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Abstract

We show how to construct symbolic dynamics for the class of 2d-dimensional
twist mappings generated by piecewise strictly convex/concave generating functions.
The method is constructive and gives an efficient way to find all periodic orbits of
these high dimensional symplectic mappings. It is illustrated with the cardioid and
the stadium billiard.
05.45.+b, 03.20.+i1

1 Introduction

By a dictum of Poincaré, periodic orbits are “the only breach through which we may
attempt to penetrate an area hitherto deemed inaccessible” [1, Vol. 1, §36]. Today this
is a well established fact in the theory of dynamical systems. Classical global character-
istic properties like Lyapunov exponents or diffusion coefficients are calculated by sums

over periodic orbits [2, 3]. Particularly interesting is the fact that also quantum mechan-



ical properties can be revealed by summation over classical periodic orbits [4, 5]. This
stimulated renewed interest in classifying and calculating periodic orbits [6, 7, 8].

Symbolic dynamics uniquely labels all orbits of a dynamical system by (bi) infinite
sequences [3]. The advantage of the variational approach to symbolic dynamics is nicely
illustrated by labeling periodic geodesics of geodesic flows on the torus or on surfaces
with higher genus as follows. Wind a string around the surface in an arbitrary way. The
variational principle states that pulling the string tight to its shortest possible length yields
a geodesic of the system by the stationarity of the length, respectively action. Winding
the string in a topologically different way gives a different geodesic. The topologically
different closed paths of a surface are classified by the fundamental group of the surface,
so that the distinct words from the fundamental group label distinct geodesics of the
surface.

We present an analogous results for maps which yields their symbolic dynamics and
a method to calculate all orbits. We follow the variational approach to symplectic maps
[9, 10, 11]. For an introduction to the two dimensional case see [12], for 2d maps, d > 2,
see [13, 14]. Our arguments hold for arbitrary dimension d and since the global topology
of configuration space does not enter our considerations, we just assume z, ' € R?. The
calculation is formulated in a way that makes it almost independent of the dimension d.
The Lagrangian L(z, z') acts as the generating function (of Goldstein type 1) for the map
(2',y") = F(z,y). The symplectic map F' is implicitly defined by

y = _a_L = —Li(z,2), o = % =: Ly(z, ), (1)

where the twist condition det L2 # 0 must be fulfilled. L;; denotes the matrix of partial
derivatives with respect to the i’th and the j’th argument. The mapping from (z,z')
to (z,y) = (x,—Lq) is the discrete analog of the Legendre transformation. The periodic

action of a sequence x = (z1,...,,) is given by

W (x) = ZL(@., Tiv1) . (2)

Tn+1=21
The variational principle states that the critical points x* of the action W, for which

VW, (x*) = 0, correspond to the physical orbits of the system. For period n orbits we
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explicitly obtain

oW, (x
67() = Lo(wi_1,2;) + L1(24,2i41) = 0 (3)
Z;
fori =1,...,n. For twist maps of T¢ the boundary conditions are altered to x,,1 = £1+m

with m € Z? In summary, the problem of classifying and calculating period-n orbits of
the map F' is equivalent to the problem of classifying and calculating the critical points
of W,.

Classifying and calculating all critical points of a function of nd variables is a formidable
problem in general. We will single out a class of generating functions L for which it can
be solved. For this class of systems our method gives a symbolic dynamics and simul-
taneously a numerical method to find all periodic orbits. The approach is based on the
assumption that L is piecewise strictly convex or concave. We call a map obtained from
such a generating function piecewise strictly convex/concave twist maps, or CTM. Our
arguments hold for both convex and concave generating functions, but we will only state
them for the convex case. The concave case is obtained by replacing L by —L. Note
that a convex L corresponds to a dispersing billiard, while a concave L corresponds to a
focusing billiard. In the former the action of periodic orbits is maximal, while in the later
the action is minimal.

Finding periodic orbits in Lagrangian twist maps respectively billiards by extremizing
the action is a well known method. In the general case it is necessary to find critical
points of arbitrary index, which is numerically done by finding the zeroes of the gradient
of the action. For CTM’s this is not necessary and more efficient methods (e.g. conjugate
gradients) can be used for finding minima/maxima of the action.

Bunimovich’s treatment of 3D dispersing billiards [15] like the Sinai billiard was an
essential inspiration for the present work. Earlier work in this direction treated 2D dis-
persing billiards [16, 17, 18]. Even though Bunimovich treats special 2D focusing billiards
in [15], the proof is not based on properties of the action but rather “on some general
properties of hyperbolic billiards.” Our approach shows that it actually is possible to
also treat focusing billiards with the variational approach. This is particularly interesting

because it gives a method that can be used to treat focusing billiards in higher dimensions.



