e + h + e involves a doubling of 
the time it takes to traverse the elliptic orbit. What we see in a comparison of 
PoincarC sections A and B is a pitchfork bifurcation e(red) + h + 2e(green), 
accompanied by (an accidental) period doubling of the Poincarh map. 



Ehl. The point of disruption is the center of the violet phase; it corresponds 
to the stable merry-go-round motion. Between G and F there is an elliptic 
pitchfork bifurcation: two stable critical orbits (one violet, the other green) 
merge to become the stable center of a yellow region. (Remember: two green 
centers in the Poincare section belong to the same orbit.) Finally, in the 
transition from F to A, the topology of Chl changes from two 2-spheres to 
one 2-sphere; the upright sleeping top disappears together with the yellow 
tori. As may be inferred from Figure 9F, the small component of Fhl near 
yl = -1 contains a stable and an unstable critical orbit. This accounts 
for the elliptic-hyperbolic character of the relative equilibrium along the 
bifurcation line between F and A, in contrast to the hyperbolic-hyperbolic 
character of the same relative equilibrium along the line between D and C, 
see Figure 9D, or between H and J, see Figure 9H. 

The last series is taken at h = 1.75, with a small range of l 2  that comprises 
regions H, J ,  I, and B. The energy surface changes a t  every transition, from 
IWP3 to S3 to  K3 to  S3. In the transition from H to J there is a constriction 
at the point yl = -1. In a similar way as we observed the transition from 
yellow to orange tori between D and C, there is now a crossover from 
yellow to  turquoise orbits; neither of them exists right at the transition 
point. Going from J to I, there is a constriction right a t  the centers of 
the two violet regions - the stable merry-go-round motion. When the two 
small disks of phase I degenerate to two points, in the transition to B, 
the unstable (elliptic-hyperbolic) merry-go-round equilibrium appears. At 
slightly larger l', the violet and green tori of phase I have disappeared, and 
the turquoise tori from phase I have turned green in B, in a similar way as 
the orange tori turn red in the transition from C to B. 

6 Back to the Top 

We have come to a fairly high level of abstraction in the analysis of the 
Kovalevskaya top. In contrast to the classical interest of rational mechanics 
in the behavior of single trajectories, our focus has been on the geometry 
of phase space, with the aim of getting a complete survey on all possible 
physical motions, and on the way in which these are organized in phase 
space. 

The Kovalevskaya top is an integrable system with three degrees of free- 
dom. Hence its natural phase space T*S0(3) has six dimensions. Its five- 
dimensional energy surfaces Eh are foliated by three-dimensional Liouville- 



Arnold tori. One degree of freedom (the p motion) can be separated, leaving 
us with a reduced system of two degrees of freedom, three-dimensional en- 
ergy surfaces Ehl, and their foliation by two-dimensional invariant tori. It 
is convenient to  embed this reduced description in another six-dimensional 
phase space P1, equipped with a Poisson structure JP and two Casimir 
constants. The equations of motion are then the familiar Euler-Poisson 
equations. 

The Casimir constant C, = 1 defines a unit 2-sphere in y space, and for 
each y ,  the other constant Cl = l defines a 2-plane in 1 space. This gives the 
reduced phase space locally the structure of S2 

X R2 (globally, however, the 
cotangent bundle T*S2 is not S2 

X R2). The corresponding invariant tori are 
defined by the values h of energy and k2 of the Kovalevskaya constant. Their 
most direct representation is in terms of projections onto the y sphere and 
into 1 space. We looked at animated sequences of such projections at fixed 
(h, l), varying the values of k2 through the allowed range. This revealed a 
startling complexity, even of single invariant tori. To avoid the problem of 
projection-induced self-intersections, we turned to a homeomorphic three- 
dimensional representation of Ehl, for three (h, l) values where Ehl - S3, 
and displayed the corresponding types of foliation (A, B, C). We did not 
try to  produce comparable renderings of the three other topological types 
of reduced energy surfaces. 

In a last step, in order to reduce complexity and obtain a pictorial survey 
on the essential features of the foliations, we adopted the technique of 
complete Poincare sections, where each torus is represented with one or 
several cross sections. Depending on (h, l ) ,  we found ten different types of 
these graphs, as shown in Figure 9. Each of them gives a fair picture of the 
corresponding Ehl. To get an impression of a non-reduced energy surface 
Eh, the angular momentum 1 must be varied at given h. This was done in 
the final animation sequences where we presented four out of eight different 
types. 

The analysis could be carried a step further by introducing action vari- 
ables and representing each torus Thlk by the triple ( I I ,  I., 13) of its three 
actions, and hence by a point in I space. A given energy surface Eh can 
then be represented as a two-dimensional surface h = const in action space. 
Indeed, this was done in [12], but the scope of the film did not allow us to 
enter this ultimate level of abstraction. 

So what have we achieved? The material presented should be viewed as 
part of a software package available on a graphical workstation. Starting 
with the bifurcation diagram Figure 4, a pair of values (h, 1') may be se- 



lected by mouse-click. The program then displays the Poincark section Phi. 
At a single glance, we recognize which families of tori are present. With 
another mouse-click, we may select any one of them and let the computer 
integrate the equations of motion for a corresponding trajectory. This may 
then be shown in whatever version we wish - in 7 or l projection, or even 
as motion of a realistic model in "real" time. All possible motions of the 
Kovalevskaya system can be generated in this way, and a lot of familiarity 
with it may be gained by playing this game. At a time where computer 
power for numerical integration is available in abundance, we feel that the 
analysis of single trajectories in terms of hyperelliptic functions can no 
longer be the point. The challenge lies in the determination of invariant 
structures, and in their comprehensive display for easy access. 

