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Abstract

In this thesis we look at some aspects of the Non Parametric Maximum
Likelihood Estimate (NPMLE) of a mixing distribution in a mixture model.
We present a proof that there exists case where the number of components in
the NPMLE of a mixture distribution is not consistent for the true number
of components in the mixture. This result supports the motivations for using
penalised maximum likelihood techniques.
Mixture models are a popular way to approach density estimation problems.
We investigate some computational aspects of using NPMLEs of mixture
densities in a density estimation setting by looking at an implementation of
the Intra Simplex Direction Method (ISDM).
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Chapter 1

Introduction

Mixture models provide a useful generalisation to the simple parametric mod-
els used in a wide variety of applications (Lindsay, 1995). Some examples of
the various contexts in which they have been proposed and studied are clus-
tering (Fraley and Raftery, 2002), outlier problems (Box and Tiao, 1968),
deconvolution problems (Matias, 2002), and density estimation (Jones and
Henderson, 2009).

In this thesis we take an interest mainly towards the subject of density
estimation, although we provide some results and comments which are not
restricted to such a context.

A popular method of fitting mixture models stems from the results about
Non Parametric Maximum Likelihood Estimation (NPMLE) by Lindsay (1983).
For example, NPMLE methods are one of three common ways to approach
density estimation problems, along with Kernel (Silverman, 1986) and Bayesian
(Ferguson, 1973) approaches. Moreover, it can be quite easily seen that a
Kernel density estimator can be viewed as special case of a mixture density
estimator, as we will show in more detail in this thesis.

Several elegant theorems by Lindsay have encouraged the development of
various useful algorithms which enable mixture models to be fitted in prac-
tice, for example, the Intra Simplex Direction Method (ISDM) by Lesperance
and Kalbfleisch (1992). The main theoretical result in this thesis is another
direct consequence of Lindsay’s work.

The popularity of producing NPMLEs in the mixture model literature
has led to the study of various features of these estimates. For example there
has been interest in improving the computational speed of such estimates
(Wang, 2007), studying the rates of convergence for NPMLEs (Ghosal and
van der Vaart, 2001), formulating NPMLEs under various model constraints
(Hathaway, 1985), (Jones and Henderson, 2009), and the proposal of penal-
ized maximum likelihood methods to discourage the selection of a maximiser
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with too many components (Leroux, 1992), (Cathy and Bertrand, 2011).
Without introducing technical notation at the moment, here is an outline

of the main result of this thesis. It is a negative result. One aspect of
NPMLEs we consider is the nature of the estimated number of components.
Suppose the NPMLE of a mixing distribution of a location mixture of unit-
variance normals is calculated. Suppose this estimate is calculated based
upon a sample of size n from a standard normal distribution. That is, suppose
we are estimating a degenerate mixing distribution via NPMLE. Intuition
may lead us to believe the number of estimated components should approach
1 as the sample size n increases, since the true density is indeed a 1 component
mixture. In the first part of this thesis we show the probability that the
number of components of the NPMLE in this example is (strictly) larger
than 1 goes to 1 as n goes to ∞. This behaviour of the estimator is not at
all desirable!

The main ideas and tools used in the proof in Chapter 2 are as follows.
The proof provides a bound on the probability of the supremum of a certain
stochastic process exceeding 0 over the range (−∞,∞). After defining this
stochastic process of interest, we use a three term Taylor expansion to ex-
amine the ‘main part’ of the process and ‘remainder parts’. The remainder
terms in the actual stochastic process are NOT negligible, however the nature
of this particular proof only requires us to consider the event that the supre-
mum is positive. This motivates us to define and examine a modified (scaled)
version of the stochastic process. We then use tools from Csörgő et al. (1986)
to approximate the main part of the new stochastic process by an empiri-
cal process. One of the Taylor expansion remainder terms is easy to deal
with, but the part of our proof which deals with the other term requires the
use of an idea from Bickel and Chernoff (1993). The lemma which uses the
aforementioned idea uses a bound given by Revuz and Yor (1991). Finally,
the other important tool we used in this proof was the normal comparison
lemma, which was needed to address the introduction of the approximation
using the tools from Csörgő et al. (1986).

Our result suggests that it is not sensible (even in the simplest of cases) to
consider interpreting the number of components of the NPMLE as a quantity
to explore in itself, but rather only as a tool in the process of applying
NPMLE in its various contexts. This warning further supports the comments
of (for example) Hoff (2003) about maintaining caution about inference about
the mixing distribution in a mixture model, beyond the measure it represents.

Moreover, our result provides an example in which the ≥ sign of Theorem
4 of Leroux (1992) can be stated with a strict inequality.

Another aspect of non parametric maximum likelihood estimation for nor-
mal mixture contexts is how it can be applied in a density estimation setting.
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Despite the dangers of extrapolating meaning from estimates of mixture dis-
tributions in such models, using NPMLE to produce normal mixture density
estimates has been shown to be quite sensible because of the infinite degree of
smoothness of the normal density (Ghosal and van der Vaart, 2001). In our
thesis we also describe an analogous problem to that of bandwidth selection
in kernel density estimation, in the context of mixture density estimation.

The work in this thesis suggests an alternate direction for mixture re-
search away from the focus on estimating a mixture distribution’s component
number. The negative result in Chapter 2 supports methods which impose
constraints on the model parameter spaces, such as the sieve method from
Geman and Hwang (1982). This result exemplifies the well known problems
concerning standard parametric methods for normal mixtures, since the like-
lihood surface has many local extrema and is unbounded. Work exists which
does not focus intensely on component number estimates in the more gen-
erally interesting topic of non parametric maximum likelihood estimation.
van de Geer (2003) gives an overview of asymptotic theory for density esti-
mates arising from the non parametric maximum likelihood estimate of the
mixing distribution in mixture models.

In this chapter we present the necessary definitions and results to make
and refer to throughout our thesis. In Section 1.1 we define mixture models
and give a few examples of how they can be useful in practice. In Section
1.2 we describe the major background material related to the estimates pro-
duced via non parametric maximum likelihood. In Section 1.3 we discuss
some background material related to the estimating the number of mixture
components, and why this has motivated the interest in penalised likelihood
methods. In Section 1.3 we also state our main theoretical result. In Section
1.4 we show how problems about location-scale mixtures of normals can be
reformulated into simpler problems about a location mixture of normals, and
we describe why this can be useful towards practical applications such as
density estimation.

Following the above sections, we will present some discussion about the
way in which the research presented in our thesis fits into the ocean of fas-
cinating mixture model based topics already available. In Section 1.5 we
discuss some bonus topics which may be of interest in the wider context in
which our theoretical result is a part of. In Section 1.5 we also talk about
the relationship between our theoretical results in Chapter 2 with the topics
introducted in Chapter 3, and then describe some related areas in the litera-
ture that focus on problems or issues of a similar nature. We also comment
in Section 1.5 on several issues regarding the relationship between titles and
technical results, in order to clarify the areas of focus in this particular body
of work in relation to the available literature and broader topics of interest.
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In Chapter 2 we formally state our main theoretical result and give our
proof.

In Chapter 3 we present the non trivial problem of choosing the optimal
component variance to use in location mixture density estimation. We then
discuss some computational issues involved in implementing the ISDM in
R code, and offer a version which has the heaviest calculations done more
quickly via C code. This code is shown to be more than 10 times as fast as
the same algorithm written entirely in R.

1.1 Mixture models

In this section we define what we mean by mixture model and describe some
motivations for the current interest in mixture model theory to give an idea
of how expansive and useful this topic turns out to be.