2 Piecewise Strictly Convex Twist Maps

By definition of convexity the Lagrangian L is strictly convex in a subdomain U if
L(tu + (1 —t)v,tu’ + (1 — t)v") < tL(u,u') + (1 — t)L(v, ") (4)

for all (u,u'), (v,v') € U C R* and t € (0,1), see e.g. [19]. If L is twice differentiable in

this subdomain then convexity is equivalent to the Hessian of L

DQL(xi, Tirt) = Ly (w3, Tig1)  Laa(Ti, viga) . (5)
L1 (i, Tiy1) Loo(ws, Tiq1)
being positive definite on the subdomain U. Note that we require L to be piecewise convex
as a function of both variables, as opposed to requiring either the kinetic part of L or its
twist to be convex.

We always assume that the twist condition det Li3 # 0 holds. For CTMs we ad-
ditionally require that the domain of L can be covered by subdomains U; such that L
restricted to each Uj is strictly convex, as e.g. shown in Fig. 1. Note that this implies that
L is not differentiable at the boundary of the subdomains U;. However, the singular set
v = |J,; 0U; has zero measure. The singularity of L induces a singularity for the action
(2) on the set I' = {x : (zj,%;41) € v}. Each Uj is called a smooth conver twisting region.
Our arguments hold for both convex and concave generating functions, but we will only
state them for the convex case.

The essential observation is that the piecewise strict convexity of L implies the piece-
wise strict convexity of W,. Since a strictly convex function has at most one minimum,
we can picture the action as a relief solely composed of nd dimensional paraboloid-shaped
patches. The place where patches meet corresponds to the singularity I'. True paraboloids
would correspond to a quadratic Lagrangian, hence a linear map. The convexity argu-
ment generalizes this to the nonlinear case. By convexity there is a simple superposition
principle for the functions L, although they might be highly nonlinear. Take any two
points u = (uy,...,u,) and v = (vi,...,v,) from R™ such that the straight line connect-
ing them does not cross the singularity I'. The strict convexity of W,, on the singularity

free region containing u and v means that
Wy(tu+ (1 =t)v) < tW,(u) + (1 = t)W,(v). (6)
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This is true because by (4) every single term in (2) is bounded from above. Again
assuming L to be twice differentiable on each subdomain U; we can alternatively prove
the strict convexity of W, by showing that the Hessian D?W,, of W, is positive definite
everywhere outside the singularity set I'. By definition this means that z! D?W,z > 0 for
all z = (21,...,2,) # 0, 2; € R¢. Explicitly we find
t
I Zi Zi
ZtDQWn(X)Z = Z DQL(xi, xi—i—l) (7)

i=1 \ Ri+1 Zit+1

with periodic boundary conditions on z and z understood. By assumption that D?L > 0
each term in the sum is positive definite, such that D?W,, is positive definite. Note that
D?W,, is not block diagonal, but instead the matrices D?L(z;, ;1) partially overlap. We

now use the fact that W, is piecewise strictly convex to construct symbolic dynamics.

3 Symbolic Dynamics

Consider the sets U;, 7 =1,..., N on which L is smooth convex twisting. Typically each
U; contains a non-degenerate minimum of L. Now we try to construct a periodic orbit x
with period n that first visits U, then U, etc., in general (z;, z;+1) € Uj,. We denote the

corresponding region in R by U(J), where the sequence
J:{.717.7277]n}7 1S]ZSN7 (8)

will be a word in the symbolic dynamics with letters 1,..., N. Its infinite repetition labels
the periodic orbit in question. Every sequence J corresponds to a region U(J) in which
W, is strictly convex. If x € OU(J) then it is in the singular set I'. Since there are N
regions in L, there are N different sequences J of length n, and therefore there are N"
disjoint regions U(J) of piecewise convexity of W,,. Every period n orbit of the map F
induces n critical points of W,,, corresponding to the cyclic permutations its points. We
have shown that all critical points are minima. Every minimum is contained in a convex
region, therefore it can be uniquely labeled by a sequence J. Up to a cyclic permutation
of the indices in J the periodic orbit is therefore uniquely labeled, and we have found a

symbolic dynamics for the map F. The standard approach to symbolic dynamics is via



a partition of the phase space of F.. We can lift our partition from the space of (z,z') to
the phase space of the map with coordinates (z,y) using the Legendre transformation (1).
The result is a partition of phase space which will have singularities as its boundaries,
compare with the d = 1 approach in [20].