Text of the Spoken Commentary4 

The dynamics of spinning tops is one of the major themes in classical 
mechanics. The problem is to understand the motion of a rigid body one 
point of which is kept fixed - here: at the center of the Cardan suspension. 

Euler and Lagrange were able to solve the equations of motion for two 
special cases which have since been' associated with their names: the Euler 
case of a torque-free top, where the fixed point is the center of gravity, and 
the Lagrange case of a symmetric heavy top, where two moments of inertia 
are the same, and the center of gravity is on the symmetry axis. 

In general, the motion of a spinning top is non-integrable, chaotic. But 
Sonya Kovalevskaya found a third and last case that can be integrated. 

The Russian mathematician Sonya Kovalevskaya was awarded the Prix 
Bordin of the Paris Academy of Science, in 1888. In her contribution she 
presented the complete solution for the problem of a spinning top with two 
equal moments of inertia, the third one being half as large, and with the 
center of gravity not on the symmetry axis but in the plane of the two 
equal moments of inertia. 

This rigid body has been built to fulfil1 Kovalevskaya's requirements. How- 
ever, in order to fix a point, a frame has been added. As a result, the motion 
is chaotic. 

Our aim is to understand and classify the various types of motion of the 

4 ~ h e  headlines in SMALL CAPS correspond to the subtitles in the film. 



integrable Kovalevskaya top, i. e., the mathematical idealization of this real 
model, without frame, and without friction. 

This computer model behaves according to the solutions of Kovalevskaya's 
equations of motion. 

Low ENERGY MOTION 

At low energy, gravity dominates. The three degrees of freedom correspond 
to  three pure types of motion: 

Rotation in stable hanging position, about the axis with the center of grav- 
ity. 

Pendulum motion about the second major axis. The moment of inertia is 
the same as about the first axis. 

Pendulum motion about the third major axis. The moment of inertia is 
half as big. 

A superposition of the two pendulum motions. The typical motion is a 
combination of all three types. 

At high energy, gravity is no longer important. Rotation about the axis with 
the small moment of inertia is stable. Its orientation in space is arbitrary. 

In case the body rotates about its first major axis, the residual gravity 
causes precessional motion. If the center of gravity is too high, this rotation 
is unstable. 

The mathematical analysis requires a choice of suitable coordinates. The 
configuration space is SO(3). It is convenient to specify the location of the 
three major axes of inertia in a space fixed coordinate system. 

The equations of motion are invariant against rotation about the direction 
of gravity. The vertical component of the angular moment is a constant of 
motion. The rotiation is separated, the configuration space reduced. 

Viewed from the body fixed frame of reference, the direction of the vertical 
defines a reduced position. I t  moves on the surface of a sphere, the reduced 
configuration space S'. 



A complete description in the reduced phase space requires, in addition, 
specification of the angular momenta. 

Relative equilibria are periodic motions that appear as points in the reduced 
phase space. They exist only for special combinations of the parameters 
energy h and vertical component 1 of the angular momentum. 

The simplest equilibrium solutions are those where all energy is in the 
rotation about the vertical. This is the sleeping top in hanging position. 
The motion is stable. 

If there is enough energy to lift the center of gravity to the upright position, 
the top may be sleeping again. These motions fall on a line which is shifted 
by the potential energy of the unstable equilibrium. But note there are two 
different types of this motion, separated by a third line of relative equilibria. 
In both cases the motion is unstable. 

In the lower part, the relative equilibrium is doubly hyperbolic. The body 
escapes from equilibrium in varying directions. 

On the upper part of the line, the equilibrium is elliptic hyperbolic. The 
body leaves it along regular spiral trajectories. 

A characteristic feature are the equilibrium solutions on the third line: the 
merry-go- round motion. The long branch indicates stable equillibria. 

None of the major axes coincides with the direction of gravity. 

The unstable merry-go-round motion exists on the small piece, near the 
cusp. The center of gravity is higher than in the stable case. 

BIFURCATIONS O F  T H E  ENERGY SURFACE 

The relative equilibria mark bifurcations of the energy surface of the re- 
duced system. In each of the four phases of the bifurcation diagram, the 
energy surface is a different three-dimensional manifold, with a topology 
depending on the accessible region of configuration space. 

There an orbit fills a two-dimensional area. All such areas - at given values of 
energy and angular momentum - are bounded by level lines of the effective 
potential. The sleeping top in hanging position corresponds to a potential 
minimum at the south pole of the sphere. The north pole corresponds to 
the upright sleeping top. 



The critical points of the effective potential correspond to the relative equi- 
libria. They all lie in a plane that later shall be used as a Poincar6 surface 
of section. 

At low energy, the level lines enclose a disk. At high energy, the entire 
surface of the sphere becomes accessible. These are the only two possibilities 
at small angular momenta. The energy surfaces are S3 for the disks, and 
R P 3  for the sphere. At large angular momenta, there exists another type 
of energy surface, S1 X S2. 

For energies between saddle and maxima, the accessible area of configura- 
tion space has two holes. The maxima are stable merry-go-round motion. 
At intermediate angular momenta, there is still a fourth type of energy 
surface, K3. There the accessible area has three holes. The saddle points 
correspond to  unstable merry-go- round motion. The bifurcation diagram 
associates each combination of parameters with an energy surface. 

