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Abstract I have been collaborating with Gavin Brown since 1990. Our research mainly

concerns the positivity of trigonometric sums and Jacobi polynomial sums. It also con-

cerns multiple trigonometric sums and the convergence of the linear means of multiple

Fourier series and Fourier-Laplace series. The present report is a survey on our joint

results.

§1 Positivity of trigonometric sums

In 1990, we considered the sine sums

Tα
n (θ) :=

n∑

k=1

sin kθ

k + α
, n ∈ N+.

We define three constants λ0, µ0, α0 as follows. The constant λ0 is the solution of the

equation

(1 + λ)π = tan(λπ) 0 < λ <
1

2
.

It is easy to see that λ0 = 0.4302967 · · · is the point at which the function sin λπ
1+λ

attains

its maximum on the interval (0, 1
2
). The constant µ0 = 0.8128252 · · · is defined to be the

solution of the equation
sin µπ

µπ
=

sin λ0π

(1 + λ0)π
,

and α0 = 2.1 · · · is the solution of the equation
∞∑

k=1

2k

(2k − 1 + α)(2k + α)(2k + 1 + α)
=

sin λ0π

2(1 + λ0)π
.

Our results are the following four theorems which were published in [1].
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Theorem 1 If −1 < α 6 α0 then

Tα
2n−1(θ) > 0, 0 < θ < π, n ∈ N+.

Theorem 2 If −1 < α 6 α0 then

Tα
2n(θ) > 0, 0 < θ < π − µ0π

2n + 0.5
, n ∈ N+.

Theorem 3 If α > α0 then there exists an infinite subset N ⊂ N+ such that

Tα
2n−1

(
π − (1 + λ0)π

2n− 1

)
< 0, n ∈ N.

Theorem 4 If 0 < γ < µ0 then there exists an α near to but strictly smaller than

α0 such that

Tα
2n

(
π − γπ

2n + 0.5

)
< 0, for an infinite number of n.

Theorem 3 shows that α0 is best possible in Theorem 1. Theorem 4 shows that µ0 is

best possible in Theorem 2.

The particular case α = 1 has been considered by Brown and Wilson [2]. They obtained

the following conclusion:

T 1
2n−1(θ) > 0, 0 < θ < π; T 1

2n(θ) > 0, 0 < θ < π − π

2n
.

These extended the Fejér-Jackson-Gronwall inequality [3],

n∑

k=1

sin kθ

k
> 0, 0 < θ < π,

Later, in 1991 we considered basic cosine sums with Dr. D.Wilson together. The sums

we considered are

Sβ
n(θ) := 1 +

n∑

k=1

k−β cos kθ, n ∈ N+, β > 0, θ ∈ R.

Define β0 to be the unique root in (0, 1) of the equation

∫ 3
2
π

0

cos u

uβ
du = 0.

It is easy to check that 0.308443 < β0 < 0.308444. Our main result is
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Theorem 5[4] For all θ ∈ R and n > 1 we have Sβ0
n (θ) > 0.0376908.

It is know (see [5], V.2, 29) that for β < β0 the sums Sβ
n(θ) are not uniformly bounded

below.

An immediate corollary to Theorem 5 is

Theorem 6[4] Let β > β0 and suppose {ak}∞k=0 is a non-increasing sequence of

non-negative numbers satisfying kβak > (k + 1)βak+1 for all k > 1. Then

n∑

k=0

ak cos kθ > 0

for all θ ∈ R and n > 0.

These results extend the Young’s inequality [6] which is a particular case of Theorem

6 when β = 1 and a0 = 1, ak = k−1 for all k > 1.

Remark There is no analogue of Theorem 5 for sine sums. Indeed, for any β < 1,

lim sup
n→∞

min
θ∈R

nβ

n∑

k=1

k−β sin kθ 6 −1

2
.

L. Vietoris [7] proved in 1958 that if a0 > a1 > · · · > an > 0 and a2k 6 (1 −
1
2k

)a2k−1, k > 1, then for n > 1 and θ ∈ (0, π),

n∑

k=1

ak sin kθ > 0 and
n∑

k=0

ak cos kθ > 0.

These inequalities of Vietoris extend both the above mentioned Fejér-Jackson-Gronwall

inequality and W. H. Young’s inequality. Moreover it was shown by Askey and Steinig

[8] in 1974 that these inequalities can be applied to yield various new results, including

improved estimates for the localization of zeros of a class of trigonometric polynomials and

new positive sums of ultraspherical polynomials. The significance of Vietoris’s inequalities

was illustrated once again by Askey in his report [9], where he discussed some problems

suggested by these inequalities and showed how one of them leaded to the derivation of

the hypergeometric summation formula and to other summation formulas.

