

ttf2tfm -- TrueType to TFM converter
ttf2pk -- TrueType to PK converter
====================================

These two auxiliary programs make TrueType fonts usable with TeX.
ttf2tfm extracts the metric and kerning information of a TrueType font
and converts it into metric files usable by TeX (quite similar to
afm2tfm which is part of the dvips package). ttf2pk rasterizes the
glyph outlines of a TrueType font into a bitmap font in PK format.

Since a TrueType font often contains more than 256 glyphs, some means
are necessary to map a subset of the TrueType glyphs into a TeX font.
To do this, two mapping tables are needed: the first maps from the
TrueType font to a raw TeX font (this mapping table is used both by
ttf2tfm and ttf2pk), and the second maps from the raw TeX font to
another (virtual) TeX font providing all kerning and ligature
information needed by TeX.

We sometimes refer to this first map as the `input' or `raw' map, and
to the second as the `output' or `virtual' map.

This two stage mapping has the advantage that one raw font can be
accessed with various TeX encodings (e.g. T1 and OT1) via the virtual
font mechanism, and just one PK file is necessary.

For CJKV fonts, a different mechanism is provided (see section
`Subfont definition files' below). Additionally, rotated glyphs for
pseudo-vertical writing are supported -- if possible, vertical glyph
presentation forms are used from the font's GSUB table.

ttf2tfm
=======

Usage:

 ttf2tfm FILE[.ttf|.ttc] [OPTION]... [FILE[.tfm]]

Options (default values are given in brackets):

-c REAL use REAL for height of small caps made with -V [0.8]
-e REAL widen (extend) characters by a factor of REAL [1.0]
-E INT select INT as the TTF encoding ID [1]
-f INT select INT as the font index in a TTC [0]
-l create 1st/2nd byte ligatures in subfonts
-L LIGFILE[.sfd] create 1st/2nd byte ligatures in subfonts using LIGFILE
-n use PS names of TrueType font
-N use only PS names and no cmap
-O use octal for all character codes in the vpl file
-p ENCFILE[.enc] read ENCFILE for the TTF->raw TeX mapping
-P INT select INT as the TTF platform ID [3]
-q suppress informational output
-r OLDNAME NEWNAME replace glyph name OLDNAME with NEWNAME
-R RPLFILE[.rpl] read RPLFILE containing glyph replacement names
-s REAL oblique (slant) characters by REAL, usually <<1 [0.0]

-t ENCFILE[.enc] read ENCFILE for the encoding of the vpl file
-T ENCFILE[.enc] equivalent to -p ENCFILE -t ENCFILE
-u output only characters from encodings, nothing extra
-v FILE[.vpl] make a VPL file for conversion to VF
-V SCFILE[.vpl] like -v, but synthesize smallcaps as lowercase
-w generate subfont enc. vectors containing glyph indices
-x rotate subfont glyphs by 90 degrees
-y REAL move rotated glyphs down by a factor of REAL [0.25]
--help print this message and exit
--version print version number and exit

The usage is very similar to afm2tfm. Please consult the dvips info
file for more details on the various parameters. Here we will
concentrate on the differences between afm2tfm and ttf2tfm.

cmaps

Contrary to Type 1 PostScript fonts (but similar to the new CID-keyed
PostScript fonts), most TrueType fonts have more than one native
mapping table, also called `cmap', which maps the (internal) TTF glyph
indices to the (external) TTF character codes. Common examples are a
mapping table to Unicode encoded character positions and the standard
Macintosh mapping. To specify this TrueType mapping table, use the
options `-P' and `-E'. With `-P' you specify the platform ID; defined
values are:

 platform platform ID (pid)

 Apple Unicode 0
 Macintosh 1
 ISO 2
 Microsoft 3

The encoding ID depends on the platform. For pid=0, we ignore the
`-E' parameter (setting it to zero) since the mapping table is always
Unicode version 2.0. For pid=1, the following table lists the defined
values:

 platform ID = 1
 script encoding ID (eid)

 Roman 0
 Japanese 1
 Chinese 2
 Korean 3
 Arabic 4
 Hebrew 5
 Greek 6
 Russian 7
 Roman Symbol 8
 Devanagari 9
 Gurmukhi 10
 Gujarati 11
 Oriya 12