Every periodic orbit can be labeled by a sequence J. However, not every sequence
corresponds to a (physical) orbit. This phenomenon is called pruning. There are two
ways in which pruning comes about in our setting (for billiards it is often convenient to
work with an artificially enlarged definition range for L, which introduces a third pruning
mechanism). First the set U(J) might be empty, in which case J and all the words
containing J do not correspond to orbits. We call this intrinsic pruning, since it only
depends on the geometry of the partition U;. Secondly, the minimum that by convexity is
guaranteed to exist in U(J) [19] might be attained on the boundary oU(J). We call this
extrinsic pruning, since it depends on the properties of the action W,,. In the linear case
we would have a patch of a parabola which does not include its minimum. So in order
to prove that any of the N™ orbits exist, it is necessary to show that U(J) is nonempty
and that the gradient of W, is pointing into U(J) on the boundary 0U(J). In any case,
In N is an upper bound on the topological entropy of F, extending the result of [16] to
focusing billiards whose Poincaré map is a CTM. If every minimum exists there are N"
fixed points of the n times iterated map, so that the topological entropy can not exceed

n.

4 Finding Periodic Orbits

Using the gradient flow of W, to find critical points is a well known idea. It is particularly
powerful in the present case because we can show that W,, is piecewise strictly convex,
hence we know that all critical points of W,, are local minima. The hard part in finding all
critical points of a function usually is finding the saddle points, which do not exist in our
case. Note that for d = 1 this means that there are no inverse hyperbolic orbits, because

by a formula of [21] they correspond to saddles of W,,. Placing an initial condition x(0)



into any of the convex pieces U(J) of W,, and integrating the flow
x = VW,(x), x(0)eU(J), 9)

will either converge to the local minimum, i.e. the critical point with label J, or, if there
is no minimum in U(J), the flow will hit the singularity. In practice a different minimum
finder that is more efficient than integrating the gradient flow would be used, see [22]. Note
that for the action of a non-CTM one has to use root finding methods for the gradient,
typically Newtons method, to locate critical points. But it is numerically much simpler to
find minima [22]. Therefore in our case the use of Newtons method is discouraged, except
possibly for “polishing” the solutions. We have now achieved the complete classification
of the basins of attraction of all the critical points: Under the gradient low VW, the
set U(J) is attracted to the critical point J, if it exists. Not only have we turned the
problem of calculating unstable periodic orbits into a stable numerical procedure, but we
also simplified the problem of choosing the initial condition such that it converges to any
desired periodic orbit. The latter is the main practical problem that prevents standard
methods from finding all orbits efficiently.

Given a J it might not be easy to find an x(0) in U(J). As we already pointed out U(J)
might even be empty. Concerning this intrinsic pruning one can construct the forbidden
words J by the following procedure. The letter j can be followed by the letter k if the set
Uy is reachable from the set U;. Denote the projections of a set U onto the coordinate

plane z' by 7'(U). Now define U; A U}, as the subset of Uj, that is reachable from Uj,
Ui NUp = {(z,2") € Uy, : z € ©'(U;)}. (10)

Thus j can be followed by & iff U; A Uy, # (0. The procedure can be refined by looking at
(U; ANUg) AU, ete., possibly yielding longer and longer intrinsically pruned words. Similar
considerations apply for backwards time.

In the sense mentioned in the introduction, fixing J only fixes the topology of the
periodic orbit. For a geodesic flow on a surface the topologically different paths are not
deformable into each other, because the topology of the surface prevents it. In our case the

situation is not so “clean”, because it is only the singularity that prevents the deformation



of one orbit into another one. However, we have reached a surprising level of conceptual

similarity to the case of geodesic flows by employing the discrete variational principle.

5 Application

One might think that the conditions placed on L are very restrictive, and with all the
singularities involved there are only exceptional dynamical systems that fulfill them. This
is correct — the conditions imply that a CTM is strongly chaotic in the sense of d non-
vanishing Lyapunov exponent for almost every initial condition, as will be shown in a
forthcoming paper. And such maps are the exception. Thus, the examples are prominent
ergodic systems: The dispersing Sinai billiard in 3D was treated in [15]; here we treat the

cardioid and the stadium billiard as examples of the focusing case.

