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Abstract

Consider a Riemannian metric on a surface, and let the geodesic
flow of the metric have a second integral that is a third degree poly-
nomial in the momenta. Then we can naturally construct a vector
field on the surface. We show that the vector field preserves the vol-
ume of the surface, and therefore is a Hamiltonian vector field. As
examples we treat the Goryachev-Chaplygin top, the Toda lattice and
the Calogero-Moser system, and construct their global Hamiltonians.
We show that the simplest choice of Hamiltonian leads to the Toda
lattice.

1 Introduction

Simple questions about the existence of integrable geodesic flows are still
unresolved. In the review article by Bolsinov, Fomenko and Kozlov [1] a
number of conjectures were stated about integrable geodesic flows on the
torus and the sphere. Integrable systems on these surfaces with linear or
quadratic integral (in the momenta) are well known. But there are only two
systems known with integrals with higher degree: the Goryachev-Chaplygin
case (degree 3) [4] and the Kovalevskaya case for zero angular momentum
(degree 4), both inducing geodesic flows on the sphere. There are no examples
of integrals of more than second degree on the torus.
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The existence of an integral, which is a polynomial in the momenta, nat-
urally leads to a system of partial differential equations. The principal idea
is due to Whittaker [5], although it has to be slightly modified [8]. Let us
consider the integral F being a polynomial in the momenta with unknown
coefficients that depend on the position. F is an integral of the geodesic
flow iff the Poisson bracket of the Hamiltonian H of the geodesic flow and
the integral F identically equals zero. The Hamiltonian of a geodesic flow
is a quadratic polynomial in the momenta. Therefore the Poisson bracket of
H and F is also polynomial in the momenta. Hence each coefficient of this
polynomial must be equal to zero. Thus we have a system of partial differ-
ential equations which is equivalent to the geodesic flow being polynomialy
integrable. If the degree of the integral is N , then the system has N + 2
equations. If we treat the coefficient of the metric as one more unknown
function, then the system has N + 2 unknown functions.

Although it is not at all easy to solve this system, one can prove that
locally the solution always exists. Because of this, it is possible to construct
an integrable geodesic flow with arbitrarily high degree of the integral in a
small disc [7]. But in general all direct attempts to solve the system of partial
differential equations failed.

Birkhoff found that the system yields an additional structure on the sur-
face. He showed that the highest coefficient A of F is a holomorphic function
for the case of quadratic F [2]. This is also true for higher degree integrals.
Under coordinate changes the coefficient A changes like the coefficient of a
holomorphic form. Therefore, in the appropriate coordinates A identically
equals 1. If we substitute 1 for A in the system, then in the case of quadratic
integrals the system can be solved, and the solution gives the geodesic flows
with separated variables.

Recent advances in this field were made by V.V. Kozlov, L.S. Hall, V.N.
Kolokol’tzov, and N.V. Denisova. Kozlov [6] investigated the global behavior
of geodesics. He proved that there are no (at least in the analytical case) inte-
grable geodesic flows on surfaces of genus 2 and more. Hall [8] was extending
the theory to more general Hamiltonian systems. For the case of geodesic
flows in the coordinates in which A = 1, he introduced an auxiliary potential
ψ. The coefficients of F are functions of ψ, and the condition on ψ for the
existence of a third degree integral consists of only one partial differential
equation. Kolokoltzov [9] investigated the structure of the Birkhoff form A
for quadratic integrals of geodesic flows on the sphere. He proved that A is
a polynomial of 3rd or 4th degree, and that the zeros of the polynomial lie
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symmetrically on a circle which goes through infinity if A is a polynomial
of third degree. After covering the sphere by a torus via the appropriate
Weierstrass ℘-function the coefficient A has no zeros. Then it is constant,
and therefore the variables are separated. Thus Kolokoltzov completely de-
scribes quadratically integrable geodesic flows on the sphere. Denisova and
Kozlov in [11] proved that if a metric on the torus reads λ(x, y)(dx2 + dy2),
where x, y are angular coordinates on the torus, and λ is a polynomial in
cos(x), sin(x), cos(y), sin(y), then any polynomial integral in the momenta is
a function of integrals of first and second degree.

In this article we show that the existence of a third degree integral natu-
rally allows the construction of a smooth vector field on the surface, related
to the second highest coefficient B of F . This vector field preserves the Rie-
mannian volume of the surface. Hence it is locally Hamiltonian with respect
to Riemannian volume. If the 1-cohomology group H1(P 2, R) of the surface
P 2 is trivial, then any locally Hamiltonian vector field is globally Hamilto-
nian. We construct the global Hamiltonians (denoted by K) for some known
integrable geodesic flows with third degree integrals.