 Bengali 13
 Tamil 14
 Telugu 15
 Kannada 16
 Malayalam 17
 Sinhalese 18
 Burmese 19
 Khmer 20
 Thai 21
 Laotian 22
 Georgian 23
 Armenian 24
 Maldivian 25
 Tibetan 26
 Mongolian 27
 Geez 28
 Slavic 29
 Vietnamese 30
 Sindhi 31
 Uninterpreted 32

Here are the ISO encoding IDs:

 platform ID = 2
 encoding encoding ID

 ASCII 0
 ISO 10646 1
 ISO 8859-1 2

And finally, the Microsoft encoding IDs:

 platform ID = 3
 encoding encoding ID

 Symbol 0
 Unicode 2.0 1
 Shift JIS 2
 GB 2312 (1980) 3
 Big 5 4
 KSC 5601 (Wansung) 5
 KSC 5601 (Johab) 6
 UCS-4 10

The program will abort if you specify an invalid platform/encoding ID
pair. It will then show the possible pid/eid pairs. Please note that
most fonts have at most two or three cmaps, usually corresponding to
the pid/eid pairs (1,0), (3,0), or (3,1) in case of Latin based fonts.
Valid Microsoft fonts should have a (3,1) mapping table, but some
fonts exist (mostly Asian fonts) which have a (3,1) cmap not encoded
in Unicode. The reason for this strange behavior is the fact that
some old MS Windows versions will reject fonts having a non-Unicode
cmap (since all non-Unicode Microsoft encoding IDs are for Asian
specific MS Windows versions).

The `-P' and `-E' options to ttf2tfm must be equally specified for
ttf2pk; the corresponding parameters in a map file are `Pid' and

`Eid', respectively.

The default pid/eid pair is (3,1).

If you use the `-N' switch, all cmaps are ignored, using only the
PostScript names in the TrueType font. The corresponding option in a
map file is `PS=Only'.

If you use the `-n' switch, the default glyph names built into ttf2tfm
are replaced with the PS glyph names found in the font. In many cases
this is not what you want because the glyph names in the font are
often incorrect or non-standard. The corresponding option in a map
file is `PS=Yes'.

input and output encodings

You must specify the encoding vectors from the TrueType font to the
raw TeX font and from the raw TeX font to the virtual TeX font exactly
as with afm2tfm, but you have more possibilities to address the
character codes. [With `encoding vector' a mapping table with 256
entries in form of a PostScript vector is meant; see the file
`T1-WGL4.enc' of this package for an example.] With afm2tfm, you must
access each glyph with its Adobe glyph name, e.g. `/quotedsingle' or
`/Acircumflex'. This has been extended with ttf2tfm; now you can (and
sometimes must) access the code points and/or glyphs directly using
the following syntax for specifying the character position in decimal,
octal, or hexadecimal notation: `/.c<decimal-number>',
`/.c0<octal-number>', or `/.c0x<hexadecimal-number>'. Examples:
`/.c72', `/.c0646', `/.c0x48'. To access a glyph index directly, use
the character `g' instead of `c' in the just introduced notation.
Example: `/.g0x32'.

[Note: The `.cXXX' notation makes no sense if `-N' is used.]

Another possibility is to use the `-r old-glyphname new-glyphname'
switch to rename a glyph. Example:

 ttf2tfm ... -r .g0xc7 dotlessi -r hungarumlaut dblacute ...

Nevertheless, it is not allowed to use the `.gXXX' or `.cXXX' glyph
name construct for `new-glyphname'.

Alternatively, you can collect such replacement pairs in a file which
should have `.rpl' as extension, using the `-R' option. The syntax is
simple: Each line contains a pair `old-glyphname new-glyphname'
separated by whitespace (without the quotation marks). The percent
sign starts a line comment; you can continue a line with a backslash
as the last character. An example for a replacement file is `VPS.rpl'
(to be used in conjunction with `t5.enc' for Vietnamese) which is
part of this package.