TORI AND THEIR BIFURCATIONS 

As the Kovalevskaya top is an integrable system, the energy surfaces are 
foliated by tori. We choose a certain combination of parameters. A typical 
trajectory densely fills a torus in phase space. Self-intersections cannot be 
avoided in the projection onto the space of angular momenta. - The inside 
of the torus is dark, the outside light. Tori may be characterized by a third 
constant of motion, the Kovalevskaya constant. 

The maximum value of the Kovalevskaya constant corresponds to a simple 
motion. The trajectory is periodic in the reduced phase space. In projection 
onto the space of angular momenta it is but a line. 

Upon lowering the Kovalevskaya constant, we obtain the generic tori of the 
system. At a critical value of the constant, the tori degenerate to  form a 
separatrix. Its center is formed by an unstable periodic orbit. The motion 
leaves it along the separatrix. 

On the other side of the separatrix, there exists a symmetric pair of tori. 
A bifurcation has taken place. After that,  the tori change continuously 
again. At the minimum value of the constant, they degenerate and become 
stable periodic orbits. The corresponding motion in full phase space is 
quasiperiodic. 

The animation gives a survey on the foliation of the energy surface by tori. 
As long as they change continuously, they are the same color. 



Such families of tori may be represented as edges of a graph. The height of 
a point in the graph indicates the value of the Kovalevskaya constant. End 
points correspond to stable, branch points to unstable isolated periodic 
orbits. 

The graphs change not only at bifurcations of the energy surface, but also 
a t  bifurcations of periodic orbits. This gives rise to further lines in the 
bifurcation diagram. 

Regions with the same kind of foliation are given a letter. At the transition 
from B to  A, the green families disappear in a pitch fork bifurcation of their 
stable periodic orbits. 

In A, the energy surface is foliated by a single family of tori. There exist 
two stable orbits as end points of this one family. 

Phase C shares with A and B the same energy surface S3. Out of a tangent 
bifurcation, a new family of tori appears, the blue tori. The orange region 
is bounded by unstable orbits. The familiar green tori end in a minimum. 

Three edges meet in the upper branch point. The red and blue tori merge 
in the separatrix, the center of which is formed by a hyperbolic periodic 
orbit. 

On the other side of the separatrix, we have the orange tori. The lower 
branch point is of the same type except we traverse it in the opposite 
direction. The orange family ends in the separatrix. Its center is again a 
hyperbolic orbit. 

The two green tori on the other side are related by a symmetry. The tran- 
sition from C to D involves a bifurcation of the energy surface. Red and 
blue meet here in a different way: two symmetric yellow tori emerge. At 
another separatrix, they transform into the familiar green tori. 

Four edges meet in the upper branch point. Red and blue end up in two 
hyperbolic orbits which are connected by a separatrix. On the other side, 
there are two symmetric orbits. 

In the lower part, we observe twice the third type of branch point where 
two edges meet. The two yellow families end up in two separatrices, each 
of which contains an inverse hyperbolic orbit. On the other side of each 
separatrix, there is again only one torus. 

At the transition to E, the blue family disappears in a pitchfork bifurcation. 
The red tori transform directly into the yellow, whose transition into the 
green type is the same as in D. 



At the upper branch point, there are again three edges meeting; the lower 
has not changed with respect to D. In phase F, the energy surface is S1 X S2. 

The stable red torus splits into two symmetric yellow tori at the separatrix. 
They end up in stable periodic motions. 

Graph F consists of only three families of tori. Consider now the real motion 
corresponding to  the upper end of the graph. Periodicity in the reduced sys- 
tem means synchrony between rotational and oscillatory motion. The total 
motion is quasiperiodic due to precession. The branch point corresponds 
to a similar motion in almost upright position, but this one is unstable. 

The two lower endpoints correspond to two stable periodic motions. Their 
only difference is an exchange of the two symmetric weights. 

There is one point in parameter space where the four different types of 
energy surface meet. Its neighborhood is particularly complicated. In region 
H, the red torus develops into two yellow ones; these are not stable in the 
end, but split again into two tori each. The violet families are closely related 
to the merry-go-round motion. 

In phase I, the topology of the energy surfaces is the most complicated. 
The accessible region in configuration space is a sphere with three holes. 
The sequence of bifurcations is the same as in H. The graph of I, except 
for colors, is like that of H. 

Poincar6 had the idea to intersect the energy surfaces, and thereby to obtain 
a comprehensive picture of their foliation. We show this for S3 which is 
represented here as a ball in R3. Its foliation is particularly simple in phase 
A because there is only a single family of tori to fill the S3 ball. 

A torus from the neighborhood of a stable orbit is a thin tube. A second 
torus from near the other periodic orbit is entangled with the first. The 
colors serve here to distinguish the tori. 

Tori further away from the stable orbits enclose the thinner ones; in the 
central part of the family, they grow fairly big. We get an impression of 
how the set of all tori fills the ball representing S3 in R3. In contrast to the 
projection onto the space of angular momenta, this representation of tori 
is free from self-intersection. 

All tori are intersected by a two-dimensional sphere inside the ball. This 
surface of section corresponds to the plane, shown earlier, that contains the 



critical points of the effective potential. 

The Poincark section proper is the restriction of this picture to the surface of 
the sphere, but it is instructive to look inside the sphere to get an impression 
of the foliation. 

More complicated foliations of the S3 are found in phases B, C, and J. In 
B the tori of three families are mutually entangled. 

Some distance away from the stable periodic orbit: a torus with a large 
Kovalevskaya constant. The green torus is taken from near the separatrix 
between red and green. Its symmetric partner is entangled with both. In 
between there is the unstable periodic orbit. 