As shown by Vietoris himself, his result is actually equivalent to the following
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Theorem A If a0 = a1 = 1, a2k = a2k+1 =
(
1 − 1

2k

)
a2k−1 = Γ(k+0.5)

Γ(0.5)Γ(k+1)
, k ∈ N,

then for any n ∈ N+ and θ ∈ (0, π),

n∑

k=1

ak sin kθ > 0,
n∑

k=0

ak cos kθ > 0.

One extension of Theorem A was proved by Brown and Hewitt [10]:

Theorem B If a0 = a1 = 1, a2k = a2k+1 =
(
1 − 1

2k+1

)
a2k−1, k ∈ N+, then the

Vietoris’ cosine inequality
∑n

k=0 ak cos kθ > 0 remains true.

Additional interest of such an extension was noted by Askey [11].

In 1998 we investigated some extensions of Vietoris’s cosine inequalities. For β ∈ (0, 1)

we define cj(β), j > 0, inductively, by

c0(β) = c1(β) = 1, c2k(β) = c2k+1(β) =
(
1− β

k

)
c2k−1(β) =

Γ(k + 1− β)

Γ(1− β)Γ(k + 1)
, k > 1

and for n > 1, define

V β
n (θ) :=

n∑

k=0

ck(β) cos kθ.

Our main results are following two theorems which have been announced in [12].

Theorem 7[12] For 0 < θ < π and n > 1, the inequality,

V β
n (θ) =

n∑

k=0

ck(β) cos kθ > 0

is true whenever β0 6 β < 1, where β0 = 0.30844 · · · is the same number as in

Theorem 5. Furthermore, the number β0 is best possible in the sense that for any

β ∈ (0, β0) we have

lim
n→∞

min
θ∈(0,π)

V β
n (θ) = −∞.

As a direct corollary we get

Theorem 8[12] Let {ak}n
k=0 be a sequence of real numbers satisfying a0 > a1 >

· · · > an > 0 and a2k 6
(
1− β0

k

)
a2k−1, k > 1. Then for θ ∈ (0, π) we have

n∑

k=0

ak cos kθ > 0.
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In 2003, we extended Vietoris’s inequality in another way. For α > −1 and k > 0, we

define

d2k(α) = d2k+1(α) =
Γ(2+α

2
)Γ(k + 1+α

2
)

Γ(1+α
2

)Γ(k + 2+α
2

)

and define for n > 1,

Uα
n (x) =

n∑

k=0

dk(α) cos(kx).

It can be shown that the equation

ψ(α) := min
x∈(0,π)

Uα
6 (x) = 0

has a unique solution α̃0 in (−1,∞). And mechanical computation shows α̃0 ∈ (2.3308, 2.3309).

Our main results are the following two theorems which were announced in [13]

Theorem 9[13] If −1 < α 6 α̃0, then

Uα
n (x) > 0

for all x ∈ (0, π) and n ∈ N+, where the equality holds for some x ∈ (0, π) if and

only if n = 6 and α = α̃0. Moreover, for α > α̃0, min
x∈(0,π)

Uα
6 (x) < 0.

It is clear that Theorem 9 for α = 0 corresponds to Vietoris’s cosine inequality. We

remark that Theorem 9 for α = 1 is due to Brown and Hewitt [10] while for α = 2 is due

to a recent paper [14] by Brown and Yin.

As an immediate consequence of Theorem 9, we obtain, by Abel’s transform,

Theorem 10[13] Let {ak}∞k=0 be a sequence of real numbers satisfying a0 > a1 >
· · · > an > 0 and (2k + α̃0)a2k 6 (2k − 1 + α̃0)a2k−1, k > 1. Then we have

n∑

k=0

ak cos kx > 0, x ∈ (0, π), n ∈ N+,

where the equality holds for some x ∈ (0, π) if and only if n = 6 and

a0 = a1 = 1, a2 = a3 =
1 + α̃0

2 + α̃0

,

a4 = a5 =
(1 + α̃0)(3 + α̃0)

(2 + α̃0)(4 + α̃0)
,

a6 =
(1 + α̃0)(3 + α̃0)(5 + α̃0)

(2 + α̃0)(4 + α̃0)(6 + α̃0)
.
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Also, we have proved the following theorem as well.