The `-r' and `-R' switches are ignored for subfonts or if no encoding
tables are specified. For ttf2pk, the corresponding option to `-R' is
`Replacement'. Single replacements are directly given as
old_glyphname=newglyphname in a map file.

For pid/eid pairs (1,0) and (3,1), both ttf2tfm and ttf2pk recognize
built-in default Adobe glyph names; the former pair follows the names
given in Appendix E of the book `Inside Macintosh', volume 6, the
latter uses the names given in the TrueType Specification (WGL4, a
Unicode subset). Note that Adobe glyph names are not unique and do
sometimes differ: E.g., many PS fonts have the glyph `mu', whereas
this glyph is called `mu1' in the WGL4 character set to distinguish it
from the real Greek letter mu. You can find those mapping tables in
the source code file `ttfenc.c'. Be also aware that OpenType
(i.e. TrueType 2.0) fonts use an updated WGL4 table; we use the data
from the latest published TrueType specification (1.66).

On the other hand, the switches `-n' and `-N' make ttf2tfm read in and
use the PostScript names in the TrueType font itself (stored in the
font's `post' table) instead of the default Adobe glyph names.

If you don't select an input encoding, the first 256 glyphs of the
TrueType font with a valid entry in the selected cmap will be mapped
to the TeX raw font (without the `-q' option ttf2tfm prints this
mapping table to standard output), followed by all glyphs not yet
addressed in the selected cmap. However, some code points for the
(1,0) pid/eid pair are omitted since they do not represent glyphs
useful for TeX: 0x00 (null), 0x08 (backspace), 0x09 (horizontal
tabulation), 0x0d (carriage return), and 0x1d (group separator). The
`invalid character' with glyph index 0 will be omitted too.

If you select the `-N' switch, the first 256 glyphs of the TrueType
font with a valid PostScript name will be used in case no input
encoding is specified. Again, some glyphs are omitted: `.notdef',
`.null', and `nonmarkingreturn'.

If you don't select an output encoding, ttf2tfm uses the same mapping
table as afm2tfm would use (you can find it in the source code file
texenc.c); it corresponds to TeX typewriter text. Unused positions
(either caused by empty code points in the mapping table or missing
glyphs in the TrueType font) will be filled (rather arbitrarily) with
characters present in the input encoding but not specified in the
output encoding (without the `-q' option ttf2tfm prints the final
output encoding to standard output). Use the `-u' option if you want
only glyphs in the virtual font which are defined in the output
encoding file, and nothing more.

One feature missing in afm2tfm has been added which is needed by the
LaTeX T1 encoding: ttf2tfm will construct the glyph `Germandbls' (by
simply concatenating to `S' glyphs) even for normal fonts if possible.
It appears in the glyph list (written to stdout) as the last item,
marked with an asterisk. Since this isn't a real glyph it will be
available only in the virtual font.

For both input and output encoding, an empty code position is
represented by the glyph name `.notdef'.

In encoding files, you can use `\' as the final character of a line to
indicate that the input is continued on the next line. The backslash
and the following newline character will be removed.

ttf2tfm returns 0 on success and 1 on error; warning and error
messages are written to standard error.

other options

You can select the font in a TrueType font collection (which usually
has the extension `.ttc') with `-f'; the default value, zero,
specifies the first font. For fonts not being a collection this
parameter is ignored.

The option `-l' makes ttf2tfm create ligatures in subfonts between
first and second bytes of all the original character codes. Example:
Character code 0xABCD maps to character position 123 in subfont 45.
Then a ligature in subfont 45 between position 0xAB and 0xCD pointing
to character 123 will be produced. The fonts of the Korean HLaTeX
package use this feature. Note that this option generates correct
ligatures only for TrueType fonts where the input cmap is identical to
the output encoding. In case of HLaTeX, TTFs must have platform ID 3
and encoding ID 5.

Option `-L' is the same as `-l', but character codes for ligatures are
specified in a ligature file. For example, `-L KS-HLaTeX' generates
correct ligatures for the Korean HLaTeX package regardless of the
platform and encoding ID of the used TrueType font (the file
`KS-HLaTeX.sfd' is part of the ttf2pk package). Ligature files have
the same format and extension as SFD files. Both `-L'and `-l' are
ignored if not in subfont mode.

