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Abstract

We predict new populations of trapped nonequatorial (\halo") orbits of

charged dust grains about an arbitrary axisymmetric planet. Simple equi-

librium and stability conditions are derived, revealing dramatic di�erences

between positively and negatively charged grains in prograde or retrograde

orbits. Implications for the Cassini mission to Saturn are discussed.
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With the Cassini spacecraft en route to Saturn to perform detailed in situ measurements

of charged dust grains, it is important to understand the nonlinear dynamics of their orbital

motion [1-5]. Northrop and Hill [6], and Mendis et al. [7] analyzed the linear stability of

individual grains, but only for equatorial equilibria. We report here a complete equilibrium

and stability analysis for charged dust grains of arbitrary position and velocity about an

axisymmetric planet. The results yield quantitative predictions concerning the possible size

and charge of dust grains reaching the Cosmic Dust Analyzer (CDA) [8] aboard the Cassini

Orbiter. Stable halo orbits (those encircling the planet above or below the equatorial plane)

are found to be of three types; positively charged grains in prograde orbits at large orbital

radius and retrograde orbits at any radius, and prograde negatively charged grains at very

high latitudes. The results suggest that positively charged grains in retrograde orbits are

the most likely to be observed by the CDA.

Our physical model and methodology closely parallel those employed in Howard et al.

[9]: Keplerian gravity, co-rotating magnetic �eld (taken to be an aligned centered dipole),

and induced electric �eld. Planetary oblateness, radiation pressure, and plasma drag are

neglected. As we shall see, the mixture of gravitational and electromagnetic forces generates

a very rich dynamical behavior, which will be reported in detail elsewhere [10]. Equilibria

are found as the critical points of an e�ective potential U e, with local nonlinear (Lyapunov)

stability boundaries given by detD2U e = 0. The critical points are given by the zeros of a

quintic polynomial in the radial coordinate r, whose double zeros correspond to the zeros of

detD2U e, leading to surprisingly simple explicit stability boundaries.

For a spherical dust grain of uniform density �m (g=cm3), radius a� (microns) and a

surface potential of � (V olts),

q

m
=

106�

4��ma2�
esu=g: (1)

We shall take �m = 1 g=cm3. Typical values of � for Jupiter and Saturn lie in the range

�20V < � < +10V [11]. For a given planet and equilibrium radial position r, stability

depends on q=m alone, conveniently measured by the parameter �̂ = �=a2
�
, which we shall
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express as a pure number. Since the potential is determined by the ambient plasma, �̂

depends only on the grain radius a�. An upper bound on �̂ is thus a lower bound on a�.

Roughly speaking, grains with a� > 1 are gravity dominated, while those with a� < 1 are

dominated by electromagnetic forces.

Equilibria.| Consider a dust grain of mass m and charge q orbiting about an axisym-

metric planet. As in [9] the motion may be described in an inertial frame by an e�ective

potential, in gaussian units and cylindrical coordinates

U e =
1

2m�2

�
p� �

q	

c

�2

+ U +
q


c
	 (2)

where U(�; z) is the gravitational potential, 	(�; z) is the magnetic stream function, and

p� = m�2! + q	=c is the conserved canonical momentum, ! is the orbital frequency, and


 is the planetary rotation rate. Here we assume Keplerian gravity, U = ��m=r, with

� = GMs, r =
p
�2 + z2, and a centered dipole �eld, for which 	 = 
�2=r3, where 
 =

qB0R
3

p
=c measures the dipole strength, with B0 the magnetic �eld on the planetary equator.

Measuring distances in units of the planetary radius, Rp, (2) becomes

U e =
1

2�2

 
p� �

!c�
2

r3

!
2

�
!2

k

r
+

!c�

2

r3
(3)

where !c = qB0=mc is the cyclotron frequency, and !k =
q
�=R3

p
is the Kepler frequency,

both evaluated on the planetary equator, and now p� = �2! + !c�
2=r3.

Equilibria (�0; z0) are given by the simultaneous solutions of U e

�
= U e

z
= 0, which for

z0 6= 0 reduce to

r5!2 + !c(! � 
)(2r2 � 3�2) = !2

k
r2 (4)

3!c(! � 
)�2 + !2

k
r2 = 0 (5)

where p� has been eliminated in favor of !. It follows immediately from (5) that the orbital

frequency ! 6= 
, i.e., nonequatorial synchronous orbits are impossible. Furthermore, we see

that it is necessary that ! < 
 for positive charge and ! > 
 for negative charge. Note that
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the latter inequalities also hold for equatorial orbits [9]; the new fact of life is that exact

synchronicity is unattainable for nonequatorial orbits. More precise conclusions about the

existence and stability of nonequatorial equilibria depend on the precise questions asked.