The paper is organized as follows. In Sec. 2 we introduce the vector field
�λB and prove that the vector field preserves Riemannian volume. In Sec. 3 we

illustrate the theory by way of some examples. Besides the linearly integrable
geodesic flow we treat the case of Goryachev-Chaplygin [4] on S2, the Toda
lattice [17] and the Calogero-Moser system [15]. The latter two systems are
initially defined on R

3, reduction with respect to the total momentum and
restriction to momentum 0 gives a natural system on R

2. In Sec. 4 we prove
that if the metric reads λ(x, y)(dx2 + dy2), and if the Hamiltonian K of

the vector field �λB equals λ2(x, y), then either the geodesic flow is linearly
integrable or the metric coincides with the reduced Toda lattice.

2 Theory

Let P 2 be a smooth surface with a Riemannian metric g. Since the metric
g allows one to identify the tangent and cotangent bundle of P 2, we have
a scalar product and a norm on every cotangent plane. The geodesic flow
of the metric g is the Hamiltonian system with the Hamiltonian H = 1

2
|�p|2,

where �p is the vector of momenta and |.| is the norm.
A geodesic flow is called integrable if it is integrable as a Hamiltonian

system. That is, there exists a function on the cotangent bundle F : T ∗P 2 →
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R such that it is constant on the trajectories of the Hamiltonian system, and
H and F are functionally independent. Recall that two functions are called
functionally independent if their differentials are linearly independent almost
everywhere. The function F is called an integral.

Now suppose our integral is an integral of third degree. That is, in local
coordinates x, y, px, py, where x, y are local coordinates on the surface, px, py

are the corresponding momenta, the integral is a homogeneous polynomial
of third degree in the momenta given by the formula

F (x, y, px, py) = a(x, y)p3
x + b(x, y)p2

xpy + c(x, y)pxp
2
y + d(x, y)p3

y. (1)

Evidently, the degree does not depend on the choice of the coordinates x, y.
Recall that if an integral is a sum of homogeneous polynomials of different

degrees, then each polynomial is also an integral. Since that we consider only
homogeneous polynomials.

There always exists a system of local coordinates x, y on the surface P 2

such that the metric g is given by λ(x, y)(dx2 +dy2), the so called isothermal

coordinates, see e.g. [16]. Consider the complex variable z
def
= x + iy. In this

complex variable the metric g has the form λ(z, z̄)dzdz̄. The Hamiltonian

of the metric is given by 2pp̄/λ(zz̄), where p
def
= (px − ipy)/2 defines the

corresponding momentum.
Let the integral F in the coordinates z, z̄, p, p̄ be given by

F (z, z̄, p, p̄) = A(z, z̄)p3 + B(z, z̄)p2p̄ + B̄(z, z̄)pp̄2 + Ā(z, z̄)p̄3. (2)

Since F is a real-valued function, the coefficient of pip̄j is conjugate to the
coefficient of pj p̄i.

Remark 1. If in coordinates x, y the integral F is given by (1), then B(z, z̄) =
3a(x, y) + c(x, y) + i(b(x, y) + 3d(x, y)).

Proposition. λB is a vector field.

In other words, if we consider a new coordinate system z1, z̄1, rewrite
the metric and the integral in the new coordinates, then the coefficient B
multiplied by λ transforms like a vector field.
Proof. For simplicity consider the linear transformation z = Cz1, where C
is a complex constant. Then the relation between the momenta is given by
p = p1/C. The metric g in the new coordinates z1, z̄1 reads CC̄λ(z, z̄)dz1dz̄1.
Hence, λnew = CC̄λ.
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Now substitute p1/C for p in the formula for the integral. We have

F (z, z̄, p1, p̄1) =
A(z, z̄)

C3
p3

1 +
B(z, z̄)

C2C̄
p2

1p̄1 +
B̄(z, z̄)

CC̄2
p1p̄

2
1 +

Ā(z, z̄)

C̄3
p̄3

1.

Then Bnew = B/(C2C̄). Combining the formula for Bnew with the formula
for λnew, we have, (λB)new = λB/C. The proof for a general transformation
is essentially the same.
Q.E.D.

Theorem 1. The vector field �λB preserves the volume λdx ∧ dy.

Proof. Since the function F is an integral, the Poisson bracket {H, F} is
equal to 0.