1.1.1 Mixtures and mixture densities

There are often contexts where measurements have been collected from a
population with more than one distinct feature, such that some sort of mul-
timodality is observed in various summaries of the observed dataset.

One example of such a context is bimodality which seems to arise when
human heights are measured. Joiner (1975) gave an enthusiastic dramatiza-
tion as a teaching device, to introduce the concept of bimodalit. Students
from two introductory statistics classes and one introductory psychology class
were arranged according to their height and photographed to produce a ‘liv-
ing histogram’ of their heights.

7



Figure 1.1: Brian Joiner’s living histogram.

Joiner claimed that the observed average male height was significantly
different from the observed average female height, and implied this was due to
the differences in the two subpopulations’ (male/female) underlying features.

While the bimodality of human height data has since been disputed
(Watkins and Watkins, 2002), Joiner was nevertheless referring to the con-
cept of a nontrivial “mixture” of two densities.

We make the following definitions.

Definition (Family of densities). Let m be a positive integer and let T ⊆ R
m

be some index set of interest. Suppose for each t ∈ T there is a function ft,
such that ft is a density. The class of such densities

{ft : t ∈ T}

is called a family of densities.

An example of a family of densities is the normal or Gaussian family. If
we know the mean µ and variance σ2 of a normal density φµ,σ, the function
is completely specified by

φµ,σ(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (1.1)

and so the class
{φµ,σ : (µ, σ) ∈ R× (0,∞)}

is a family of densities, parametrised by the set R× (0,∞).
Note: We will use φ to mean φ0,1.

8



Definition (Mass point). Suppose F is a distribution on some T ⊆ R
n. We

will say t ∈ T is a mass point of F if the probability F puts on t is positive.
That is, F ({t}) > 0. We will also say that F puts mass/probability F ({t})
on t ∈ T .

Definition (Mixture density). Let G be a probability measure on some index
set T ⊆ R

n, and let {ft : t ∈ T} be a family of densities. Then the function
given by

f =

∫

T

ftdG(t)

is a mixture density. G is referred to as the mixing distribution of the mixture.
In the case where the mixing distribution G is a discrete distribution with

finitely many mass points t1, . . . , tk with (nonzero) probabilities p1, . . . , pk
respectively (

∑k
j=1 pj = 1), the mixture density f can be written more simply

as

f =
k∑

j=1

pjftj , (1.2)

and in this case f is called a finite mixture density.
The densities ftj in (1.2) are called component densities, and the mixture

density f is said to have k components.
A further special case of a mixture density would be where the mixing

distribution puts the probability 1 on a single point t ∈ T . We will call such
a distribution degenerate. We will denote the degenerate distribution which
puts probability 1 on the point t ∈ T by δt.

1.1.2 Location and scale parameters

Often, a family of densities may be indexed by a location or scale parameter,
or both. Here are some examples of families of densities which can be indexed
by location or scale parameters.

The exponential family of densities also has a location parameter µ, and
indeed a scale parameter λ:

{fµ,λ : (µ, λ) ∈ R× (0,∞)}, where fµ,λ(x) = λe−λ(x−µ), for x ≥ µ.

Another family of densities with a scale parameter θ (or inverse scale
parameter β = 1

θ
) is the gamma family of densities:

{fα,β : (α, β) ∈ (0,∞)2}, where fα,β(x) =
βα

Γ(α)
xα−1e−βx for x ≥ 0.
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The normal family of densities metioned by equation 1.1 can also be
parametrized by the location parameter µ ∈ R, the scale parameter σ ∈
(0,∞), or by the coordinates of location-scale parameters (µ, σ) ∈ R×(0,∞).
We will call a mixture density based on such parameterizations as a location-
mixture, scale-mixture, or location-scale mixture respectively.

We will show in Section 1.4 that a general location-scale mixture of nor-
mal densities with minimum component variance h2 can be reexpressed as a
simpler normal location mixture density. As such, in this thesis we will only
focus upon location mixtures of normal densities.

1.1.3 Examples of mixture densities and their applica-

tions

Example 1.1.1 (A finite scale-mixture of normal densities). This example
is from a popular model for outliers from Box and Tiao (1968), and it also
shows one way in which we can interpret mixing distributions.

Suppose we have the iid rvs X1, . . . , Xn, and suppose they are (usually)
standard normals. However occasionally an outlier occurs, which seems to
come from a normal with a fatter tail. If we consider the n iid unobservable
rv Yi which take the values

Yi =

{
1, with probability 0.9
10, with probability 0.1,

we can see that the value corresponding to 1 can be interpreted as “not an
outlier”, while the value corresponding to 10 can be interpreted as “outlier”.
Thus each Xi can be considered to be the observable rv from the pair (Xi, Yi),
and the distribution of X1 can be written as:

X1 ∼
{

N(0, 1), if Yi = 1
N(0, 10), if Yi = 10.

Let G be the distribution of Y1. This scenario could be alternatively
described with the notation X1 ∼ N(0, Y1), where Y1 ∼ G. The mixing
distribution G can then be interpreted as the distribution of the “(random)
variance” Y1.

An alternate way to interpret this problem is to speak of the conditional
distribution of X1 given the values of Y1:

X1|Y1 = 1 ∼ N(0, 1), X1|Y1 = 10 ∼ N(0, 10).

Another way to write this is to reflect the definition of the density of X1:

X1 ∼ 0.9N(0, 1) + 0.1N(0, 10),
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or we could simply speak of the density of X1 in this model, which we
could call f (say):

f = 0.9φ+ 0.1φ0,
√
10.

Though there are multiple possible choices for notation in mixture con-
texts, we will stick to speaking of the densities of mixtures for the sake of
consistency.

Example 1.1.2 (A finite location-mixture of normal densities). Like the
normal scale-mixture density in Example 1.1.1, a location-mixture of normal
densities only varies one type of parameter in the normal family.

Part of the notation in this thesis arises from a context where this sort
of location-mixture density shows up. In Kernel density estimation (with
the choice of a normal kernel), the n observed values x1, . . . , xn of the ran-
dom variables X1, . . . , Xn are chosen as candidates for n component means,
and equal probability is assigned to each “observed component mean”. The
bandwidth h in kernel density estimation then corresponds to the common
component variance of the mixture density

1

n

n∑

i=1

φxi,h,

and hence the Kernel density estimator is given by

1

nh

n∑

i=1

φ

(
x−Xi

h

)
,

where the function φ is the standard normal density function φ0,1.
In Chapter 3 we describe how bandwidth selection in the kernel density

estimation context shares similarities with the problem of selecting the com-
ponent variance in a location mixture density estimation setting. In fact,
as can be seen in this example, we can view kernel density estimates as an
estimate of a mixture density by assuming the probabilities of each mass
point are identically 1

n
, and choosing the estimates of the mass points by the

observed values x1, . . . , xn.
We will adopt the word bandwidth for our own purposes in later sections

as well, and typically will denote a fixed component variance in a location-
mixture of normals by h2. As in Kernel density estimation (with a Gaussian
Kernel), we will use h to refer to the component standard deviation.

Example 1.1.3 (Convolutions of normals). Consider a location-mixture of
normals where the mixing distribution is not a discrete distribution. Suppose
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X ∼ N(0, σ2), and Y ∼ N(0, τ 2). Let FX , FY be the distributions of X and
Y respectively. If Z has the mixture density given by

fZ(z) =

∫
φ0,σ(z − y)dFY (y),

then since FY is a continuous (mixing) distribution, we can write fZ(z)
as

fZ(z) =

∫
φ0,σ(z − y)dFY (y) =

∫
φ0,σ(z − y)φ0,τ(y)dy.