A torus from the red family, closer to the separatrix, embraces the two green 
tori. To illustrate the transition at the separatrix, the embracing torus is 
made transparent. We discard half of S3 by means of a Poincar6 section, 
and consider the foliation at the interior. 

Phase C has four stable and two unstable periodic orbits. We choose tori 
from the neighborhoods of the stable orbits, colors corresponding to the 
graphs. Intersecting the tori, we take a look a t  the foliation. The essential 
information is already contained in the surface. 

The Poincark section is now shown in planar projection, and with continu- 
ous coloring. The colors correspond to the families of tori. Their brightness 
increases with K. The stable periodic orbits are the light and dark centers. 
Separatrices are recognizable as color discontinuities. Intersections of such 
discontinuities are unstable periodic orbits. 

For constant values of the energy, all Poincar6 section are now shown in 
succession. At low energy, there is only one type of foliation. With increas- 
ing angular momentum, the surface of section shrinks to the point of a 
sleeping top in hanging position. At a larger value of the energy, we have 
two topologically different energy surfaces, RP3 and S3, and four different 
types of foliation. 

In D the surface of section is a torus. Bifurcation of the energy surface. In 
C: a sphere. Blue disappears in a tangent bifurcation. 

Phase B: green disappears in a pitchfork bifurcation. 

Phase A: at high values of energy we have three different types of energy 
surface and six phases of of different foliation. 

Phase D: at zero angular momentum the section is symmetric. Blue disap- 



pears in a pitch fork bifurcation. 

Phase E: period doubling bifurcation, violet emerges. 

Phase H: bifurcaton of the energy surface. The surface of section decays 
into two spheres. 

Phase G: green and violet disappear in a pitch fork bifurcation. 

Phase F: bifurcation of the energy surface. 

Phase A: the surface of section is only one sphere. In the central part of 
parameter space, the energy surface changes at each transition. 

Phase H: in the constriction at the boundary the upright sleeping top. 

Phase J: a t  the constriction in violet the stable merry-go-round motion. 

Phase I: in the vanishing small spheres the unstable merry-go-round motion. 

Phase B. 

BACK T O  T H E  TOP 

Let us now retrace the levels of abstraction - back t o  the top: the Poincar6 
surface of section, an intersected torus, the same torus as a whole, its pro- 
jection into the space of angular momenta, a generating trajectory, the 
same trajectory in configuration space, the Kovalevskaya top in the corre- 
sponding initial configuration. 

Wortlaut des gesprochenen Kommentars5 

Die Kreiselbewegung ist eines der grofien Themen der klassischen Mechanik. 
Es geht darum, die Bewegung eines starren Korpers zu verstehen, der in 
einem Punkt fixiert ist, hier im Mittelpunkt der cardanischen Aufhangung. 

Euler und Lagrange konnten die Kreiselgleichungen fur zwei seither beriihm- 
te  Spezialfalle losen: fur den kraftefreien Kreisel, bei dem der feste Punkt 
mit dem Schwerpunkt ubereinstimmt, und fur den symmetrischen schweren 
Kreisel, bei dem zwei Tragheitsmomente gleich sind und der Schwerpunkt 
auf der Symmetrieachse liegt. 

Im allgemeinen ist die Kreiselbewegung nichtintegrabel, chaotisch. Doch 
fand Sonja Kowalewskaja noch einen dritten und letzten Fall, der sich 

'Die ~berschriften in KAPITALCHEN entsprechen den Zwischentiteln im Film. 
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vollstandig integrieren laflt. 

Die russische Mathematikerin Sonja Kowalewskaja erhielt 1888 den Prix 
Bordin der Pariser Akademie. In ihrer Preisschrift prasentierte sie die voll- 
standige Losung fur das Problem des Kreisels mit zwei gleichen Tragheits- 
momenten und einem dritten, halb so grofien, wobei der Schwerpunkt nicht 
auf der Symmetrieachse, sondern in der Ebene der gleichen Tragheitsmo- 
mente liegt. 

Dieser Kreiselkorper ist nach Kowalewskajas Vorschrift gebaut. Allerdings 
ist zur physikalischen Realisierung eines festen Punktes noch ein Rahmen 
hinzugefiigt. Der Rahmen macht dieses System chaotisch. 

Unser Ziel ist die Untersuchung und Klassifikation der moglichen Bewe- 
gungstypen des integrablen Kowalewskaja-Kreisels, also der mathemati- 
schen Idealisierung dieses realen Modells ohne Rahmen und ohne Reibung. 

Dieses Computermodell bewegt sich entsprechend den Losungen der Bewe- 
gungsgleichungen des Kowalewskaja-Kreisels. 

BEWEGUNGEN BE1 NIEDRIGER ENERGIE 

Bei niedriger Energie dominiert die Schwerkraft. Den drei Freiheitsgraden 
entsprechen drei reine Formen der Bewegung: 

Rotation in stabiler Hangelage um die Hauptachse, auf der der Schwerpunkt 
liegt. 

Pendelbewegungen um die zweite Hauptachse. Das Tragheitsmoment ist 
genauso grofi wie um die erste Achse. 

Pendelbewegungen um die dritte Hauptachse. Das Tragheitsmoment ist 
halb so grofi. 

Die Pendelbewegungen lassen sich uberlagern. Der typische Fall ist eine 
Mischung aller drei Bewegungen. 