{H, F} =
∂H

∂z

∂F

∂p
− ∂H

∂p

∂F

∂z
+

∂H

∂z̄

∂F

∂p̄
− ∂H

∂p̄

∂F

∂z̄

=
1

λ2

{
λ

∂A

∂z̄
p4 +

(
λ

∂A

∂z
+ λ

∂B

∂z̄
+ 3

∂λ

∂z
A +

∂λ

∂z̄
B

)
p3p̄ +

+λ
∂Ā

∂z
p̄4 +

(
λ

∂Ā

∂z̄
+ λ

∂B̄

∂z
+ 3

∂λ

∂z̄
Ā +

∂λ

∂z
B̄

)
p̄3p +

+

(
λ

∂B

∂z
+ λ

∂B̄

∂z̄
+ 2

∂λ

∂z
B + 2

∂λ

∂z̄
B̄

)
p2p̄2

}
. (3)

In order for the homogeneous polynomial {H, F} to be zero, every coefficient
has to be zero. For later use we remark that the coefficients of p4, p̄4 and
p3p̄, pp̄3 are conjugate to each other, and we obtain

0 =
∂A

∂z̄
(4)

0 = λ
∂A

∂z
+ λ

∂B

∂z̄
+ 3

∂λ

∂z
A +

∂λ

∂z̄
B, (5)

such that A has to be a holomorphic function. The coefficient of p2p̄2 is self
conjugate, in particular

0 = λ
∂B

∂z
+ λ

∂B̄

∂z̄
+ 2

∂λ

∂z
B + 2

∂λ

∂z̄
B̄,

or equivalently

0 =
∂(λ2B)

∂z
+

∂(λ2B̄)

∂z̄
. (6)
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This is the condition for the vector field �λB to preserve the volume λdz∧dz̄.
Returning to real coordinates gives the desired result dz ∧ dz̄ = (dx + idy)∧
(dx − idy) = dx ∧ dx + idy ∧ dy − 2idx ∧ dy = −2i(dx ∧ dy).
Q.E.D.

Remark 2. Since �λB is area preserving, there exists a real valued Hamiltonian
K(x, y) such that with respect to the symplectic structure λdx ∧ dy we have

�λB = −2i
∂K

∂z̄

1
λ

. (7)

In real variables x, y instead of (7) we have

�λB =
1
λ

(
∂K

∂y
,−∂K

∂x

)
. (8)

The expression for �λB in terms of the coefficients of the integral (1) with
respect to the coordinates x, y is �λB = (3a + c, b + 3d)λ.

Remark 3. If we find a solution (λ(z, z̄), A(z, z̄), B(z, z̄)) of the equations (4-6),
then the function (2) is an integral for the geodesic flow of the metric λ(z, z̄)dzdz̄.
But we should not forget that if λ ≤ 0, then the metric is not positive definite,
and that possibly there exists an integral of degree less than 3.

3 Examples

3.1 Linearly integrable geodesic flows

Let the geodesic flow of a metric g admit an integral linear in the momenta.
Then from Birkhoff’s results [2], see also [9], it easily follows that in ap-
propriate coordinates x, y the metric has the form f(x)(dx2 + dy2), and a
linear integral is given by F (x, y, px, py) = C0py, where C0 �= 0 is a constant.
The Hamiltonian of the geodesic flow is H(x, y, px, py) = 1

2
(p2

x + p2
y)/f(x).

Using the constancy of py we can construct an integral of the third degree
F3(x, y, px, py) = C1p

3
y + C2pyH(x, y, px, py). If the surface P 2 is closed, and

if the metric is not the metric of constant curvature, then any third degree
integral is a linear combination of p3

y and pyH(x, y, px, py), see [9, 10, 14].
Let F3 = C1p

3
y + C2pyH(x, y, px, py) be an integral of the geodesic flow of

the metric f(x)(dx2 + dy2). Then,

�λB = (0, 3C1f(x) + 2C2),
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and K is a linear combination of functions

K1 =

∫ x

x0

f 2(ξ)dξ , K2 =

∫ x

x0

f(ξ)dξ

The proof is by direct calculation. Thus for linear integrable geodesic
flows the vector field �λB is a sum of two vector fields, one of which preserves
not only the volume, but even the metric. Recall that if there exists a vector
field preserving the metric, then it follows from the Noether theorem that
the geodesic flow of the metric is linearly integrable.