The integral
∫
φ0,σ(z − y)φ0,τ(y)dy is simply the convolution of the two

original densities at a point z

(φ0,σ ∗ φ0,τ )(z),

so with a basic calculation involving completing the square inside the expo-
nential terms of the integral, we can show that φ0,σ ∗φ0,τ = φ0,

√
σ2+τ2 . Hence

a mixture of normals via a normal mixing distribution yields a normal with
a greater variance.

So, normal random variables can be thought of in the mixture context
via at least two ways. One way is as a single component mixture with some
variance (σ2+ τ 2, say) via some degenerate mixing distribution, and another
way is as a location mixture of normals with variance σ2, where the mixing
distribution is itself a normal distribution with variance τ 2.

1.2 Non parametric maximum likelihood es-

timates (NPMLEs)

In this section we briefly describe a great contribution by Lindsay (1983)
which gives us a lot of information about the nature of estimates obtained
via maximising a mixture likelihood.

1.2.1 Maximum likelihood

Suppose Θ ⊆ R
m and suppose we have an iid sample X1, . . . , Xn from a

density fθ, where the parameter θ ∈ Θ is unknown.
The traditional maximum likelihood method for producing an estimate

of the parameter θ defines the likelihood function (at least in the case of
discrete Xis) as the probability the sample X1, . . . , Xn was observed, viewed
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as a function of the unknown parameter θ

ℓ(θ) =
n∏

i=1

fθ(Xi).

Since the domain of ℓ is a subset of Rm, assuming there are sufficient
conditions for the derivatives to exist, the maximiser θ̂ of ℓ(θ) can be found
by solving the equations

∂

∂θj
ℓ(θ) = 0, j = 1, . . . , m

using elementary calculus.
In a mixture model context, when we wish to view an iid sampleX1, . . . , Xn

as being from a mixture density

fQ =

∫
fθdQ(θ),

the unknown ‘parameter’ is now an unknown distribution. In this thesis we
assume the Xi are continuous random variables. The maximum likelihood
approach to estimating Q leads to the likelihood function

ℓ(Q) =

n∏

i=1

fQ(Xi) =

n∏

i=1

∫
fθ(Xi)dQ(θ),

which cannot be maximised using the traditional techniques from the para-
metric setting. The mixture model produces a non parametric problem which
gives rise to several questions, such as:

1. Does a maximiser Q̂ of ℓ(Q) even exist?

2. If it exists, is it unique?

3. If it exists, can we work out what it is (or produce an approximation
of it)?

These nontrivial (and once difficult) questions are addressed quite beau-
tifully by Lindsay (1983) with:

1. Yes,

2. Yes under some light conditions,

3. We have a characterisation of it.

We now outline some of Lindsay’s results.
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1.2.2 Lindsay’s theorems

The work of Lindsay (1983) has established that there indeed exists a max-

imiser Q̂ of ℓ(Q). Lindsay also provides conditions under which the unique-

ness of Q̂ can be established, and the nature of Q̂ is further revealed to be
that of a discrete distribution with finitely many mass points. Moreover he
shows the number of mass points K (which is random, depending upon the
sample X1, . . . , Xn) is bounded by the number of distinct observations n in
the sample.

The way these results are established is by translating the problem of
maximising ℓ(Q) into a geometric setting and drawing upon results from
convex geometry. Caratheodory’s Theorem is applied to establish existence
and uniqueness of Q̂ (uniqueness is established under some conditions which
are satisfied in the Gaussian mixture context).

A particular function of the observations X1, . . . , Xn and n, defined in
Lindsay (1983), provides an especially useful characterisation of Q̂.

A definition is now provided here. It is less general than in the original
NPMLE setting, because we will focus upon mixtures of normal densities in
this thesis.

Definition. LetQ be some probability distribution onR, and supposeX1, . . . , Xn

is an iid sample from the Gaussian location-mixture density
∫
φ(x− µ)dQ(µ).

Let DQ be given by

DQ(θ) =
n∑

i=1

{
φ(Xi − θ)∫

φ(Xi − µ)dQ(µ)
− 1

}
, for θ ∈ R. (1.3)

Lindsay characterises Q̂ by relating it to DQ(θ) with the following equiv-
alence theorem.

Theorem 1.2.1 (by Lindsay (1983)). The following are equivalent:

1. Q̂ maximises the log likelihood:
∑n

i=1 log
(∫

φ(Xi − µ)dQ(µ)
)
.

2. Q̂ minimises supθ∈R DQ(θ).

3. supθ∈R DQ̂(θ) = 0.

Moreover, the mass points of Q̂ are the values θ̂1, . . . , θ̂K satisfying:

DQ̂(θ̂i) = 0, for i = 1, 2, . . . , K.

Note that the number of mass points K of the NPMLE Q̂ is random. In
cases where the true mixing distribution Q0 is discrete with k mass points,
we may naturally desire K to give us an idea about k, if a sufficiently large
number of observations n were available.
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1.2.3 Some consequences

As a result of Lindsay’s work, the problem of producing NPMLEs of mixing
distributions has now been essentially solved, though computational speed is
still a current issue. This has led to a renewed interest in applying mixture
models to a plethora of statistical problems.

Theorem 2.1.1 by Lindsay (1983) has led to the development of many

techniques for computing estimates of Q̂ based upon observationsX1, . . . , Xn.
Slow and simplistic computational methods like applying the Expectation
Maximisation (EM) algorithm to estimate Q̂ follow immediately since Q̂ is
known to have finitely many mass points (bounded by n).

More sophisticated algorithms for computing estimates of Q̂ like the Intra
Simplex Direction Method by Lesperance and Kalbfleisch (1992) directly use

the definition and properties of DQ to (more quickly) estimate Q̂. Inciden-
tally, the ISDM is what we have implemented in our simulations in Chapter
3.

The possibility of computing estimates of Q̂ (which itself is an estimate
of a mixing distribution Q in a mixture model) has led to interest in various
aspects of mixture model applications. For example, questions about the
rates of convergence of such estimates arise, along with questions about the
properties of mixture model techniques and how to formulate or interpret a
mixture model sensibly.

A particular aspect of the Non Parametric Maximum Likelihood Estima-
tion technique relates to the interpretation of the estimated mixing distribu-
tion. It is known that the number of components K of the NPMLE typically
has very few components (compared to the sample size n), but also that
making inferences about K is a nonstandard and difficult problem (Lindsay
and Lesperance, 1995). Our own result is an asymptotic inconsistency type
result about K. It provides an example where the behaviour of K does not
reflect the nature of the true number of components in a mixture. However,
functions of Q̂ such as estimated mixture densities fQ̂ can be shown to be
sensible and useful to consider in applications such as density estimation.

In the next section, we discuss some issues related to the number of esti-
mated components in a NPMLE of a mixture model’s mixing distribution.

1.3 Estimating the number of components via

NPMLE

In this section we mention some reasons why it is preferable not to have
too many parameters in a mixture model. We then describe a result of
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Leroux (1992) about the consistent estimation of the number of components
in NPMLE, and then describe our result from Chapter 2. We then show how
our result can be used to extend the one in Leroux (1992).