BEWEGUNGEN BE1 HOHER ENERGIE 

Bei hoher Energie spielt die Schwerkraft kaum noch eine Rolle. Die Rotation 
um die Achse mit kleinem Tragheitsmoment ist stabil. Die Stellung der 
Drehachse im Raum ist beliebig. 

Bei Rotation um die erste Hauptachse bewirkt die verbleibende Schwerkraft 
eine Prazessionsbewegung. Liegt der Schwerpunkt zu hoch, ist die Rotation 
um diese Achse instabil. 



Fur die mathematische Analyse ist die Wahl geeigneter Koordinaten erfor- 
derlich. Der Konfigurationsraum ist SO(3). Es liegt nahe, die Lage der drei 
Haupttragheitsachsen 

des Kreisels in einem raumfesten Koordinatensystem anzugeben. Die Bewe- 
gungsgleichungen sind invariant bezuglich Rotation um die Richtung der 
Schwerkraft. Die vertikale Komponente des Drehimpulses ist eine Erhal- 
tungsgrofie. Die Drehung wird absepariert,der Konfigurationsraum redu- 
ziert. 

Aus der Sicht des mit dem Kreisel mitbewegten Koordinatensystems defi- 
niert die Richtung der Vertikalen eine reduzierte Lage. Sie bewegt sich auf 
einer Kugeloberflache, dem reduzierten Konfigurationsraum S2. 

Zur vollstandigen Beschreibung im reduzierten Phasenraum ist zusatzlich 
die Angabe der Drehimpulse notwendig. 

Relative Gleichgewichtslosungen sind periodische Bewegungen, die im redu- 
zierten Phasenraum als Punkte erscheinen. Sie existieren nur fur bestimmte 
Kombinationen der Parameter Energie h und vertikaler Drehimpulskompo- 
nente 1. 

Bei den einfachsten Gleichgewichtslosungen steckt samtliche Energie in der 
Rotation um die Vertikale.Wir sprechen vom hangenden, schlafenden Krei- 
sel. Diese Bewegung ist stabil. 

Reicht die Energie aus, den Schwerpunkt in die aufrechte Lage zu bringen, 
kann der Kreisel ebenfalls schlafen. Diese Bewegungen liegen auf einer Linie, 
die um die maximale potentielle Energie verschoben ist. Allerdings gibt es 
davon zwei unterschiedliche Typen, die durch eine dritte Linie von relativen 
Gleichgewichtslosungen getrennt werden. In beiden Fallen ist die Bewegung 
instabil. 

Im unteren Teil ist das Gleichgewicht doppelt hyperbolisch. Der Kreisel 
bricht auf unterschiedlichen Richtungen aus seinem Gleichgewicht aus. 

Im oberen Teil ist das Gleichgewicht elliptisch hyperbolisch. Der Kreisel 
verlafit es auf regelmafiigen Spiralbahnen. 

Charakteristisch fiir den Kowalewskaja-Kreisel sind die Gleichgewichtslo- 
sungen auf der dritten Linie, die Karussellbewegungen. Auf dem langen Ast 



sind sie stabil. 

Keine der Haupttragheitsachsen stimmt mit der Richtung der Schwerkraft 
uberein. 

Die instabile Karussellbewegung existiert nur in der Nahe der Spitze. Der 
Schwerpunkt liegt hoher als bei der stabilen Karussellbewegung. 

BIFURKATIONEN DER ENERGIEFLACHEN 

Die relativen Gleichgewichtslosungen markieren Bifurkationen der Ener- 
gieflache des reduzierten Systems. In den vier Gebieten des Bifurkations- 
diagramms ist die Energieflache jeweils eine dreidimensionale Mannigfaltig- 
keit, deren Topologie vom zuganglichen Teil der Konfigurationsraumkugel 
abhangt. 

Dort fullt eine Bahn eine zweidimensionale Flache aus. Alle derartigen 
Flachen - bei gegebenen Werten von Energie und Drehimpuls - werden 
begrenzt durch eine Niveaulinie des effektiven Potentials. Der hangende 
schlafende Kreisel entspricht dem Minimum des Potentials im Sudpol der 
Kugel. Der Nordpol entspricht dem aufrecht schlafenden Kreisel. 

Die kritischen Punkte des effektiven Potentials entsprechen den relativen 
Gleichgewichtslosungen. Sie liegen alle in einer Ebene, die wir spater als 
Poincar4 Schnittebene verwenden werden. 

Bei kleiner Energie begrenzen die Niveaulinien immer eine Scheibe. Bei 
hoher Energie ist die gesamte Kugeloberflache zuganglich. Fiir kleine Dre- 
himpulse sind dies die einzigen beiden Moglichkeiten. Fur die Scheiben sind 
die Energieflachen S3, fur die Kugel RP3. Bei groDen Drehimpulsen gibt es 
eine neue Energieflache: S' X S2. 

Fur Energien zwischen Sattelpunkt und Maxima hat der zugangliche Be- 
reich zwei Locher. Diese Maxima entsprechen stabilen Karussellbewegun- 
gen. Bei mittleren Drehimpulsen gibt es als vierten Typ von Energieflachen 
noch K3. Dort hat der zugangliche Bereich drei Locher. Die Sattelpunk- 
te entsprechen den instabilen Karussellbewegungen. Das Bifurkationsdia- 
gramm ordnet jeder Parameterkombination eine Energieflache zu. 

TORI UND IHRE BIFURKATIONEN 

Die Energieflachen sind durch Tori geblattert, da der Kowalewskaja-Kreisel 
ein integrables System ist. - Wir wahlen eine bestimmte Parameterkombina- 
tion. Eine typische Trajektorie im Phasenraum fullt einen Torus dicht aus. 