PostScript encoding vectors containing glyph indices of subfonts,
primarily used to embed TrueType fonts in pdfLaTeX, can be created
with option `-w'. ttf2tfm takes the TFM names and replaces the suffix
with `.enc'; that is, for files `foo01.tfm', `foo02.tfm', ... it
creates `foo01.enc', `foo02.enc', ... at the same place.

To produce glyphs rotated by 90 degrees counter-clockwise, use `-x'.
If the font contains a GSUB table (with feature `vert') to specify
vertical glyph presentation forms, both ttf2pk and ttf2tfm will use
it. This will work only in subfont mode. The y-offset of rotated
glyphs can be specified with the `-y' option; its parameter gives the
fractional amount of shifting downwards (the unit is one EM). If not
specified, a value of 0.25 (em) is used.

ttf2pk
======

Usage:

 ttf2pk [-q] [-n] FONT DPI
 ttf2pk -t [-q] FONT

Options:

-q suppresses informational output

-n only use `.pk' as extension
-t test for FONT (returns 0 on success)
--help print this message and exit
--version print version number and exit

The FONT parameter must correspond to an entry in a map file recorded
in the configuration file ttf2pk.cfg (see below for details),
otherwise error code 2 is returned -- this can be used for scripts
like mktexpk to test whether the given font name is a (registered)
TrueType font.

Another possibility is to use the `-t' switch which will print the
line of a map file corresponding to FONT and return 0 on success (`-q'
suppresses any output).

DPI specifies the intended resolution (we always assume a design size
of 10pt).

ttf2pk.cfg

ttf2pk uses a small configuration file called ttf2pk.cfg; in each line
it contains a keyword with its value, separated by whitespace.
Comment lines can start with any of the following characters: `*',
`#', `;', and `%'. Leading whitespace is ignored.

Currently, only one keyword, `map', is recognized in this file; it
takes a map file name as a parameter. If no extension is given to the
map file name, `.map' is appended. No whitespace is allowed in the
map file name. The `map' keyword can be given more than once to
specify multiple map files; if the map file name is prepended by a
plus sign, it is added to the list of map files to be used. Example:

 map foo
 map +bar

This makes ttf2pk to first read `foo.map', then `bar.map'.

If the configuration file is not found, ttf2pk tries to use
`ttfonts.map' instead.

map files

Parameters specified to ttf2tfm are preserved for ttf2pk in map files
-- ttf2tfm writes out to standard output, as the last line, a proper
entry for a map file.

As an example, a call to

 ttf2tfm arial -s 0.25 -P 1 -E 0 -r .g0xc7 caron \
 -p 8r.enc -t T1-WGL4.enc -v arialsx arials

will produce the following line:

 arials arial Slant=0.25 Encoding=8r.enc Pid=1 Eid=0 .g0xc7=caron

The output encoding given with `-t' for the virtual font `arialsx' is
immaterial to ttf2pk (nevertheless, input encoding files must have the
same format as with ttf2tfm, and all said above about encoding files
holds).

Here a table listing the various ttf2tfm parameters and its
corresponding entries in a map file:

 -s Slant
 -e Extend
 -p Encoding
 -f Fontindex
 -P Pid
 -E Eid
 -n PS=Yes
 -N PS=Only
 -R Replacement
 -x Rotate=Yes
 -y Y-Offset

Single replacement glyph names given to ttf2tfm with the `-r' switch
are directly specified with old-glyphname=new-glyphname. For subfonts
or if no encoding file is given, replacement glyphs are ignored.

One additional parameter in a map file is unique to ttf2pk: `Hinting',
which can take the values `On' or `Off'. Some fonts (e.g. the CJKV
part of cyberbit.ttf) are rendered incorrectly if hinting is
activated. Default is `On' (you can also use `Yes', `No', `1', and
`0').

The format of map files is simple. Each line defines a font; first
comes the TeX font name, then its TrueType font file name, followed by
the parameters in any order. Case is significant (even for parameter
names); the parameters are separated from its values by an equal sign,
with possible whitespace surrounding it. ttf2pk reads in a map file
line by line, continuing until the TeX font specified on the command
line is found, otherwise the programs exits with error code 2. Thus
you can use any character invalid in a TeX font name to start a
comment line.