1.3.1 Estimating at least the true number of compo-

nents

Suppose a finite mixture model assumesm components when the true number
of mass points in the mixture is strictly less than m. Let the true mixing
distribution in the model be called Q and let Q̂ be an estimator of Q. It was
shown by Chen (1995) that the optimal rate of convergence of Q̂ to Q is n− 1

4 ,
however in the case where the mixture truly does have m components, the
optimal rate is n− 1

2 . Using the notation from Chen (1995), suppose the true
mixing distribution G0 is an m−1 point mixing distribution and let G be the
m point mixing distribution assumed by the model. Let Ĝ be a consistent
estimator of G in the m point model. Chen (1995) shows that the estimator

Ĝ cannot converge to G0 in the L1 metric any faster than n− 1
4 , where n is

the sample size.
Penalised likelihood methods have been motivated by such reasons to ad-

dress the issue of overparametrisation. For example, Leroux (1992) proposes
to choose an estimator of the number of components m as the m̂n which
maximises

ℓn(Q̂m)− am,n, (1.4)

where ℓn is the usual log-likelihood function, Q̂m is the NPMLE defined
by Lindsay (1983) (for an m component mixture), and am,n is a penalty
term which discourages the selection of too many parameters by requiring
am+1,n ≥ am,n.

In fact, Leroux (1992) shows that the maximiser m̂n of (1.4) is at least as
large as the true number of components m.

More precisely, a special case of Theorem 4 of Leroux (1992) (where the
penalty term am,n is removed by setting each am,n = 0) can be stated as
(assuming we are talking about normal location-mixtures) follows.

Theorem 1.3.1 (Leroux (1992)). Let (the mixing distribution) F ∗ have m∗
components (m∗ = ∞ if F ∗ is not a finite distribution). Let m̂n be the
maximiser of (1.4) with each am,n = 0. We have:

lim inf
n→∞

m̂n ≥ m∗(m̂n → ∞ if m∗ = ∞) with probability 1. (1.5)
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The removal of the penalty term am,n in the above theorem brings us
back into a non penalised maximum likelihood situation. The likelihood in
the regular NPMLE setting ℓ(Q) is maximised by Q̂ of Theorem 2.1.1, which
is discrete and has K components (K could take any of the values 1, . . . , n).
The maximiser m̂n of 1.4 then, is K.

This result tells us that the number of components of the NPMLE for a
normal location mixture is at least the true number of components, for large
sample sizes.

1.3.2 Can we do any better?

In this thesis we show there exists a case where equality cannot hold in (1.5),
and hence no stronger statement of their theorem can be made.

Even if the true number of components is 1, in a normal location-mixture
model with mixing distribution Q and NPMLE Q̂, our result shows that the
probability that the number of components K is larger than 1, approaches
1, as n → ∞.

At the very least, our result provides a counter example to the idea that
the number of components of the estimate Q̂ could be interpreted as an
estimate of the number of components of Q.

1.4 Classes of location-scale mixture densi-

ties

In this section we show it is possible to reformulate seemingly more general
problems about nearly arbitrary normal location-scale mixtures into prob-
lems about a location mixture.

Normal location-scale mixture densities and normal location mixture den-
sities can be seen as a generalisation of single normal densities, when the
mixing distribution (a distribution on R × (0,∞) or R respectively) is con-
sidered to be not necessarily degenerate. Since mixing distributions on R

are simpler to estimate, compute or visualise than mixing distributions on
R × (0,∞), the question about whether simplifying a normal location-scale
mixture model to that of a normal location mixture model is sensible arises.

Definition 1.4.1. Suppose h > 0 and Q is a probability distribution on
R× [σ,∞) for all σ ≥ h. Let fQ denote the density

fQ =

∫
φµ,σdQ(µ, σ),
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and let F (a)
h be the class of densities

F (a)
h = {fQ : Q is prob distribution on R× [σ,∞) for all σ ≥ h}.

Suppose instead that Q is a distribution on R. Let fQ,h denote the density

fQ,h =

∫
φµ,hdQ(µ),

and let F (b)
h be the class

F (b)
h = {fQ,h : Q is a probability distribution on R}.

These definitions lead naturally to the following question:

“Which (out of F (a)
h and F (b)

h ) is a richer class of densities to
consider? Normal location-scale mixtures on R×[h,∞) or normal
location mixtures on R?”.

We now present some examples of what members of F (a)
h or F (b)

h might be
for any fixed h > 0.

Members of F (a)
h - Location-scale mixtures of normals

Since for each f ∈ F (a)
h there exists a Q on R× [h,∞) such that we can write

f as f =
∫
φµ,σdQ(µ, σ), we will use some specific mixing distributions Q on

R× [h,∞) to provide examples of members of F (a)
h .

Example 1.4.2. Suppose h < 1 and Q is the degenerate distribution which
places probability 1 on the point (0, 1) ∈ R×[h,∞). Then from the definition
of an integral where the measure is a point mass,

∫
φµ,σdQ(µ, σ) = φ.

In this sense, we can think of any normal density as a special case of a
location-scale mixture density, with a degenerate mixing distribution on
R× [h,∞), the possible combinations of locations-scales/means-standard de-
viations.

Since the mixing distribution Q is defined on R × [h,∞), we can draw
a copy of R2 and label one axis µ to represent possible choices of mean and
the other axis σ to represent possible choices of standard deviation. In this
example (where h < 1), Q would assign probabilities to subsets of R× [h,∞)
(the shaded region below).
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µ

σ

0

h
σ = h

Since Q is a discrete distribution with finitely many points we could depict
Q graphically to show it assigns the probability 1 to the set {(0, 1)} ⊂ R ×
[h,∞).

µ

σ

0

h
σ = h

•1 Q({(0, 1)}) = 1

The point (µ, σ) = (0, 1) with the probability 1 can be seen to specify the
mean and standard deviation of a standard normal density with probability
1.

Example 1.4.3. Suppose h = 0.2, and let Q be the mixing distribution from
Example 3.1.1. We could mark the points where Q puts positive probability
graphically on R× [h,∞).
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µ

σ

0

0.2
σ = 0.2•Q({(−1, 0.2)}) = 0.3

•Q({(0.5, 0.5)}) = 0.7

The two points (µ, σ) = (−1, 0.2) and (µ, σ) = (0.5, 0.5) can be seen to
correspond to the two component densities φ−1,0.2 and φ0.5,0.5 of the density∫
φµ,σdQ(µ, σ).

Figure 1.2: Two component densities and the resulting mixture
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Example 1.4.4. Suppose Q is a discrete distribution which places probabil-
ity pj on the point (µj, σj) ∈ R× [h,∞) for j = 1, 2, . . . . Then the mixture
density

∫
φµ,σdQ(µ, σ) is the convex combination of the normal densities φµj ,σj

∫
φµ,σdQ(µ, σ) =

∞∑

i=1

pjφµj ,σj
.

As with the previous examples, since Q is a distribution defined on the
region R× [h,∞) in a simple sort of way, we could depict it graphically.

µ

σ

0

h

σ1

σi

µ1 µ2µi

•p1
•pi

•p2

In the usual way in which the integral is defined in measure theory, we can
come up with a multitude of measures Q on the possible subsets of R×[h,∞),
some of which may not be easily depicted graphically, and we would end up
with a plethora of functions

∫
φµ,σdQ(µ, σ) in F (a)

h .

Members of F (b)
h - Location mixtures of normals

Example 1.4.5. Suppose Q is the degenerate distribution which puts prob-
ability 1 on the point 0 ∈ R. Then the mixture density

∫
φµ,hdQ(µ) = φ0,h.

Similarly to Example 1.4.2, we can think of any normal density with variance
h2 as a special case of a location mixture density with a degenerate mixing
distribution on the possible values of locations/means, R.