3.2 Toda lattice

Consider the Toda lattice with three particles. The three degree of freedom
Hamiltonian and the integrals are given by

H2 =
1

2
(p2

1 + p2
2 + p2

3) + d3e
x2−x1 + d1e

x3−x2 + d2e
x1−x3

F1 = p1 + p2 + p3

F3 = p1p2p3 − p1d1e
x3−x2 − p3d3e

x2−x1 − p2d2e
x1−x3 .

By reduction with respect to the linear momentum F1 we construct a
family of natural Hamiltonian systems which is integrable by a third degree
integral. In order for the reduced system to give a geodesic flow we must
set F1 equal to zero. By a linear change of coordinates the kinetic energy of
the reduced system can be diagonalized, and after an additional scaling of
variables we find

H =
1

2
(p2

1 + p2
2) + V (9)

V = d2e
−
√

3y1+y2 + d3e
√

3y1+y2 + d1e
−2y2 (10)

F = −p3
1

3
+ p1p

2
2 + p2

√
3
(
d3e

√
3y1+y2 − d2e

√
3y1−y2

)

−p1

(
d2e

−
√

3y1+y2 − 2d1e
−2y2 + d3e

√
3y1+y2

)

This Hamiltonian system is also known under the name ‘Hamiltonian system
with exponential interaction’, [12].

Using Maupertuis’ principle the Hamiltonian system with the Hamilto-
nian (9) is orbitally equivalent to the geodesic flow of the metric

λ(y1, y2)(dy2
1 + dy2

2), where λ(y1, y2) = h − V (y1, y2), (11)
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which is positive definite wherever h > V (y1, y2). Therefore, on the energy
surface {H = h} the function F is an integral of the geodesic flow of the
metric (11).

Let us multiply the terms in F which are linear in momenta, by H−V
h−V

. We

obtain a homogeneous polynomial in momenta of third degree denoted by F̃ .
Since the factor H−V

h−V
identically equals 1 on the energy surface, at least on

the energy surface the function F̃ is an integral of the geodesic flow. Since
the Poisson bracket of two homogeneous functions in the momenta is again a
homogeneous function in the momenta, F̃ is an integral of the geodesic flow
not only on the energy surface, but everywhere [1].

Introducing complex variables as in the general theorem we find the vector
field �λB(

2d2e
−
√

3y1+y2 − 4d1e
−2y2 + 2d3e

√
3y1+y2 , 2

√
3(d2e

−
√

3y1+y2 − d3e
√

3y1+y2)
)

which is given by (8) with the Hamiltonian K

K(y1, y2) = −
√

2λ2(y1, y2).

In the last section we will prove that conversely if the Hamiltonian K
equals λ2, then the corresponding integrable metric is given by (11) and
(10).

3.3 Calogero-Moser system

The Calogero-Moser system of three particles [15] is given by the Hamiltonian
H2 and integrals F1, F3 as

H2 =
1

2
(p2

1 + p2
2 + p2

3) −
γ2

2

(
1

(x2 − x1)2
+

1

(x3 − x2)2
+

1

(x1 − x3)2

)

F1 = p1 + p2 + p3

F3 = p3
1 + p3

2 + p3
3 −

3

2
γ2

((
1

(x1 − x2)2
+

1

(x1 − x3)2

)
p1 +

(
1

(x2 − x1)2

+
1

(x2 − x3)2

)
p2 +

(
1

(x3 − x1)2
+

1

(x3 − x2)2

)
p3

)
.

Arguing as above, by setting F1 = 0 we construct a family of geodesic
flows with a third degree integral. The Hamiltonian and the integral of the
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corresponding natural system are

H =
1

2
(p2

1 + p2
2) + V

V = −
(

3γ(y2
1 + y2

2)

2y2(y2
2 − 3y2

1)

)2

F = p3
1 − 3p1p

2
2 +

9γ2(3y4
1 − 6y2

1y
2
2 − y4

2)

2y2
2(y

2
2 − 3y2

1)
2

p1 − 36
γ2y1y2

(y2
2 − 3y2

1)
2
p2.

As before, λ = h−V , and the Hamiltonian K of the vector field �λB given
by (8) reads

K(y1, y2) = 2γ
(
λ(y1, y2) + 2h

)√
λ(y1, y2) − h.