In der Projektion auf den Raum der Drehimpulse lassen sich Selbstuber- 
schneidungen nicht vermeiden. Das Innere des Torus ist dunkel, das ~u f l e r e  
hell. Die Tori lassen sich durch eine dritte Erhaltungsgrofle, die 
Kowalewskaja-Konstante, charakterisieren. 

Dem maximalen Wert der Kowalewskaja-Konstanten entspricht eine einfa- 
che Bewegung. Im reduzierten Phasenraum ist die Trajektorie periodisch. 
In der Projektion auf den Raum der Drehimpulse ist sie nur eine Linie. 

Verringern wir die Kowalewskaja-Konstante, so erhalten wir die generischen 
Tori des Systems. Bei einem kritischen Wert der Konstanten entarten die 
Tori zu einer Separatrix. In deren Zentrum liegt eine instabile periodische 
Bahn. Der Kreisel verlaflt sie entlang der Separatrix. 

Auf der anderen Seite der Separatrix existieren zwei zueinander symmetri- 
sche Tori. Es hat eine Bifurkation stattgefunden. Die Tori verandern sich 
danach wieder kontinuierlich. Beim minimalen Wert der Konstanten entar- 
ten sie zu stabilen periodischen Orbits. Die zugehorige Bewegung im vollen 
Phasenraum ist quasiperiodisch. 

Die Animation gibt einen flberblick uber die Blatterung der Energieflache 
durch Tori. Solange sie stetig auseinander hervorgehen, tragen sie die glei- 
che Farbe. 

Solche Familien von Tori lassen sich als Kanten eines Graphen darstellen. 
Die Hohe eines Punktes im Graphen gibt den Wert der Kowalewskaja- 
Konstanten an. Endpunkte entsprechen stabilen, Verzweigungspunkte in- 
stabilen isolierten periodischen Orbits. 

Die Graphen verandern sich nicht nur bei Bifurkationen der Energieflache, 
sondern auch bei Bifurkationen der periodischen Orbits. Dies gibt Anlafi 
zu weiteren Linien im Bifurkationsdiagramm. 

Bereiche gleichartiger Blatterung der Energieflache werden durch Buch- 
staben markiert. Beim ubergang von Bereich B nach A verschwinden die 
grunen Familien in einer Pitch-Fork-Bifurkation ihrer stabilen periodischen 
Orbits. 

In A wird die Energieflache durch nur eine Familie von Tori geblattert. Hier 
gibt es zwei stabile Orbits als Endpunkte einer Familie von Tori. 

Der Bereich C hat wie A und B die Energieflache S3. AUS einer Tangenten- 
Bifurkation ist eine neue Familie von Tori entstanden: die blauen Tori. Der 
orange Bereich ist von instabilen Orbits begrenzt. Die bekannten grunen 
Tori enden in einem Minimum. 



Im oberen Verzweigungspunkt treffen drei Kanten zusammen. Die roten 
und blauen Tori verschmelzen zu der Separatrix. In deren Zentrum sitzt 
ein hyperbolischer periodischer Orbit. 

Auf der anderen Seite der Separatrix liegen die orangefarbenen Tori. Der 
untere Verzweigungspunkt ist vom selben Typ, er wird nur umgekehrt 
durchlaufen. Die orange Familie endet in der Separatrix. In deren Zentrum 
liegt wieder ein hyperbolischer Orbit. 

Die zwei grunen Tori auf der anderen Seite sind durch eine Symmetrie auf- 
einander bezogen. Beim ubergang von C nach D findet eine Bifurkation der 
Energieflkhe statt. Rot und Blau treffen hier auf andere Weise zusammen: 
Zwei symmetrische gelbe Tori entwickeln sich. An einer weiteren Separatrix 
gehen sie in die bekannten grunen Tori uber. 

Im oberen Verzweigungspunkt treffen vier Kanten zusammen. Rot und Blau 
treffen sich hier in zwei hyperbolischen Orbits, die durch eine Separatrix 
verbunden sind. Auf der anderen Seiten liegen zwei zueinander symmetri- 
sche Tori. 

Im unteren Teil sehen wir zweimal den dritten Verzweigungstyp. Zwei Kan- 
ten treffen aufeinander. Die zwei gelben Familien gehen in zwei Separatrizen 
uber, die je einen invers hyperbolischen Orbit enthalten. Auf der anderen 
Seite der Separatrizen gibt es jeweils auch nur einen Torus. 

Beim ubergang nach E verschwindet die blaue Familie in einer Pitch-Fork- 
Bifurkation. Die roten Tori gehen also direkt in die gelben uber; deren 
tlbergang zu den grunen ist derselbe wie in D. 

Bei der oberen Verzweigung treffen sich wieder drei Kanten, die untere hat 
sich gegenuber D nicht verandert. Im Bereich F ist die Energieflache S1 X S2. 

Der stabile rote Torus spaltet an der Separatrix in zwei symmetrische gelbe 
Tori auf. Beide enden in stabilen periodischen Bewegungen. 

Graph F besteht lediglich aus drei Familien von Tori. Betrachten wir die 
reale Bewegung, die zum oberen Endpunkt des Graphen gehort. Die Pe- 
riodizitat des Orbits im reduzierten System bedeutet, dafi Eigenrotation 
und Nutation synchron verlaufen. Die Prazession macht die Gesamtbewe- 
gung quasiperiodisch. Der Verzweigungspunkt entspricht einer ahnlichen 
Bewegung in fast aufrechter Stellung, die allerdings instabil ist. 