Note that the density φ0,h can be expressed as both φ0,h =
∫
φµ,hdQ(µ)

and as φ0,h =
∫
φµ,σdQ̃(µ, σ), when Q̃ (defined on R× [h,∞) instead of being

defined on R) puts probability 1 on the point (0, h). If we were to draw the

graphical representations of this alternate Q̃ in the same fashion to those in
Examples 1.4.2, 1.4.3 and 1.4.4, we would arrive at the following figure.
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µ

σ

0

•
h

σ = h

Note that since Q̃ puts probability 1 on the subset of R × [h,∞) speci-
fied by the line σ = h, the density in this example is a (single/degenerate)
combination of normal densities with a variance of exactly h2.

From Example 1.4.5 we could express a location mixture of normals∫
φµ,hdQ(µ) in terms of a location-scale mixture of normals as well, by con-

structing a new mixing distribution Q̃ (on R × [h,∞)) based on the the
mixing distribution Q. In fact this is true in general, as shown below.

Lemma 1.4.6. For any h > 0, F (b)
h ⊆ F (a)

h .

Proof. Suppose f ∈ F (b)
h . Then f is expressible in the form

f =

∫
φµ,hdQ(µ), for some Q on R.

Let Q̃ be the distribution on R× [h,∞) given by

Q̃(µ, σ) =

{
Q(µ) , σ = h

0 , σ 6= h
,

then we can rewrite f as

f =

∫
φµ,σdQ̃(µ, σ),

and thus f ∈ F (a)
h .

We next show an example where we reexpress a location mixture from
F (b)

h in terms of an alternate mixing distribution.
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Example 1.4.7. Let h = 0.2 and Q be the distribution given by

Q = 0.3δ−1 + 0.7Φ 1
2
,
√
0.21,

where δ−1 is the degenerate distribution putting probability 1 on the point
−1 ∈ R and Φ 1

2
,
√
0.21 is the distribution with density φ 1

2
,
√
0.21. Then the

mixture density f(x) =
∫
R
φµ,0.2(x)dQ(µ) is given by

∫

R

φµ,0.2(x)dQ(µ) = 0.3φ−1,0.2(x) + 0.7

∫

R

φµ,0.2(x)dΦ 1
2
,
√
0.21(µ)

= 0.3φ−1,0.2(x) + 0.7

∫

R

φµ,0.2(x)φ 1
2
,
√
0.21(µ)dµ

= 0.3φ−1,0.2(x) + 0.7

∫

R

φ0,0.2(x− µ)φ 1
2
,
√
0.21(µ)dµ

= 0.3φ−1,0.2(x) + 0.7φ0,0.2 ∗ φ 1
2
,
√
0.21(x).

Since
√
0.21 =

√
1
4
− 0.22, we have

φ0,0.2 ∗ φ 1
2
,
√
0.21 = φ 1

2
,
√

1
4

= φ 1
2
, 1
2
,

and so

f(x) =

∫

R

φµ,0.2(x)dQ(µ) = 0.3φ−1,0.2(x) + 0.7φ 1
2
, 1
2
(x).

This is exactly the location-scale mixture density from Example 1.4.3, which
is a member of F (a)

h !

As the above example suggests, it turns out that F (a)
h and F (b)

h are actually
equal. We now show the converse of Lemma 1.4.6 holds.

Lemma 1.4.8. For any h > 0, F (a)
h ⊆ F (b)

h .

Proof. Suppose f ∈ F (a)
h . Then with some Q on R × [h,∞), f may be

expressed as

f =

∫
φµ,σdQ(µ, σ),

and so for any x ∈ R, f(x) is given by

f(x) =

∫
φµ,σ(x)dQ(µ, σ).

For the sake of convenience, we use
∫
φµ,σdQ(µ, σ) to mean the function given

by the integral of φµ,σ with respect to the measure Q over the parameters µ
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and σ, while we use Q(A × B) to be the mass Q puts on the set A × B ⊆
R× (0,∞).

We can rearrange f(x) to be

f(x) =

∫

R×(0,h)

φµ,σ(x)dQ(µ, σ) +

∫

R×[h,∞)

φµ,σ(x)dQ(µ, σ)

= 0 +

∫

R×[h,∞)

φµ,σ(x)dQ(µ, σ),

since Q(R × [h,∞)) = 1. In the above integral, since the relevant σ must
satisfy σ ≥ h we use

φµ,σ = φµ,h ∗ φ0,
√
σ2−h2

to arrive at

f(x) =

∫

R×[h,∞)

(φµ,h ∗ φ0,
√
σ2−h2)(x)dQ(µ, σ). (1.6)

Since the convolution of φµ,h with φ0,
√
σ2−h2 is given by

φµ,h ∗ φ0,
√
σ2−h2(x) =

∫

R

φµ,h(x− y)φ0,
√
σ2−h2(y)dy,

let us make the substitution z = y + µ to get

φµ,h ∗ φ0,
√
σ2−h2(x) =

∫

R

φz,h(x)φµ,
√
σ2−h2(z)dz. (1.7)

Using (1.6) together with (1.7) provides

f(x) =

∫

R×[h,∞)

∫

R

φz,h(x)φµ,
√
σ2−h2(z)dzdQ(µ, σ). (1.8)

The function φz,h(x)φµ,
√
σ2−h2(z) is nonnegative and bounded, and hence in-

tegrable with respect to Q or the Lebesgue measure, and thus satisfies the
conditions of Fubini’s theorem. We hence swap the order of integration to
arrive at

f(x) =

∫

R

∫

R×[h,∞)

φz,h(x)φµ,
√
σ2−h2(z)dQ(µ, σ)dz

=

∫

R

φz,h(x)

∫

R×[h,∞)

φµ,
√
σ2−h2(z)dQ(µ, σ)dz.

The function g given by g(z) =
∫
R×[h,∞)

φµ,
√
σ2−h2(z)dQ(µ, σ) is a normal

location-scale mixture density. Let G denote the distribution of a random
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variable with density g, then G is some distribution on R. Since g is contin-
uous, d

dz
G(z) = g(z), so we have

f(x) =

∫

R

φz,h(x)g(z)dz

=

∫

R

φz,h(x)dG(z),

and thus f ∈ F (b)
h .

Since F (a)
h = F (b)

h , from now on we drop the superscripts and refer to
either as Fh. We will usually prefer to think of Fh using the definition of
F (b)

h , since it is a simpler characterisation. Not only are we able to simplify
our notation, we can use this equality (of classes of densities) to perform
these tasks:� Reformulate seemingly more general problems about location-scale mix-

ture densities to a simpler problem concerning a location mixture.� Use a nesting property of F (a)
h to deduce a nesting property of Fh. (See

Section 3.3)

In Chapter 3 we will describe a bandwidth selection problem which is
unsolved to our knowledge. This problem is analogous to one found in Ker-
nel density estimation, and has led us to implement a density estimation
procedure via NPMLE using the ISDM. We have implemented the ISDM
completely in R, and also written a version which calls C code to do the
heaviest computations. The latter version is faster by a factor of 10.

1.5 Our work in a wider context

In this section, we talk about how the work from our thesis fits into the
wider scheme of things, in a mixture model context. We first provide further
clarification about the nature of our own work, since this thesis has a rather
broad title. We describe the relationship between the theoretical result in
Chapter 2 with the computational density estimation problem we looked at
in Chapter 3.

We then provide a list of several aspects of our work, along with some
additional comments about some of the ways in which these ideas fit into the
wider literature.
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1.5.1 Estimated components and density estimation

Besides both belonging to the huge area of mixture model research, it may
appear as though the contents of Chapter 2 and Chapter 3 are quite unre-
lated. We describe below how the ideas in our thesis developed to show how
they sit relative to each other.