In both map files and encoding files, use `\' as the final character
of a line to indicate that the input is continued on the next line.
The backslash and the following newline character will be removed.

ttf2pk will abort if it can't find and read the TeX font metrics file
of the given TeX font name.

Subfont definition files
========================

CJKV (Chinese/Japanese/Korean/old Vietnamese) fonts usually contain
several thousand glyphs; to use them with TeX it is necessary to split
such large fonts into subfonts. Subfont definition files (usually

having the extension `.sfd') are a simple means to do this smoothly.
A subfont file name usually consists of a prefix, a subfont infix, and
a postfix (which is empty in most cases), e.g.

 ntukai23 -> prefix: ntukai, infix: 23, postfix: (empty)

Here the syntax of a line in an SFD file, describing one subfont:

 <whitespace> <infix> <whitespace> <ranges> <whitespace> `\n'

 <infix> := anything except whitespace. It's best to use only
 alphanumerical characters.
 <whitespace> := space, formfeed, carriage return, horizontal and
 vertical tabs -- no newline characters.
 <ranges> := <ranges> <whitespace> <codepoint> |
 <ranges> <whitespace> <range> |
 <ranges> <whitespace> <offset> <whitespace> <range>

 <codepoint> := <number>
 <range> := <number> `_' <number>
 <offset> := <number> `:'

 <number> := hexadecimal (prefix `0x'), decimal, or octal
 (prefix `0')

A line can be continued on the next line with a backslash ending the
line. The ranges must not overlap; offsets have to be in the range
0-255.

Example:

 The line

 03 10: 0x2349 0x2345_0x2347

 assigns to the code positions 10, 11, 12, and 13 of the subfont
 having the infix `03' the character codes 0x2349, 0x2345, 0x2346,
 and 0x2347, respectively.

The SFD files in the distribution are customized for the CJK package
for LaTeX.

You have to embed the SFD file into the TFM font name (at the place
where the infix will appear) surrounded by two `@' signs, on the
command line resp. a map file; both ttf2tfm and ttf2pk switch then
to subfont mode.

It is possible to use more than a single SFD file by separating them
with commata and no whitespace; for a given subfont, the first file is
scanned for an entry, then the next file, and so on. Later entries
override entries found earlier (possibly only partially). For example,
the first SFD file sets up range 0x10-0xA0, and the next one modifies
entries 0x12 and 0x25. As can be easily seen, this algorithm allows
for adding and replacing, but not for removing entries.

Subfont mode disables the options `-n', `-N', `-p', `-r', `-R', `-t',
`-T', `-u', `-v', `-w', and `-V' for ttf2tfm; similarly, no `Encoding'

and `Replacement' parameter resp. single replacement glyph names are
allowed in a map file.

ttf2tfm will create ALL subfont TFM files specified in the SFD files
(provided the subfont contains glyphs) in one run.

Example:

 The call

 ttf2tfm ntukai.ttf ntukai@Big5,Big5-supp@

 will use `Big5.sfd' and `Big5-supp.sfd', producing the subfont files
 ntukai01.tfm, ntukai02.tfm etc.

 ttf2pk should be then called on the subfonts directly:

 ttf2pk ntukai01 600
 ttf2pk ntukai02 600
 ...

Some notes on file searching
============================

Both ttf2pk and ttf2tfm use either the kpathsea, emtexdir, or MiKTeX
library for searching files (emtexdir will work only on operating
systems which have an MS-DOSish background, i.e. MS-DOS, OS/2,
Windows; MiKTeX is specific to MS Windows).

During compilation, you have to define HAVE_KPATHSEA, HAVE_EMTEXDIR,
or MIKTEX to activate the specific file search code.

As a last resort, both programs can be compiled without a search
library; the searched files must be then in the current directory or
specified with a path. Default extensions will be appended also (with
the exception that only `.ttf' is appended and not `.ttc').

kpathsea

Please note that older versions of kpathsea (<3.2) have no special
means to search for TrueType fonts and related files, thus we use the
paths for PostScript related stuff. The actual version of kpathsea is
displayed on screen if you call either ttf2pk or ttf2tfm with the
`--version' command line switch.