Den beiden unteren Endpunkten entsprechen zwei stabile periodische Be- 
wegungen. Sie unterscheiden sich nur durch eine Vertauschung der beiden 
symmetrischen Gewichte. 



Es gibt einen Punkt im Parameterraum, an dem die Bereiche unterschiedli- 
cher Energieflachen zusammenstofien. Seine Umgebung ist besonders kom- 
pliziert. Im Bereich H entstehen aus dem roten Torus an der Verzweigung 
zwei gelbe. Diese sind am Ende aber nicht stabil, sondern spalten erneut 
in zwei Tori auf. Die lila Familien sind grundsatzlich mit der Karussellbe- 
wegung verknupft. 

Im Bereich I ist die Topologie der Energieflache am kompliziertesten. Der 
zugangliche Bereich im Konfigurationsraum ist eine Sphare mit drei Lo- 
chern. Die Bifurkationen sind in ihrer Abfolge wie in H. Der Graph von I 
ist daher, abgesehen von der Farbgebung, wie der von H. 

Poincarbs Idee, die Energieflachen zu schneiden, erlaubt es, die Blatterung 
in einem Bild zu erfassen. Wir zeigen dies fur die S3, die im folgenden 
als Ball im EX3 dargestellt wird. Fur A ist ihre Blatterung besonders ein- 
fach, denn die S3 in A wird von einer einzigen Familie von Tori vollstandig 
ausgefullt . 

Ein Torus in der Nahe eines stabilen Orbits ist ein dunner Schlauch. Ein 
zweiter Torus aus der Nahe des anderen periodischen Orbits ist mit dem 
ersten verschlungen. Die Farben dienen hier zur deutlichen Unterscheidung 
der Tori. 

Tori in weiterer Entfernung von den stabilen Orbits schliefien die kleineren 
Tori vollstandig ein. Je weiter ein Torus in der Mitte der Familie liegt, 
desto grofier ist er. Die Menge aller Tori fullt so den Ball, der die S3 im R3 
reprasentiert, dicht aus. Diese Darstellung ist im Gegensatz zur Projektion 
auf den Raum der Drehimpulse frei von Selbstuberschneidungen. 

Alle Tori werden von einer zweidimensionalen Sphare im Inneren des Balls 
geschnitten. Diese Schnittflache entspricht der fruher gezeigten Ebene durch 
die kritischen Punkte des effektiven Potentials. 

Der eigentliche Poincarb-Schnitt ist die Beschrtinkung des Bildes auf die 
Oberflache. Der Blick in das Innere der Schnittflache zeigt die Blatterung 
einer Halfte der Energieflache. 

Kompliziertere Blatterungen der S3 finden sich in den Bereichen B, C und 
J. Fur B sind die Tori der drei Familien miteinander verschlungen. 

In einigem Abstand vom stabilen periodischen Orbit ein Torus mit grofier 
Kowalewskaja-Konstante. Der grune Torus ist relativ nah an der Separatrix 



zwischen rot und grun. Der symmetrische Partner ist rnit beiden verschlun- 
gen. Dazwischen liegt der instabile periodische Orbit. 

Ein Torus der roten Familie, der naher an der Separatrix liegt, schliefit die 
beiden grunen Tori ein. Um zu sehen, wie der ubergang an der Separatrix 
stattfindet, ist der einhullende Torus durchsichtig gezeigt. Wir schneiden 
die Halfte des Bildes rnit einem Poincark-Schnitt weg und betrachten die 
Blatterung des Innenraumes. 

Im Bereich C gibt es vier stabile periodische Orbits und zwei instabile. 
Entsprechend den Farben des Graphen wahlen wir Tori in der Nahe der 
stabilen Orbits. Wir schneiden die Tori und betrachten die Blatterung. Die 
wesentliche Information ist bereits auf der Oberflache zu sehen. 

Der Poincark-Schnitt wird nun in Projektion auf eine Ebene und rnit kon- 
tinuierlicher Farbgebung gezeigt. Die Farben entsprechen den Familien der 
Tori. Die Helligkeit wachst rnit K. Die stabilen periodischen Orbits sind die 
hellen und dunklen Zentren. Die Separatrizen sind deutlich als Farbsprunge 
zu erkennen. Schnittpunkte von Separatrizen sind instabile periodische Or- 
bits. 

Fur konstante Werte der Energie zeigen wir nun alle PoincarBSchnitte in 
Folge. Bei niedriger Energie gibt es nur einen Typ der Blatterung. Mit 
zunehmenden Drehimpuls schrumpft die Schnittflache auf den Punkt eines 
stabilen schlafenden Kreisels. 

Fur einen grijfieren Wert der Energie durchlaufen wir zwei Gebiete unter- 
schiedlicher Energieflachen, R P 3  und S3, und vier Gebiete rnit verschiedener 
Blatterung . 
In D ist die Schnittflache ein Torus - Bifurkation der Energieflache - in C 
eine Kugel. Blau verschwindet in einer Tangenten-Bifurkation. 

Bereich B: Grun verschwindet in einer Pitch-Fork-Bifurkation. 

Bereich A: Bei hohen Energien durchlaufen wir drei Gebiete unterschiedli- 
cher Energieflachen und sechs Gebiete rnit verschiedener Blatterung. 

Bereich D: Bei Drehimpuls null ist der Schnitt noch symmetrisch. Blau 
verschwindet in einer Pitch-Fork-Bifurkation. 

Bereich E: Periodenverdopplungs- Bifurkation, Lila entsteht. 