Section 1.4 refers to ideas from Magder and Zeger (1996). In fact Lemma
1.4.8 is a less general version of Theorem 1 from Magder and Zeger (1996).
The paper by Magder and Zeger (1996) is what motivated the central di-
rection of this thesis. That is, we were interested in the possibilities offered
by reformulating problems about general location-scale mixtures of normals
into simpler problems about location mixtures of normals. The bandwidth
parameter h as discussed in this chapter (and in Chapter 3) corresponds to
the one in Magder and Zeger (1996) as well.

Magder and Zeger (1996) mention that their experience suggests the prob-
lem of choosing h based upon the data alone would be difficult without ex-
tremely large data sets. Our experiences described in Chapter 3 echo this
sentiment. In fact, our experiences with this problem have also highlighted
how difficult it is to implement a (fast) computational procedure to work with
even relatively small data sets in exploring sensible choices of bandwidth h.

The relationship between Chapter 2 and Chapter 3, then, is best described
without technicalities or reference to mathematics. We tried to approach this
bandwidth selection problem, but failed to produce any satisfying or useful
results, in multiple directions of our search. At one point, we noticed in our
simulation studies that as we decreased h towards 0, the number of estimated
components of the NPMLE given by our code would tend to be large. In the
other direction, when we chose ridiculously large h values, the number of
estimated components of the NPMLE would tend to decrease.

From this rough and intuitive observation we became interested in study-
ing the distribution of the number of components of the NPMLE. Our motiva-
tion was based on the hopes that an understanding about estimated compo-
nent number would provide insight towards the seemingly related bandwidth
parameter h. It was in this direction of focus that we ended up with a proof
of a type of inconsistency regarding the number of estimated components
of the NPMLE. Note that this notion of ‘inconsistency’ is described more
carefully in Chapter 2.

The result in Chapter 2 has stemmed from interest in the work of Chapter
3, however it also stands alone as a theoretical result independent of our
motivations for looking at it. In this sense these two parts of our thesis
are quite unrelated. As such, we chose not to express the main result in
Chapter 2 under the framework and notation from Chapter 3, in order to
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avoid overcomplicating the idea with extra context.
Note that our thesis title is ‘Some aspects of non parametric maximum

likelihood for normal mixtures’. Chapters 2 and 3 both involve NPMLEs, but
in different ways. The former chapter concerns a discrete random variable,
and the latter is motivated by mostly known properties of density estimation
based on NPMLE. To clarify potential confusion between our topics and
others’ work based upon similar titles; although we provide an asymptotic
result about the nature of a discrete random variable K, we do not provide
any asymptotic results about density estimates produced via NPMLEs. The
article by van de Geer (2003) does an excellent job of describing aspects of
asymptotic theory regarding these density estimates.

In fact, this work done by van de Geer (2003), along with others such
as Ghosal and van der Vaart (2001) and Geman and Hwang (1982) point to
the idea that estimating the density of the data in such models (in the case
of Geman and Hwang (1982) there is a sieve model) works quite well. Note
again that these are articles about density estimation in a mixture context,
not articles about properties of the mixing distribution estimates which lead
to the density estimates. For this reason (along with simple fascination with
the bandwidth selection comments from Magder and Zeger (1996)), we were
motivated to look at density estimation via NPMLE.

1.5.2 Our contribution

There is a large literature on ways of making the NPMLE consistent, for
example using sieve methods, penalisation, or other approaches to estimator
constraint. Using a sieve (eg Grenander (1981), Geman and Hwang (1982)),
penalised likelihood method (Cathy and Bertrand (2011), Leroux (1992)) or
some other form of regularisation is known to be sufficient to ensure consis-
tency for estimating the number of mass points.

However the literature does not provide a large amount of discussion
about whether it is necessary. Leroux (1992) discusses a result which suggests
that the NPMLE might overestimate the number of components of a mixture
(the result says the number estimated will be ≥ the true number), but it does
not confirm whether it definitely will overestimate it. Our result in Chapter
2 extends this idea from Leroux (1992) to say that yes, it might overestimate
the number of components as noted by Leroux (1992), and in fact it will
overestimate it.

At this time of writing, the literature generally focuses on estimating
mixture densities (not mixing distributions in themselves). Otherwise, the
focus is generally on providing work to show some kind of regularisation is
sufficient, rather than on the question “is this regularisation necessary?”. In
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the context of others’ work on such topics, our main theoretical result says
“yes, their work is necessary”.
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Chapter 2

Inconsistency of K for number
of components

In this chapter we provide an example in which the Non Parametric Maxi-
mum Likelihood Estimate (NPMLE) K of the number of components k of a
normal mixture is inconsistent for k. Section 2.1 describes this example which
we have called Theorem 2.1.2, and a proof of this theorem is given in Section
2.3. A brief list of the main results we required in our proof is presented
in Section 2.2. Some bonus details for this proof are given in the following
Section 2.4, since they do not contribute much to the main proof ideas. Sec-
tion 2.5 contains a recount of a simulation we have done to demonstrate this
inconsistency result in practice.

2.1 Introduction

The number of mass points K of the Non Parametric Maximum Likelihood
Estimate (NPMLE) Q̂ of an unknown mixing distribution as defined by Lind-
say (1983) is known to be random. In this section we describe an inconsis-
tency result regarding K.

Suppose we model X1, . . . , Xn as iid with density f given by the normal
location-mixture with unit variance

f(x) =

∫

R

φ(x− µ)dQ0(µ), (2.1)

where Q0 denotes the unknown mixing distribution of the model. As de-
scribed in Chapter 1 Section 1.2, Lindsay (1983) shows the NPMLE Q̂ of Q0

exists, is a discrete distribution, and has finitely many mass points. Lindsay
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defines

DQ(θ) =

n∑

i=1

{
φ(Xi − θ)∫

φ(Xi − µ)dQ(µ)
− 1

}
, (2.2)

and characterises Q̂ by relating it to DQ(θ) with the following equivalence
theorem. Note that this is a restatement of an aforementioned result in
Chapter 1, for the reader’s convenience.

Theorem 2.1.1 (Lindsay (1983)).

1. Q̂ maximises the log likelihood:
∑n

i=1 log
(∫

φ(Xi − µ)dQ(µ)
)
.

2. Q̂ minimises supθ∈R DQ(θ).

3. supθ∈R DQ̂(θ) = 0.

Moreover, the mass points of Q̂ are the values θ̂1, . . . , θ̂K satisfying:

DQ̂(θ̂i) = 0, for i = 1, 2, . . . , K.

Note that the number of mass points K of the NPMLE Q̂ is random. In
cases where the true mixing distribution Q0 is discrete with k mass points,
we may naturally desire K to give us an idea about k, if a sufficiently large
number of observations n were available. However in this chapter we present
a simple example to show K does not have this desired property.

Theorem 2.1.2. Suppose X1, . . . , Xn are iid with the mixture density given
by (2.1). Let K be the number of mass points of the NPMLE Q̂ of the true
mixing distribution Q0, as characterised by Lindsay (1983). Suppose Q0 has
k = 1 mass point, and for simplicity suppose this mass point is 0. Then

P (K = 1) → 0, as n → ∞.

Theorem 2.1.2 provides a simple example which shows the estimated num-
ber of mixing distribution components K is not consistent for the true num-
ber of components k. This suggests that the classical maximum likelihood
approach to estimating an unknown mixing distribution should be handled
with caution if the number of components of a population’s density are to
be estimated using the NPMLE technique. This also justifies the strategy of
penalising the likelihood (Leroux, 1992) which can estimate the number of
mass points consistently.
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2.2 Background

This section contains some definitions and theorems from the literature about
stochastic processes, empirical processes and extreme value theory which we
will use in the proof of Theorem 2.1.2.