Theorem 11[13] For any α > −1 there’s an M = M(α) depending only on α such

that for n > M and all x ∈ (0, π), Uα
n (x) > 0. Furthermore, given an integer n > 2

there is a number γ = γ(n) depending only on n such that for α > γ(n),

min
x∈(0,π)

Uα
n (x) < 0.

For α > −1, we denote by N(α) the smallest positive integer for which Uα
n (x) > 0

holds for all x ∈ (0, π) whenever n > N(α). Theorem 11 means that for each α > −1,

N(α) is finite and that

lim
α→∞

N(α) = ∞.

It would be interesting if one could find a better upper estimate of N(α) for each specific

α. However, this seems to be quite difficult.

In 2005, we considered cosine sums of another type with Dr. Dai together. This

investigation relates also to the extension of Young’s inequality.

Given 0 < β < 1, we set

ak(β) =
Γ(k + 1− β)

Γ(2− β)Γ(k + 1)
, k = 1, 2, · · ·

and define

Sn(x, β) := 1 +
n∑

k=1

ak(β) cos kx, x ∈ [0, π], n = 1, 2, · · · .

We remember that β0 = 0.308443 · · · is the number defined in Theorem 5. Define β∗ to

be the unique solution β ∈ (0, 1) of the equation

min
x∈[0,π]

S7(x, β) = 0.

Numerical evaluation shows that β∗ = 0.33542 · · · . For convenience, we set, for β ∈ (0, 1),

M(β) := inf
{

N > 0 : min
x∈[0,π]

Sn(x, β) > 0 whenever n > N
}

,

where it is agreed that inf ∅ = ∞.

Our main result is
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Theorem 12[15] (i) If β∗ 6 β < 1 then

Sn(x, β) > 0, x ∈ [0, π], n = 1, 2, · · · ,

with equality being true for some x ∈ [0, π] if and only if β = β∗ and n = 7.

(ii) If β0 < β < β∗ then

8 6 M(β) 6 M0 · (β − β0)
− 1

β0(1−β0) = N0 · (β − β0)
−4.6881···,

where M0 is a positive absolute constant.

(iii) If β = β0 then

lim sup
n→∞

(
min{Sn(x, β0) : x ∈ [0, π]}

)
= − β0

1− β0

= −0.446014 · · · .

(iv) If 0 < β < β0 then

lim inf
n→∞

(
min{Sn(x, β) : x ∈ [0, π]}

)
= −∞.
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§2 Positivity of Jacobi sums

In 1993 we investigates some Jacobi sums with Koumandos together.

Let P
(α,β)
k , α > −1, β > −1, k = 0, 1, 2, · · · denote Jacobi polynomials (see [16]) which

are orthogonal on [−1, 1] with the weight function w(α,β)(x) = (1 − x)α(1 + x)β and are

normalized by

P
(α,β)
k (1) =

Γ(n + 1 + α)

Γ(1 + α)Γ(n + 1)
.

In the special case α = β = 0, P
(0,0)
k are written as Pk and called Legendre polynomials.

Define

Sn(θ) =
1

2
+

n∑

k=1

P2k(cos θ), Tn(θ) =

√
15

45
+

n∑

k=1

P2k−1(cos θ), Un(θ) =
1

2
+

n∑

k=1

P4k(cos θ)

for θ ∈ [0, π] and n = 1, 2, · · · . We have proved

Theorem 13[17]

Sn(θ) > 0 ∀ θ ∈ [0, π], n = 1, 2, · · · ; Tn(θ) > 0 ∀ θ ∈ [0,
π

2
], n = 1, 2, · · · .

Theorem 14[17]

Un(θ) > 0 ∀ θ ∈ [0, π], n = 1, 2, · · · .

Our another work is on the Cotes numbers at Jacobi abscissas. Expand

(1− x)−γ(1 + x)−δ ∼
∞∑

k=0

akP
(α,β)
k (x) − 1 < x < 1.

The values of the partial sum of the above expansion, i.e.

n∑

k=0

akP
(α,β)
k (x) (∗)

at zeros of P
(α,β)
n (x) are (positive multiples) of the Cotes numbers for integration with

respect to (1− x)α−γ(1 + x)β−δ dx. Our main results are

Theorem 15[18] Let δ = 0, β = −1
2
. If α > 0 and 0 < γ 6 1

2
then all the partial

sums in (∗) are strictly positive for x ∈ [−1, 1].