5.1 Cardioid Billiard

The cardioid billiard was introduced in [23] and shown to have non-vanishing Lyapunov-
exponent in [24]. The symbolic dynamics was introduced in [25, 26]. The above general
considerations prove that this symbolic dynamics and the numerical method used in [25]
are valid. For billiards the generating function reads L(s, s') = |r(s) —r(s’)|, where s is the
arc length of the billiard boundary and r(s) is the corresponding point on the boundary.
The contour plot of this function using polar coordinates for the cardioid p(¢) = 1+ cos ¢
is shown in Fig. 1. For billiards inside subdomains of R? the twist is positive, and the
orbits we are studying are maxima of W, Since for billiards L(s,s’) = L(s',s), Fig. 1
clearly shows the two maxima of W5 corresponding to one period two orbit.

By a calculation similar to the one in [25] it can be shown that for the cardioid L is
piecewise concave with N = 2 pieces. Intrinsic pruning does not exist for this system,
we even have U; A U, = Uy. Besides some extrinsic pruning (called “s-pruning” in [25]),
the most important pruning mechanism comes about by considering L as a function of
the full square in Fig. 1, as opposed to restricting it to the physical non shaded region.
This is related to the fact that the billiard is not convex, and not every line connecting

r(s) and r(s') is completely inside the billiard. However, the generating function is blind
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Figure 1: Contour plot of the generating function L(¢,¢') for the cardioid billiard. The
function has N = 2 smooth concave twisting regions U; surrounding the two maxima.

Regions of non-physical orbits are grey.

to the fact that the connecting line intersects the billiard boundary. One could restrict
the definition of L to the non shaded area of physical orbits in Fig. 1. From a practical
point of view it is more convenient to ignore this restriction, and find all periodic orbits,
regardless of whether they are physically forbidden or not. In a second step it is then
decided if they are valid or not, i.e. if they have a point (¢;, ¢;11) in the shaded region.

5.2 Stadium Billiards

The stadium billiard of Bunimovich [27] has been well studied. We propose a new method
to classify and calculate it’s periodic orbits. The method proposed in [28] also uses a flow,
but it is different from ours. By the above reasoning it is proven that our symbolic dy-
namics and the accompanying numerical method works if we can show that L is piecewise
convex. For this consider the “unfolding” of the stadium billiard into a billiard which
is partially unbounded and periodic, see Fig. 2. Alternatively, it could be defined on a
cylinder.

In order to show that our method applies we have to analyze the generating function L
between two half-circles of radius normalized to 1 with centers segregated by (nA,, mA,),

which is given by

L™ (s, 8') = \/(cos s —coss' —nly)® + (sins —sin s’ — mAy)?, (11)



Figure 2: The periodic stadium billiard, which has a piecewise concave generating func-
tion. Three orbits of period 8 (solid), 3 (dashed), and 6 (dotted) in the stadium billiard
with period 4 (code 002000-20), 4 (code 001000-10) and oo (code 111-1) in the periodic

stadium billiard, respectively.

where A, = 2r. If s and s’ are unrestricted, L is a function on T? with a quite complicated
structure. But we restrict to the half-circles facing each other as in Fig. 2, starting on
the right, —7/2 < s < 7/2, ending on the left, 7/2 < s’ < 37/2, and therefore nA, < 0.
Now we are going to show that L is concave in the physical region, i.e. where a line has

exactly one intersection with each half circle. With the notation

= 1—cos(s—5)

= nAzcoss+mlAysins

C = nAgcoss +mAysins'
we can write
2 = n?A2 +m?A2 — 2(B - C) + 24 (12)
and the Hessian is
1 [ (B=A)(L2+(B-4)  —(-C—-A)(B-A) (13)
P\ ~(-0-2)B-4) (-C-A)(L*+(-C - 4))

For the ray connecting the centers of the circles the Hessian is always negative definite.
Since a Hessian is symmetric the determinant must vanish in order to lose negative defi-
niteness. The determinant is given by

LB A)(-C - a2+ m2AL - (B C). (11
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The first two nontrivial factors are zero if the orbit is tangent to a circle. But a tangency is
only possible outside the physical region. The third factor is always nonzero in the physical
region because it is the projection of the orbit segment onto (nA,, mA,). Therefore (11)
is concave in the physical region. The concave region even extends into the non-physical
region up to the point of tangency on either half circle (if it exists). If the chosen minimum
finder always decreases the function value (like the gradient flow would) one can extend
the half circles to full circles. This is convenient because the boundary conditions need
not be checked. Moreover, as soon as the minimum finder leaves the half circles one can
conclude that the corresponding orbit is pruned. The initial condition must of course
connect the half circles. By extending the half circles to full circles the singularity can be
removed, so that it does not pose any problem in the numerics.