First suppose it is desired to know whether a stable equilibrium orbit exists for some �̂

(and therefore !c) at a speci�ed location (�0; z0). Eliminating !c between (4) and (5) gives

!2 =
2!2

k

3�20r0
: (6)

Both signs of ! are possible. The requisite value of �̂(!c) (if it exists) is then given by

!c =
r3
0
!2

2(
� !)
: (7)

For positive charge this is automatically satis�ed for negative (retrograde) !, but demands

! < 
 for positive (prograde) !. For negative charge we need ! > 
 > 0, which excludes

retrograde orbits. There are no retrograde nonequatorial equilbria for negative charge; for

positive charge either sense is possible.

Now (7) can be written as a quadratic in !, similar to that previously found for equatorial

orbits:

r3
0
!2 + 2!c(! � 
) = 0: (8)

Thus, we can take the point of view that r0 and !c are speci�ed and seek conditions for an

equilibrium somewhere on the sphere r = r0. The solutions of (8) are

r3
0
! = �!c �

q
!2
c
+ 2r30
!c (9)

subject to the constraint � < r. Equation (6) then implies !2 � !�2 = 2!2

k
=3r3

0
, with

corresponding !c given by (7), which yields (!� > 0)

!2

k
=3(
 + !�) � !c � !2

k
=3(
� !�): (10)

Figure 1 shows these solutions for r0 = 2. For !c > 0 and j!j > !� there is a pro-

grade/retrograde pair; for �2r3
0

 < !c < 0 there are no equilibria, and for !c < �2r3
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there are two possible prograde equilibria. Since !� < 
 there are no constraints on q=m.

For large q=m there are two asymptotic limits; ! � 
 and ! � �
� 2!c=r
3

0
.
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Stability.| In general an equilbrium (�0; z0) is Lyapunov stable if both detD2U e > 0

and trD2U e > 0 [12], with stability boundaries given by detD2U e = 0. Just as for the

equatorial equilibria we can generate a stability diagram with r0=Rp plotted vs. !c=!k. The

corresponding values of �0 and z0 (if they exist) then follow from (6). As a preliminary step,

let us reduce the number of parameters by rescaling r̂ = r=�; �̂ = �=�, with scale length

� = p�=
, which gives

U e =
�

2�2
(1�

�2

r3
)2 �

1

r
+
��2

r3
(11)

where we have dropped the hats on � and r and introduced the dimensionless parameters

� = p3
�
=�m2
; � = 

=�m. The equilibrium conditions are then

�(r3 � �2)(�5 + �2r2 � 3�4)� ��4r3(2r2 � 3�2) = �4r5 (12)

r5 + 3�(r3 � �2)� 3��2r3 = 0 (13)

where the independent variables are now � and r, rather than � and z. The next step is to

eliminate � between (12) and (13) to obtain the quintic (hats back on)

P5(r̂) = 2�r̂5 � 9��2r̂4 + 12��r̂3 + �r̂2 + 6�2 = 0 (14)

with the constraint �̂ < r̂. The quintic can be made to depend on a single parameter by the

further scaling (our last!) ~r = r̂=�:

P5(~r) = 2~r5 � 9�~r4 + 12�~r3 + �~r2 + 6�2 (15)

where � = ��2. The corresponding �-value follows from (13), which can be written

�̂2 =
�3(3� + ~r2)~r3

3(� + ~r3)
: (16)

In general the quintic (15) has two positive real roots. In order that one of these roots be

physically realized it must satisfy the constraint �̂ < r̂.

Now observe that an instability invariably involves the merging of two zeros of P5(~r).

That is, P5(~r) has a double zero whenever detD2U e = 0. Setting the discriminant of P5(~r)
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to zero yields �� = 5=8+13
p
3=36 = 1:250463, at which point ~r� = 3=2+5

p
3=6 = 2:94338.

From the scale length

� =



p�
=

!cRp

�20(! + !c=r
3
0)

(17)

it follows that

~r� =
2


3!2
(! + !c=r

3

0
): (18)

Eliminating ! between (18) and the quadratic (8) then gives

r0 = (A!c=
)
1=3 (19)

where A = 2(5 + 3
p
3), with corresponding orbital frequency ! = (2�

p
3)
.

Figure 2 (a) presents the stability boundaries in the � � r0 plane. For the prograde

branch halo orbits are born on the curve marked pf(pro), where an equatorial orbit su�ers

a pitchfork bifurcation. Note that this boundary has a vertical asymptote when � = 1=3.

For r0 > 3:83Rs this orbit is stable until it reaches the curve labelled sn (pro), where it

undergoes a saddle-node bifurcation (� = ��); for r0 < 3:83Rs all equilibria are unstable.