Theorem 16[18] If α = 0, β = −1
2
, γ = 1

2
, δ = 1

4
then all the partial sums in (∗) are

strictly positive for x ∈ [−1, 1].
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Theorem 17[18] Suppose α + β + 1 > 0,−1 < γ < 0, δ = 0. All the partial sums in

(∗) are strictly positive for x ∈ [−1, 1] when α > β. Moreover, they are decreasing

when (i)α > β or (ii)|α| < β + 1,−1 < γ 6 1
2
(α− β − 1).

Theorem 18[18] When −β − 1 < α < β,−1 < γ 6 1
2
(α − β − 1) and δ = 0 all the

partial sums in (∗) are strictly positive for x ∈ [−1, 1].

If α = β, Jacobi polynomial P
(α,β)
n is called an ultraspherical polynomial or Gegenbauer

polynomial. The customary notation by [16] is

P λ
n (x) =

Γ(λ + 1
2
)

Γ(2λ)

Γ(n + 2λ)

Γ(n + λ + 1
2
)
P

(λ− 1
2
,λ− 1

2
n (x), λ > −1

2
.

Define

Sλ
n(x) =

n∑

k=0

P λ
n (x)

P λ
n (1)

, −1 < x < 1, n ∈ N+.

It has long been known that for λ > 1
2

all the sums are positive (see [19], for example) but

determination of the best lower for λ has been a recurring source of speculation. Szegö

commented in [20] that “there exists a critical value λ′, 0 < λ′ < 1
2
, such that Sλ

n > 0 for

λ > λ′ but Sλ
n(x) takes negative values for appropriate x and n when λ < λ′.” He noted

that “ evaluation of this number (viz. λ′) seems to be difficult.” We solved this problem

posed by Szegö forty six years ago.

Define α′ to be the solution of the equation

∫ jα,2

0

t−αJα(t) dt = 0

where jα,2 is the second positive root of the Bessel function Jα of the first kind of order

α. Our result is

Theorem 19[21] Let λ′ = α′ + 1
2
. Then

inf{Sλ
n(x) : −1 6 x 6 1, n ∈ N+} = −∞ when λ < λ′;

Sλ
n(x) > 0, ∀ x ∈ (−1, 1) when λ > λ′.

Numerical calculation shows that λ′ = 0.23061297 · · · .

Our another result is
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Theorem 20[22] Let β0 = 0.308443 · · · be the number defined in Theorem 5. If

λ > β0 then
n∑

k=0

(−1)k P λ
2k(cos θ)

P λ
2k(1)

> 0, n ∈ N+, 0 6 θ 6 π

2
.

The only cases of equality are when θ = 0 and n is odd.

It is easy to check that the inequality in Theorem 20 is equivalent to

n∑

k=0

P
(− 1

2
,λ− 1

2
)

k (x)

P
(λ− 1

2
,− 1

2
)

k (1)
> 0, −1 6 x 6 1.
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§3 Multiple trigonometric sums and trigonometric series

Let ai,j, i, j ∈ N+, be real numbers satisfying the condition

∞∑
i=1

∞∑
j=1

{ ∞∑

k=i

∞∑

`=j

a2
k,`

} 1
2

< ∞ (1)

Suppose q > 1 and mi, nj are positive numbers satisfying the condition

mi+1

mi

> q,
nj+1

nj

> q, m1 = n1 = 1. (2)

Define (in L2 sense)

f(x, y) =
∞∑
i=1

∞∑
j=1

ai,j sin mix sin njy,

gj(x) =
∞∑
i=1

ai,j sin mix, hi(y) =
∞∑

j=1

ai,j sin njy.

F. Móricz [22] proved in the case mi = ni = 2i−1, i ∈ N+ that the condition (1) is

equivalent to

f(x, y)

xy
∈ L(0, 1)2,

gi(x)

x
∈ L(0, 1),

hi(y)

y
∈ L(0, 1) i ∈ N+. (3)

He proposed that in the general case when mi, nj are positive integers satisfying con-

dition (2) then (3) is satisfied if and only if

∞∑
i=1

∞∑
j=1

log
mi+1

mi

log
nj+1

nj

{ ∞∑

k=i

∞∑

`=j

a2
k,`

} 1
2

< ∞. (4)

Our result is

Theorem 21[23] Let ai,j,mi, nj satisfy (1) and (2). Let f, gi, hj be as above. Define