The following theorem is from Bickel and Chernoff (1993, p 88-9) who
in turn quote it from Billingsley (1968). It also follows as a consequence of
Theorem 2.1 of Chapter 1 of Revuz and Yor (1994, page 25).

Theorem 2.2.1 (Kolmogorov Bound). Suppose Z(t) is a stochastic process
which satisfies

E|Z(s)− Z(t)|2 ≤ c(s− t)2,

for 0 ≤ s ≤ t ≤ 1, then

P ( sup
0≤t≤1

|Z(t)− Z(0)| ≥ z) ≤ Kc/z2 (2.3)

where K is an absolute constant.
If the interval [0, 1] over which Z(t) is defined is replaced by one of length

L, then the bound Kc/z2 in (2.3) is replaced by Kc(L/z)2, and we have

P ( sup
0≤t≤L

|Z(t)− Z(0)| ≥ z) ≤ Kc(L/z)2. (2.4)

The part of this theorem which talks about intervals of length L is listed
as a corollary after the proof, in Bickel and Chernoff (1993).

Csörgő et al. (1986) provides us with theorems about empirical processes
which enable us to construct a useful approximation in our proof of Theorem
2.1.2. The following definitions are necessary to state the theorem we wish
to use.

Definition (Empirical distribution function). For the rv X1, . . . , Xn, let Fn

denote their empirical distribution function

Fn(x) =
1

n

n∑

i=1

1(Xi≤x),

where 1(Xi≤x) is the indicator function returning 1 if (Xi ≤ x) is true and 0
otherwise.

Definition (Uniform empirical process). For u ∈ [0, 1] let αn(u) be the
process

αn(u) =
√
n (Fn(u)− u) ,

where Fn(u) is the empirical distribution function of n independent uniform
U(0, 1) random variables.
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Definition (L∗). Let L∗ denote the class of functions on (0, 1) given by

L∗ = {f : f is left continuous and non decreasing on (0, 1)}.

Definition (L∗-decomposable). A class of functions L is said to be L∗-
decomposable if each ℓ ∈ L can be written as ℓ = ℓ1 − ℓ2, where ℓ1, ℓ2 ∈ L∗.

Here is an example of a L∗-decomposable class of functions. Let L be
given by

L = {ax2 + bx+ c, x ∈ (0, 1)|a, b, c ∈ R}.
Then the elements of L are just quadratics defined over (0, 1). Each parabola
f can be thought of as the difference between two increasing functions g and
h. For example, the parabola f(x) = x(1 − x) can be written as f(x) =
g(x)− h(x), where

g(x) =

{
x(1− x), x ∈ (0, 1

2
]

1
4
, x ∈ (1

2
, 1)

,

h(x) =

{
0, x ∈ (0, 1

2
]

x(x− 1), x ∈ (1
2
, 1)

.
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Figure 2.1: f = g − h, g (top) is the increasing part of f , h (middle) is the
decreasing part

Note that although both g and h are increasing functions, h can be
thought of as the function which provides information about the ‘decreas-
ing part’ of f .

Definition 2.2.2 (Nn(δ)). Let Ln denote any sequence of L∗-decomposable
classes, and let δ > 0.

Nn(δ) = sup
ℓ∈Ln

sup
0≤u≤δ

{
(|ℓ1(u)|+ |ℓ2(u)|+ |ℓ1(1− u)|+ |ℓ2(1− u)|)u 1

2

}
.

We will use the following theorem by Csörgő et al. (1986) in this chapter.

Theorem 2.2.3 (Csörgő et al. (1986)). Let Ln (n = 1, 2, . . . ) be any sequence

of L∗-decomposable classes, let δn = (logn)/n
1
2 . If Nn(δn) = o(1), n → ∞,

then there exists a probability space (Ω,A, P ) with independent U(0, 1) rv
U1, U2, . . . and a sequence of Brownian bridges {Bi(u); 0 ≤ u ≤ 1} (i =
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1, 2, . . . ) such that

En = sup
ℓ∈Ln

∣∣∣∣∣

∫ 1

0

ℓ(u)dαn(u)−
∫ 1−1/n

1/n

ℓ(u)dBn(u)

∣∣∣∣∣ = op(1).

The proof of Theorem 2.2.3 bounds En by three terms E
(1)
n , E

(2)
n , and

E
(3)
n , and proceeds to show that E

(j)
n = Nn(δn)Op(1), for j = 1, 2, 3. Thus (if

we assume Nn(δn) → 0 as n → ∞) we may state Theorem 2.2.3 as:

Theorem 2.2.4. Let Ln (n = 1, 2, . . . ) be any sequence of L∗-decomposable

classes, let δn = (log n)/n
1
2 . There exists a probability space (Ω,A, P ) with

independent U(0, 1) rv U1, U2, . . . and a sequence of Brownian bridges {Bi(u); 0 ≤
u ≤ 1} (i = 1, 2, . . . ) such that

En = sup
ℓ∈Ln

∣∣∣∣∣

∫ 1

0

ℓ(u)dαn(u)−
∫ 1−1/n

1/n

ℓ(u)dBn(u)

∣∣∣∣∣ = Nn(δn)Op(1).

The following theorem of Leadbetter and Rootzén (1988) gives us a way of
comparing the behaviour of the maximum of a sequence of dependent normal
random variables with the maximum of a sequence of independent normal
random variables.

Theorem 2.2.5 (Normal comparison lemma (Leadbetter and Rootzén, 1988)).
Suppose ζ1, . . . , ζn are standard normal variables with covariance matrix Λ1 =(
Λ1

ij

)
and η1, . . . , ηn are standard normal variables with covariance matrix

Λ0 =
(
Λ0

ij

)
. Let ρij = max

(
|Λ1

ij|, |Λ0
ij|
)
, and let u1, . . . , un be real numbers.

Then

P (ζi ≤ ui for i = 1, 2, . . . , n)− P (ηi ≤ ui for i = 1, 2, . . . , n)

≤ 1

2π

∑

1≤i<j≤n

(Λ1
ij − Λ0

ij)
+(1− ρ2ij)

− 1
2 exp

(
u2
i + u2

j

2(1 + ρij)

)
,

where (x)+ = max(0, x). In particular, if maxi 6=j |ρij | = δ < 1, then

P (ζi ≤ ui for i = 1, 2, . . . , n)− P (ηi ≤ ui for i = 1, 2, . . . , n)

≤ K
∑

1≤i<j≤n

(Λ1
ij − Λ0

ij)
+ exp

(
u2
i + u2

j

2(1 + ρij)

)

for some constant K depending only on δ. Also,

|P (ζi ≤ ui for i = 1, 2, . . . , n)− P (ηi ≤ ui for i = 1, 2, . . . , n)|

≤ 1

2π

∑

1≤i<j≤n

|Λ1
ij − Λ0

ij|(1− ρ2ij)
− 1

2 exp

(
u2
i + u2

j

2(1 + ρij)

)
,

and when δ < 1 the factor 1
2π
(1− ρ2ij)

− 1
2 can be replaced by K.
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2.3 Our proof

The main theorem of this chapter is proven in this section. Some of the
calculations and arguments for the proof of this theorem are deferred to
Section 2.4 for the sake of clarity.

Proof of Theorem 2.1.2. The general model given by (2.1) says X1, . . . , Xn

are iid with density f given by

f(x) =

∫

R

φ(x− µ)dQ0(µ).

Let δµ be the degenerate distribution which places probability 1 on the mass
point µ. We will never use the integer n to refer to a mass point of any
distribution, so we hope there is no confusion between a distribution δµ and
a sequence value δn in their various contexts.