Bereich H: Bifurkation der Energieflache. Die Schnittflache zerfallt in zwei 
Kugeln. 

Bereich G: Grun und Lila verschwinden in einer Pitchfork Bifurkation. 



Bereich F: Bifurkation der Energieflache. 

Bereich A: Die Schnittflache ist nur noch eine Kugel. Im mittleren Teil des 
Parameterraumes andert sich die Energieflache bei jedem Clbergang. 

Bereich H: in der Abschnurung am Rand der aufrecht schlafende Kreisel. 

Bereich J: bei der Abschnurung in lila die stabilen Karussellbewegungen 

Bereich I: beim Verschwinden der Kiigelchen die instabilen Karussellbewe- 
gungen. 

Bereich B. 

Wir verfolgen nun die Stufen der Abstraktion zuruck zum Kreisel: der Poin- 
c a r 6  Schnitt, ein angeschnittener Torus, derselbe Torus voll, seine Projek- 
tion in den Raum der Drehimpulse, eine erzeugende Trajektorie, dieselbe 
Trajektorie im Konfigurationsraum, der Kowalewskaja-Kreisel in der An- 
fangsstellung der Trajektorie. 
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Scientific responsibility for the  film content lies with: Prof. Dr. P. Richter, 
Dr. H. Dullin, Dr. A. Wittek, Institut fur Theoretische Physik, Universitat 
Bremen. Filmed, edited and published by Institut fur den Wissenschaftlichen 
Film, Gottingen, E. Kopp; graphics/animation: J. Czechowski; camera: 
M. Husgen; video editing: K. Tschinkowitz. 

Film Summary 

Kovalevskaya Top. The film is an attempt to familiarize the viewer with the 
fascinating complexity of the Kovalevskaya top. The dynamics of this third inte- 
grable case of classical rigid body theory is presented on several levels of abstrac- 
tion, starting from real motion of a physical model and an analogous computer 
simulation of the Kovalevskaya equations of motion. The first abstraction involves 
the separation of a cyclic angular variable, i.e., the transition to a reduced de- 
scription, and the introduction of a six-dimensional (7,l)-phase space with two 
Casimir constants. In the next step, relative equilibria are used to identify bifur- 
cations between different topological types of three-dimensional energy surfaces. 
The third level is concerned with the foliation of these energy surfaces by invari- 
ant tori, and with the identification of critical tori which mark bifurcations in the 
type of foliation. The tori are shown in various 3D projections and in homeomor- 
phic deformations of the energy surfaces. The final step in the analysis uses the 
technique of PoincarC surfaces of section. A comprehensive survey on all possible 
motions is given in terms of animation series where all Poincar6 sections for a 
given energy are shown in succession. 

Inhalt des Films 

Kowalewskaja Kreisel. Der Film mochte den Betrachter mit der faszinieren- 
den Komplexitat des Kowalewskaja-Kreisels vertraut machen. Die Dynamik die- 
ses dritten integrablen Spezialfalls der klassischen Mechanik starrer Korper wird 
auf mehreren Ebenen der Abstraktion dargestellt. Am Anfang steht die reale 
Bewegung eines physikalischen Modells und eine analoge Computersimulation 
der Bewegungsgleichungen von Kowalewskaja. Die erste Abstraktion betrifft die 
Abtrennung einer zyklischen Winkelvariable, d. h., den ubergang zu einer redu- 



zierten Beschreibung in einem sechsdimensionalen (7,  l)-Phasenraum mit zwei 
Casimir-Konstanten. Im nachsten Schritt werden mit Hilfe der relativen Gleich- 
gewichte die Bifurkationen in der Topologie der dreidimensionalen Energieflachen 
identifiziert. Auf der dritten Stufe wird die Blatterung dieser Energieflachen durch 
invariante Tori betrachtet, und es werden die kritischen Tori analysiert, bei de- 
nen sich die Art dieser Blatterung andert. Die Tori werden in unterschiedlichen 
3D-Projektionen gezeigt, wie auch in homoomorphen Bildern der Energieflachen. 
Im letzten Schritt wird dann die Technik der Poincark-Schnitte benutzt, urn alle 
moglichen Bewegungen zu derselben Energie in einer Animation zu zeigen. 

Re'sume' du film. 

Kovalevskaya Top. Le film essaye de familiariser le spectateur avec la complexitk 
fantastique de la toupie de Kowalevski. La dynamique de ce troisieme cas intgrable 
du mouvement d'un corps solide pesant autour d'un point fixe est prksentk sur 
plusieurs niveaux d'abstraction. On commence avec le mouvement real d'un 
modele physique, et une simulation d'ordinateur des kquations diffkrentielles de 
Kowalevski. La premiere abstraction est la skparation d'une variable angulaire 
cyclique, c'est-a-dire, la transition une description rkduite et l'introduction 
d'un espace de phase (7'1) de six dimensions, avec deux constants Casimir. 
Le deuxieme pas est l'analyse des kquilibres relatives ou les bifurcations de la 
topologie des surfaces d'knergie se passent. Le troisieme niveau s'occupe de la 
foliation des surfaces d'knergie par des tores invariables, et des tores critiques 
oh cette foliation change de charactere topologique. Les tores sont montrks en 
plusieurs 3D-projections, et en dkformations homomorphiques des surfaces 
d'knergie. Le dernier pas de l'analyse utilise la technique des surfaces de section 
de Poincark. Une synopse complete de tous les mouvements possibles est offerte 
par des series animkes ou toutes les sections de Poincark paraissent en succession. 