S =
∞∑
i=1

∞∑
j=1

|ai,j|,

T =
∞∑
i=1

∞∑
j=1

log
mi+1

mi

{ ∞∑

k=i+1

a2
k,j

} 1
2

, U =
∞∑
i=1

∞∑
j=1

log
nj+1

nj

{ ∞∑

`=j+1

a2
i,`

} 1
2

,

V =
∞∑
i=1

∞∑
j=1

log
mi+1

mi

log
nj+1

nj

{ ∞∑

k=i+1

∞∑

`=j+1

a2
k,`

} 1
2

.
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The condition (3) is equivalent to the condition

S + T + U + V < ∞. (5)

We point out that in our theorem, mi, nj need not be integers. When mi = ni =

2i−1, i ∈ N+, (4) is equivalent to (5). But in general, (4) is stronger than V < ∞, and (4)

is not equivalent to (5).

We also considered the problem of strong uniform approximation of multivariate peri-

odic continuous functions by their Bochner-Riesz means of critical order. The Bochner-

Riesz means of order α of a function f ∈ L(Tn)(n > 2) (T = [−π, π] ) are defined as

Sα
R(f)(x) =

∑

|m|<R

cm(f)eimx(1− |m|2r−2)α, x ∈ Rn, R > 0,

where cm(f) denotes the m−th Fourier coefficient, m ∈ Zn, mx denotes the usual inner

product of m and x. The order α has a critical value n−1
2

. The means S
n−1

2
R at critical

order are regarded as analogues of partial sums of single Fourier series in some sense.

Denote by ω2(f, t), (t > 0), the second modulus of continuity of f ∈ C(Tn). Our result is

Theorem 22[24] Let q > 0. Then for all f ∈ C(Tn)

∥∥∥ 1

R

∫ R

0

|f − S
n−1

2
r (f)|q dr

∥∥∥ 6 C

R

∫ R

0

|ω2(f,
1

r
)|q dr, R > 0

where the norm is in the sense of C(Tn) and C denotes constant independent of f

and R.
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§4 Convergence of the linear means of Fourier-Laplace series

For investigating the almost everywhere convergence of the linear means of Fourier-

Laplace series, we considered Jacobi polynomials with complex indices. By the formula

([16], p.62, (4.21.2))

P
(α,β)
k (x) =

Γ(α + k + 1)

Γ(α + β + k + 1)

k∑
j=0

Γ(α + β + k + j + 1)

Γ(j + 1)Γ(k − j + 1)Γ(α + j + 1)

(x− 1

2

)j

we naturally extend the definition of the Jacobi polynomials to the case of complex indices

(α, β) with <α > −1, <β > −1.

We established the following estimates for the Jacobi polynomials with complex indices.

Theorem 23[25] Let α ∈ [0, 2n], β ∈ [0, n], n ∈ N+ and let µ = 1
2
+ iτ, τ ∈ R. The

for k ∈ N+

|P (α+µ,β)
k (cos θ)| 6





Bne
3|τ |kα+ 1

2 , when 0 < θ < 2k−1;

Bne
3|τ |k−

1
2 θ−α−1(π − θ)−β−1 when 2k−1 < θ < π − k−1;

Bne
3|τ |kβ+ 1

2 , when π − k−1 < θ < π.

Let Σn−1 denote the unit sphere of Rn, n > 3. Any function f ∈ L(Σn−1) corresponds

a Fourier-Laplace expansion

f ∼
∞∑

k=0

Yk(f),

where Yk(f) denotes the projection of f into the function space of spherical harmonics of

degree k. The Cesàro means of order δ, (<δ > −1), of f are the sums

σδ
N(f)(x) :=

1

Aδ
N

N∑

k=0

Aδ
N−kYk(f)(x), x ∈ Σn−1

where Aδ
k := Γ(δ+k+1)

Γ(δ+1)Γ(k+1)
are Cesàro numbers. The critical value of order δ is n−2

2
. And

σ
n−2

2
N is regarded as an analogue of partial sum of single Fourier series in certain sense.

Theorem 23 provides necessary estimates for investigating maximal operator S∗(f)(x) =

sup{|σ
n−2

2
N (f)(x)| : N ∈ N} by applying Stein’s interpolation method for the analytic class

of operators (see [26]). Then we get the following convergence theorem.

Theorem 24[25] If f ∈ L log2 L(Σn−1)(n > 3) then

lim
N→∞

σ
n−2

2
N (f)(x) = f(x) a.e x ∈ Σn−1.
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