An arbitrary number ¢ of reflections within one and the same half circle can be sub-

sumed in the generating function

L9 (sy,5,) = 2csin SC2|_C|81. (15)

In order to introduce a coding, we number the half-circles according to their horizontal
position by r; and [; for the right and left row, respectively. Now we start e.g. on the
right at 7o, next hit /;, make a number ¢; of reflections within /;, either clockwise (¢; < 0)
or counterclockwise (¢; > 0); then continue to 75 etc. The important quantities are the
differences A} = I, —ry, AL = ry—I; etc., where the upper index denotes motion to the left
or right. Thus we form sequences Alc;ALcyAbes. .., where each entry is in Z, see Fig. 2
for some examples. The period in the reduced stadium is the sum of the absolute values of
these integers. An inverse hyperbolic orbit of the stadium appears as a direct hyperbolic
orbit with doubled period in the periodic stadium (e.g. the dashed orbit). These orbits
have an odd number of reflections with the vertical walls. If the number of reflections
with both, the upper and the lower vertical wall is odd, the orbit becomes unbounded in
the periodic stadium. In this case we have to change the periodic boundary conditions to

Tnr1 = 21 + », A;. For the period 6 orbit in Fig. 2 the periodic action Wjs reads
Wi(s1, 53, 84, 56) = L7 (51, 83) + LM (3, 84) + L7 (54, 86) + LU (s6,51).  (16)
One technicality remains because the generating function for reflections within one
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circle (15) is only concave, rather than strictly concave, as must be the case for an inte-
grable system. The nonzero kernel of D?L accounts for the fact that most periodic orbits
of an integrable system are not isolated, but come in families forming tori. But note that
each appearance of the circle generating function (15) in the action (2) and similarly in
(7) is preceded and followed by the strictly concave generating function between two half
circles (11). Hence even if we try to take the kernel as z we do not get zero, because each
z; appears in two neighboring terms that are positive. Hence the action for the (periodic)

stadium billiard is piecewise strictly concave.

6 Acknowledgments

The author would like to thank Arnd Bécker and Jim Meiss for illuminating discussions.

This work was supported by the Deutsche Forschungsgemeinschaft.

References

[1] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste (Gauthier-Villars,
Paris, 1892).

[2] D. Auerbach et al., Phys. Rev. Lett. 58, 2387 (1987).
[3] R. Artuso, E. Aurell, and P. Cvitanovi¢, Nonlinearity 3, 325 (1990).

[4] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin,
1990).

[5] P. Cvitanovi¢ and B. Eckhardt, Phys. Rev. Lett 63, 823 (1989).
[6] O. Biham and W. Wenzel, Phys. Rev. Lett 63, 819 (1989).
[7] K. Hansen, Phys. Rev. E 52, 2388 (1995).

[8] P. Schmelcher and F. K. Diakonos, Phys. Rev. Lett. 78, 4733 (1997).

12



[9] I. Percival, in Nonlinear Dynamics and the Beam-Beam Interaction, edited by M.

Month and J. Herrera (AIP, New York, 1979), Vol. 57.
[10] S. Aubry and P. L. Daeron, Physica 8D, 381 (1983).
[11] J. Mather, Topology 21, 457 (1982).
[12] J. Meiss, Rev. Mod. Phys. 64, 795 (1992).
[13] H. Kook and J. Meiss, Physica 35D, 65 (1989).
[14] R. MacKay and J. Meiss, Nonlinearity 5, 149 (1992).
[15] L. Bunimovich, Chaos 5, 349 (1995).
[16] L. Stojanov, Commun. Math. Phys. 124, 217 (1989).
[17] M. Sieber and F. Steiner, Physica D44, 248 (1990).
[18] T. Harayama and A. Shudo, J. Phys. A 25, 4595 (1992).
[19] A. Roberts and D. Varberg, Conver Functions (Academic Press, New York, 1973).
[20] A. Bécker and N. Chernov, Nonlinearity 11, 79 (1998).
[21] R. MacKay and J. Meiss, Phys. Lett. A 98, 92 (1983).

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C. The Art of Scientific Computing. (Cambridge University Press, Cam-
bridge, 1988).

(23] M. Robnik, J. Phys. A 16, 3971 (1983).

[24] M. P. Wojtkowski, Commun. Math. Phys. 105, 391 (1986).
[25] A. Bécker and H. R. Dullin, J. Phys. A 30, 1991 (1997).
[26] H. Bruus and N. D. Whelan, Nonlinearity 9, 1023 (1996).
[27] L. A. Bunimovich, Commun. Math. Phys. 65, 295 (1979).

(28] O. Biham and M. Kvale, Phys. Rev. A 46, 6334 (1992).

13