Here is a table of the file type and the corresponding kpathsea
variables. TTF2PKINPUTS and TTF2TFMINPUTS are program specific
environment variables introduced in kpathsea version 3.2:

 .ttf and .ttc TTFONTS
 ttf2pk.cfg TTF2PKINPUTS
 .map TTF2PKINPUTS
 .enc TTF2PKINPUTS, TTF2TFMINPUTS
 .rpl TTF2PKINPUTS, TTF2TFMINPUTS

 .tfm TFMFONTS
 .sfd TTF2PKINPUTS, TTF2TFMINPUTS

And here the same for pre-3.2-versions of kpathsea:

 .ttf and .ttc T1FONTS
 ttf2pk.cfg TEXCONFIG
 .map TEXCONFIG
 .enc TEXPSHEADERS
 .rpl TEXPSHEADERS
 .tfm TFMFONTS
 .sfd TEXPSHEADERS

Finally, the same for pre-3.0-versions:

 .ttf and .ttc DVIPSHEADERS
 ttf2pk.cfg TEXCONFIG
 .map TEXCONFIG
 .enc DVIPSHEADERS
 .rpl DVIPSHEADERS
 .tfm TFMFONTS
 .sfd DVIPSHEADERS

Please consult the info files for kpathsea for details on these
variables. The decision whether to use the old or the new scheme will
be done during compilation.

You should set the TEXMFCNF variable to the directory where your
texmf.cnf configuration file resides.

The default TDS location for the files in the data subdirectory is

 $TEXMF/ttf2tfm

(or $TEXMF/ttf2pk; you should either make a symbolic link

 % ln -s $TEXMF/ttf2tfm $TEXMF/ttf2pk

or set the variable TTF2PKINPUTS to $TEXMF/ttf2tfm for newer kpathsea
versions)

Here is the proper command to find out to which value a kpathsea
variable is set (we use `TTFONTS' as an example). This is especially
useful if a variable isn't set in texmf.cnf or in the environment,
thus pointing to the default value which is hard-coded into the
kpathsea library.

 % kpsewhich --progname=ttf2tfm --expand-var='$TTFONTS'

We select the program name also since it is possible to specify
variables which are searched only for a certain program -- in our
example it would be `TTFONTS.ttf2tfm'.

A similar but not identical method is to say

 % kpsewhich --progname=ttf2tfm --show-path='truetype fonts'

[A full list of format types can be obtained by saying `kpsewhich
--help' on the command line prompt.] This is exactly how ttf2tfm (and
ttf2pk) searches for files; the disadvantage is that all variables are
expanded which can cause a very long string.

emtexdir

Here the list of suffixes and its related environment variables to be
set in autoexec.bat (resp. in config.sys for OS/2):

 .ttf and .ttc TTFONTS
 ttf2pk.cfg TTFCFG
 .map TTFCFG
 .enc TTFCFG
 .rpl TTFCFG
 .tfm TEXTFM
 .sfd TTFCFG

With other words, all files in the `data' subdirectory should be moved
to a place in your emtex tree with TTFCFG pointing to this directory.

If one of the variables isn't set, a warning message is emitted. The
current directory will always be searched. As usual, one exclamation
mark appended to a directory path causes subdirectories one level deep
to be searched, two exclamation marks causes all subdirectories to be
searched. Example:

 TTFONTS=c:\fonts\truetype!!;d:\myfonts\truetype!

Constructions like `c:\fonts!!\truetype' aren't possible.

MiKTeX

Both ttf2tfm and ttf2pk have been fully integrated into MiKTeX.
Please refer to the documentation of MiKTeX for more details on file
searching.

A full example
==============

Here an example how to handle the font `verdana.ttf' and its variants.

1. Construct the font name

 [This is the most complicated part -- in case you are too lazy to
 construct font names compliant to TeX's `fontname' scheme, just use
 your own names.]