A representative stable equilibrium is illustrated in Fig 3 (a), which depicts level sets of

U e for r0 = 5 and �̂ = 1200. In this case a rather complex set of global bifurcations

(reconnections) occur as �̂ is varied. The planetary surface is drawn in as a circle of unit

radius. For the retrograde branch the behavior is much simpler. Here halo orbits are born

out of an equatorial pitchfork bifurcation (curve pf (retro)) for all r0 and remain stable ever

after, i.e. nothing happens to them with increasing �̂. A typical stable equilibrium for a

point within the Cassini Division, r0 = 2 and �̂ = 800, is depicted in Fig. 3(b). As shown

in [9], the equatorial stability boundaries (solid curves) are given by the two branches of

�0 =
(6!2

c
)1=3

(!2

k
� 3
!c)2=3

: (20)

For negatively charged grains a similar analysis yields the stability diagram shown in Fig.

2(b). Both modes appear as unstable saddles on the same curve, given by the vanishing of

the determinant of the quadratic (8):
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r0 = (!c=2
)
1=3: (21)

On this curve !1 = !2 = !c=r
3

0
, the local equatorial cyclotron frequency. Equilibria are

given by a quintic similar to (15), which has a double zero at ~r� = 3=2 � 5
p
3=6 for � =

5=8� 13
p
3=36. The resulting stability boundary is, for ! = !1

r0 = (B!c=
)
1=3 (22)

where B = 2(3
p
3 � 5), on which ! = (2 +

p
3)
, and labelled sn(!1) in Fig. 2(a). For

! = !2 there are no stable equilibria. Figure 3(c) shows level sets of U e for r0 = 1:381 and

�̂ = 3000. In this case the small nonequatorial wells coexist with a large equatorial well

extending to large latitude.

Discussion.| These results have important implications for the Cassini mission. For

�xed plasma potential it is easy to locate halo orbits of a given grain size. Taking � =

10 V olts gives the loci of stable equilibria shown in Fig. 4 (a) for a positively charged grain

in a prograde orbit about Saturn. This was done by treating r0 as parameter, solving (8) for

! and getting �0 from (6). The dashed curve corresponds to the inner stability boundary

(21), and has the form �2r = const. The maximum possible stable grain radius for this

value of � is 128 nm:

Figure 4 yields quantitative predictions of what might be observed by the CDA. For

example, Fig. 4 (a) shows that there are no stable positive prograde halo orbits whatever

within a spherical radius of r = 3:83Rs, with only very small grains penetrating to higher

latitudes. Such small grains in prograde orbits are unlikely to be detected by the CDA.

Positive grains in retrograde halo orbits, on the other hand, are stable for all radii, as shown

in Figure 4(b). The high relative velocities of these grains with respect to the Cassini Or-

biter makes them easy to detect by the CDA. Note that in this case (see Fig. 3 (b)) there

are two topologically distinct families of trapped orbits, those which cross the equatorial

plane and true halo orbits trapped near a nonequatorial equilibrium. These two classes have

similar energies and could equally well reach the CDA at a nonequatorial position. However,
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whether re
ecting particles survive repeated midplane crossings depends on equatorial ra-

dius; generally grains outside the main rings (�0 � 2:3Rs) have the best chance of surviving.

Finally, Figure 4(c) presents loci of stable equilbria for prograde negatively charged grains.

In contrast to prograde positive charge, negative halo orbits are seen to be restricted to very

small grains at very high latitudes. In conclusion, it appears that the most likely candidates

for CDA-detectable orbits are to be found among the retrograde positively charged grains.
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FIG. 1. Orbital frequencies !1;2 as functions of !c=!k for r0 = 2:0: Equilibria do not exist on

the dashed part of the right-hand curve (q > 0).
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FIG. 2. Stability diagram for (a) positive charge, (b) negative charge. For positive charge,

prograde orbits are stable in the upper triangular region; retrograde orbits are stable everywhere

to the right of the curve labelled pf(retro). For negative charge only prograde orbits can be stable.

Equilibrium orbits appear on the curve !1 = !2, stabilizing upon crossing the curved labelled sn

(!1).
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FIG. 3. Selected level sets of U e for (a) prograde positive charge, with r0 = 5 and �̂ = 1200;

(b) retrograde positive charge, with r0 = 2 and �̂ = 800; and (c) prograde negative charge, with

r0 = 1:381 and �̂ = 3000.
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FIG. 4. Loci of stable equilibria for stable halo orbits about Saturn for several grain radii and

(a) prograde positive charge, (b) retrograde positive charge, (c) prograde negative charge.
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