3.4 Goryachev Chaplygin top

As an example with nontrivial configuration space we treat the Goryachev
Chaplygin top, which is a heavy top with ratio of moments of inertia 1 :
1 : 1/4, which is integrable for zero angular momentum. We use Euler
angles (φ, θ, ψ) and the corresponding canonical momenta (pφ, pθ, pψ) as a
symplectic coordinate system, see e.g. [3, 13]. The angle φ of rotation around
the axis of gravity is cyclic and the angular momentum pφ is conserved.
Reduction leads to a flow on S2 = SO(3)/S1, and restricting to pφ = 0 gives
a geodesic flow on S2 by Maupertuis’ principle. The reduced Hamiltonian
with pφ = 0 for ratios of moments of inertia being Θ : Θ : Θ/r reads

H =
p2

θ

2Θ
+

p2
ψ

2Θ
G−1 + V

G−1 =
cos2 θ

sin2 θ
+ r

V = s1 sin θ sin ψ + s2 sin θ cos ψ + s3 cos θ.

For the Goryachev Chaplygin top we have r = 4 and s3 = 0. For h >√
s2
1 + s2

2 the whole S2 is accessible the motion, such that on the energy
surface H = h we find the nonsingular Hamiltonian H̃ of the corresponding
geodesic flow

H̃ =
1

2Θ(h − V )G

(
p2

ψ + p2
θG

)
=

1

2λ

(
p2

ψ + p2
θG

)
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with h as a parameter. The spherical coordinates θ and ψ are not isothermal
coordinates for this problem. Since G only depends on θ they could, however,
be introduced by a change of coordinates with

dθ√
G

= dθ̃. (12)

The second constant of motion is

F = pψ

(
L2

1 + L2
2

)
− Θ cos θ(s1L1 + s2L2)

L1 = pθ cos ψ − pψ sin ψ
cos θ

sin θ

L2 = −pθ sin ψ − pψ cos ψ
cos θ

sin θ
.

As in the previous case we multiply the linear terms of F by H̃ in order to
make it a homogeneous polynomial. Since we set H̃ = 1 we can ignore this
factor in the following.

Instead of introducing isothermal coordinates and complex variables in
this example it is better to perform the equivalent real calculation, which
means the Fourier series of the value of the integral F on the momentum
circle. Let the integral be given by the formula (2), and consider the energy
surface {H̃ = 1}. In a cotangent plane the momenta are located on an ellipse,
or on a circle in isothermal coordinates. Parameterizing this momentum circle
by an angle α and substituting

√
λ/2e−iα for p in (2), we have

F (α) =
λ3/2

√
2

(
Ae−3iα + Be−iα + B̄eiα + Āe3iα

)

=
λ3/2

√
2

(
(A) cos(3α) + 
(B) cos(α) + �(B) sin(α) + �(A) sin(3α))

The restriction of the integral to the ellipse is a finite Fourier series, and the
coefficients of cos(α) and sin(α) give �λB

√
λ/2.

In the present case we have to take into account the change of coordinates
(12) and therefore we introduce

pψ(α) =
√

2λ cos α, pθ(α) =
√

2λ/G sin α. (13)

Note that the coordinates θ, ψ ∈ S2 and the angle α parameterize RP 3,
the unit tangent bundle of S2, which is the energy surface {H̃ = 1} of the
geodesic flow.

10



After some manipulations we find

�λB =
1

λ

(√
G

∂K

∂θ
, −∂K

∂ψ

)

K = − 1√
2

λ2

G3/2

cos θ

sin θ
.

Using (12), we see that K is the Hamiltonian of the vector field �λB on
S2. The function K has exactly two critical points, one minimum and one
maximum, as shown in Fig. 1. They are located at ψ = π + arctan(s1/s2),
θ = arcsin x, and x determined by the zeroes of the polynomial

3x4 + 2cx − 1 = 0, c = h(s2
1 + s2

2)
−1/2.

Since θ ∈ [0, π] we require x ∈ [0, 1], and for c > −1 there is a unique root
in this interval, as can be shown using the Sturm sequence. Both solutions
for θ = arcsin x in the range [0, π] are valid, the larger θ gives the maximum
of K. For large c, i.e. large h, we have 2x ≈ 1/c, such that the zeroes move
towards the poles θ = 0, π of S2.

4 Third degree integrable geodesic flows with

K = λ2

Let the first cohomology group H1(P 2, R) of the surface P 2 be trivial. Then
any closed 1-form is the differential of a function. Therefore any locally
Hamiltonian vector field is globally Hamiltonian. Denote by K the Hamilto-
nian of the vector field �λB (with respect to the symplectic form λdx ∧ dy).
By theorem 1 the function F given by (2) is an integral if the coefficients
of (3) vanish. Equation (4) holds iff the function A is holomorphic. Since

by assumption H1(P 2, R) is trivial (6) is equivalent to the vector field �λB
being Hamiltonian. Let us assume that the function A is bounded. Then
A ≡ const ∈ C. The aim of this section is to prove the following theorem.