 Using the `ftdump' utility (which is part of FreeType 1) you can

 find out the PostScript name of the specific TTF which is probably
 the best choice to adapt TrueType fonts to the PostScript-oriented
 `fontname' scheme.

 In our example, the PostScript name is `Verdana'.

 `fontname' uses the scheme

 S TT W [V...] [N] [E] [DD]

 as documented in `fontname.texi' resp. `fontname.dvi'. Now you have
 to check the various mapping files:

 S: supplier.map: `j' for `Microsoft'
 TT: typeface.map: `vn' for `Verdana'
 W: weight.map: `r' for `Regular Roman',
 `b' for `bold'
 V,
 N: variant.map: `8r' for the raw base font
 `8t' for the virtual font
 (i.e., LaTeX's T1 encoding)
 [additionally an inserted `c' for small caps,
 `o' for slanted (`oblique'), or `i' for italic
 fonts]

 Here the standard combinations:

 `jvnr8r' for the default base font.
 `jvnr8t' for the virtual default font.
 `jvnrc8t' for the virtual font with small caps. [As you can
 see, no additional raw font is needed.]
 `jvnro8r' for the slanted base font.
 `jvnro8t' for the virtual slanted font.

 The corresponding variants are:

 bold: verdanab.ttf -> jvnb{8r,8t}
 small caps: jvnbc8t
 slanted: jvnbo{8r,8t}
 italic: verdanai.ttf -> jvni{8r,8t}
 bold and italic: verdanaz.ttf -> jvnbi{8r,8t}

* NOTE: Be careful to use different names for the virtual font and the
* raw font! In the above example, `*8r' and `*8t' is used. You
* could also use the postfix `*-raw', to name an example, for
* the raw font if you don't follow the `fontname' naming scheme.

2. Font definition files

 The FD file should be called `t1jvn.fd' (as you can see, this is T1
 encoding). It is very similar to `t1ptm.fd', part of the PSNFSS
 package (which can be found in almost all TeX distributions). A
 `verdana.sty' file can also be modeled after `times.sty'.

3. Calling ttf2tfm

 To make the example simpler, we use `T1-WGL4.enc' for both the raw
 and the virtual encoding. This should be sufficient for most
 TrueType fonts mapped to T1 encoding. Other packages may define
 other encodings (e.g. the `t2' package available from CTAN defines
 mapping files for Cyrillic encodings) -- it may also be necessary to
 use the `-n' or `-N' switch together with replacement glyph names to
 access all glyph names in the TrueType font.

 To create `jvnr8r' and `jvnr8t', just call

 ttf2tfm verdana -T T1-WGL4 -v jvnr8t jvnr8r
 vptovf jvnr8t

 For `jvnrc8t', do

 ttf2tfm verdana -T T1-WGL4 -V jvnrc8t jvnr8r
 vptovf jvnrc8t

 Note that almost always some warnings will appear about missing
 glyphs.

 The last line written to stdout by ttf2tfm is a suitable entry for a
 map file -- let's call it `verdana.map'. Since ttf2pk doesn't care
 about virtual fonts, both calls below produce the same.

 Now just repeat this procedure. For slanted fonts you should
 additionally use the switch `-s 0.176' (of course you can change the
 slanting amount to make it fit your needs).

4. Modifying ttf2pk.cfg

 The final step is to add `verdana.map' to ttf2pk's configuration
 file. Simply insert the following line at the end of `ttf2pk.cfg':

 map +verdana

Problems
========

Most vptovf implementations allow only 100 bytes for the TFM header
(the limit is 1024 in the TFM file itself): 8 bytes for checksum and
design size, 40 bytes for the family name, 20 bytes for the encoding,
and 4 bytes for a face byte. There remain only 28 bytes for some
additional information which is used by ttf2tfm for an identification
string (which is essentially a copy of the command line), and this
limit is always exceeded.

The optimal solution is to increase the value of `max_header_bytes' in
the file vptovf.w (and probably pltotf.w) to, say, 400 and recompile
vptovf (and pltotf). Otherwise you will get some (harmless) error

messages like

 This HEADER index is too big for my present table size

which can be safely ignored.

--- end of ttf2pk.doc ---