Theorem 2. Suppose the geodesic flow of a metric λ(x, y)(dx2 +dy2) on R
2

is integrable by a third degree integral (2) with the coefficient A being constant
and the function K equal to λ2. Then either the geodesic flow of the metric
is linearly integrable or in appropriate coordinates y1, y2 the metric is given
by formulas (10) and (11).
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Proof. Let A equal A1 + iA2. There exists a coordinate system x̂, ŷ, in
which the metric reads λ̂(x̂, ŷ)(dx̂2 + dŷ2), the coefficient Â equals A0 ∈ R,
and K(x̂, ŷ) = λ̂2(x̂, ŷ). Indeed, consider the linear transformation ẑ = Cz,
where z = x + iy, ẑ = x̂ + iŷ, and C is a complex constant, |C| = 1. Then
the coefficient A transforms as Â = C3A. Obviously, for the appropriate
constant C we have Â = A0 ∈ R. Since |C| = 1, in the corresponding
coordinate system x̂, ŷ the new factor λ̂ equals the old factor λ. Hence the
function K still equals λ̂2. Without loss of generality it can therefore be
assumed that in coordinates x, y the coefficient A is real.

Now substitute A0 for A(z, z̄) into the equations (4-6). The first equation
is now automatically fulfilled. Substitute (8) for B in the remaining equa-
tions. By the Hamiltonian property of the the vector filed λB equation (6)
is identically fulfilled. The remaining equation (5) in real variables x, y reads

0 = 2
∂2λ(x, y)

∂y2
− 2

∂2λ(x, y)

∂x2
− 3A0

∂λ(x, y)

∂y
(14)

0 =
∂

∂x

(
4
∂λ(x, y)

∂y
+ 3A0λ(x, y)

)
(15)

From (15) we see that the solution has the form X(x)Y (y) + β(y). Substi-
tuting X(x)Y (y) + β(y) for λ in the second equation, we have

4Y ′(y)X ′(x) + 3A0Y (y)X ′(x) = 0.

In the trivial case X ≡ const the metric depends only on y, and the geodesic
flow is even linearly integrable. Assume that X �= const. Then

Y (y) = C0e
−3A0y/4.

Substitute X(x)e−3A0y/4 + β(y) for λ in (14). We obtain

2β′′(y)e3/4A0y + 3A0β
′(y)e3/4A0y − 27

8
X(x) + 2A2

0X
′′(x),

and the variables in the last equations are separated. Therefore{
2β′′(y)e−3/4y + 3A0β

′(y)e−3/4y = C
2X ′′(x) − 27/8X(x) = −C,

where C is a constant. Thus

X(x) = − 8C

27A2
0

+ C1e
−3/4

√
3A0x + C2e

3/4
√

3A0x,

12



β(y) =
8C

27A2
0

e−3/4A0y + E + C3e
3/2A0y, and finally

λ(x, y) = E + C1e
−3/4A0(y+

√
3x) + C2e

−3/4A0(y−
√

3x) + C3e
3/2y.

Q.E.D.

5 Summary

We have shown that the existence of a third degree polynomial integral for a
geodesic flow on a surface naturally allows to construct a vector field on the
surface. This vector field preserves the Riemannian volume

√
det(g)dx ∧ dy

of the surface, and therefore for surfaces with trivial 1-cohomology group
is Hamiltonian. We constructed the Hamiltonians for a number of known
examples of third degree polynomial integrable geodesic flows. The Hamilto-
nians for these examples have a simple relation with the conformal coefficient
λ of the metric. The Hamiltonian for the reduced Toda system reads λ2, for
the reduced Calogero-Moser system it is K = 2γ(λ + 2h)

√
λ − h, and for

the Goryachev-Chaplygin system we found K = − 1√
2
λ2 cos θ

sin θ
G(θ)−3/2. Thus,

the Hamiltonians for Toda and Calogero-Moser cases are functions of λ, the
Hamiltonian for Goryachev-Chaplygin case is a function of λ, multiplied by
a function that depends on one variable only. For the first case the con-
verse statement is also true. We have shown that if the K = λ2, then the
corresponding integrable system coincides with the reduced Toda lattice.
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Figure 1: Trajectories of the vector field �λB for the Goryachev-Chaplygin case