In our theorem we suppose that Q0 is δ0. This largely simplifies the form
of the density and tells us that X1, . . . , Xn are just standard normal random
variables.

Since we are interested in a property concerning the NPMLE of Q0 =
δ0, we make the following definitions. Let G denote the set of degenerate
distributions on R

G = {δµ on R : µ ∈ R},
and

Q̂1 = argmax
δ∈G

n∑

i=1

log

∫
φ(Xi − t)dδ(t).

For any distribution δµ ∈ G, or equivalently for any choice of mass point

µ ∈ R,
∫
φ(Xi − t)dδµ(t) = φ(Xi − µ). So Q̂1 is simply the degenerate

distribution δµ̂, where µ̂ maximises the log likelihood

n∑

i=1

log φ(Xi − µ).

Hence Q̂1 = δX̄ , where X̄ = 1
n

∑n
i=1Xi.

We remark here that while Q̂1 is the maximum likelihood estimate of Q0

over the restrictive class of distributions G, it is not necessarily the NPMLE
Q̂ of Q0, as defined by Lindsay’s Theorem 2.1.1. However if Q̂1 satisfies

sup
θ∈R

DQ̂1
(θ) = 0,
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then by Theorem 2.1.1 Q̂1 is the NPMLE Q̂. If the NPMLE Q̂ is Q̂1, then it
must have K = 1 components since Q̂1 is degenerate. Thus

P (K = 1) = P (Q̂1 = Q̂) = P

(
sup
θ∈R

DQ̂1
(θ) = 0

)
. (2.5)

From (2.2) we have

DQ̂1
(θ) =

n∑

i=1

{
φ(Xi − θ)∫

φ(Xi − µ)dQ̂1(µ)
− 1

}
,

and since Q̂1 puts probability 1 on X̄ , we can simplify DQ̂1
(θ) to

DQ̂1
(θ) =

n∑

i=1

{
φ(Xi − θ)

φ(Xi − X̄)
− 1

}

=
n∑

i=1

{
e−(θ2−X̄2)/2+(θ−X̄)Xi − 1

}
. (2.6)

Since DQ̂1
(X̄) =

∑n
i=1 {1− 1} = 0, supθ∈RDQ̂1

(θ) ≥ 0, and thus

P

(
sup
θ∈R

DQ̂1
(θ) = 0

)
= 1− P

(
sup
θ∈R

DQ̂1
(θ) > 0

)
,

so to prove our result it is sufficient to show

P

(
sup
θ∈R

DQ̂1
(θ) > 0

)
→ 1 as n → ∞.

Let {Dn(θ, X̄)}θ∈R be the stochastic process given byDn(θ, X̄) = 1√
n
DQ̂1

(θ),
then

P

(
sup
θ∈R

DQ̂1
(θ) > 0

)
= P

(
sup
θ∈R

Dn(θ, X̄) > 0

)
.

The following figures provide some typical realisations of what Dn(θ, X̄)
looks like in practice. The R code used to generate these examples is de-
scribed in more detail in Section 2.5.
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Figure 2.2: Samples to left, Dn(θ, X̄) to right

Figure 2.3: Samples to left, Dn(θ, X̄) to right
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Let m = miniXi and M = maxi Xi. Note that DQ̂1
(m) > DQ̂1

(θ) for
θ < m, because |Xi − θ| > |Xi − m| for all i in that range. Similarly note
that DQ̂1

(M) > DQ̂1
(θ) for θ > M , and so the supremum of Dn(θ, X̄) lies

within the range [m,M ]. This can also be seen graphically in Figures 2.2
and 2.3. Within this proof we will tend to look at Dn(θ, X̄) over intervals for
θ where |θ| ≤

√
2 logn, since maxXi behaves like

√
2 logn (see Leadbetter

and Rootzén (1988)).
The next part of our proof aims to approximate P (supθ∈R Dn(θ, X̄) > 0)

by something for which it is easier to obtain the desired type of bounds.
Consider the Taylor expansion of Dn(θ, X̄) about X̄ = 0

Dn(θ, X̄) = Dn(θ, 0) + X̄
∂Dn

∂η
(θ, η)

∣∣∣∣
η=0

+
X̄2

2

∂2Dn

∂η2
(θ, η)

∣∣∣∣
η=αX̄

,(2.7)

for some α ∈ [0, 1]. We can write (2.7) as

Dn(θ, X̄) = Dn(θ, 0)−
√
nX̄An(θ) +

n

2
X̄2 1√

n
Bn(θ, αX̄), (2.8)

where An(θ) and Bn(θ, αX̄) are given by the random sums

An(θ) =
1

n

n∑

i=1

Xie
θXi− θ2

2 ,

Bn(θ, αX̄) =
1

n

n∑

i=1

(
(αX̄ −Xi)

2 + 1
)
e(θ−αX̄)Xi− θ2−(αX̄)2

2 .

The details where we show (2.7) can be written as (2.8) are included in
Section 2.4. Note that E(An(θ)) = θ. From (2.8) we can rewrite Dn(θ, X̄) as

Dn(θ, X̄) = Dn(θ, 0)−
√
nX̄θ +

√
nX̄ (θ −An(θ)) +

n

2
X̄2 1√

n
Bn(θ, αX̄).

(2.9)

We wish to think of Dn(θ, 0) −
√
nX̄θ as the main part of Dn(θ, X̄), and

we wish to think of the terms
√
nX̄(θ − An(θ)) and n

2
X̄2 1√

n
Bn(θ, αX̄) as

negligible remainder terms.
We now state a lemma about the last term in (2.9). The proof is given in

Section 2.4. It is insignificant compared to Dn(θ, 0)−
√
nX̄θ in the following

sense.

Lemma 2.3.1. Let Bn(θ, αX̄) = 1
n

∑n
i=1((αX̄−Xi)

2+1)e−
1
2
(θ2−(αX̄)2)+(θ−αX̄)Xi.

Let C ≥
√
2, 0 < ǫC2 < 1

2
, Rn → ∞ as n → ∞ and Rn = o(

√
n

logn
). Let
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γn = R2
n

n
+ 2Rn√

n
C
√
log n. Suppose cn > 0 such that

nǫC2− 1
2 e2γn = o(cn).

Then for any |θ| ≤ C
√
log n,

P

(
1√
n
Bn(θ, αX̄) > cn

)
→ 0, as n → ∞.

Actually even if Rn =
√

n
logn

, this probability can approach 0 with an

appropriate choice of cn since γn approaches a constant in this case.
This lemma gives us quite a bit of freedom when it comes to the choice

of cn. It will turn out that choosing some appropriate cn = o(1) would do
for the purposes of this proof. However choosing certain sequences cn where
cn → ∞ seems useful for extensions of our result, so we do not wish to think
of the cn in Lemma 2.3.1 as necessarily approaching 0.

It would be nice to provide a similar result about the other remainder-like
term in (2.9), however we show a weaker result which suggests to us that a
sort of standardisation of our process would be useful for the purposes of this
proof.

Lemma 2.3.2. Let An(θ) =
1
n

∑n
i=1Xie

θXi−θ2/2. For L > 1 and z > 0

P ( sup
−L≤θ≤L

e−θ2/2|θ − An(θ)| ≥ z) ≤ K
L4

nz2
+ 12(1− Φ(

√
nz

12L
)),

where K is an absolute constant.

Since E(Dn(θ, 0)) = 0, Dn(θ, 0)− θ
√
nX̄ is a mean 0 process. Section 2.4

contains a calculation showing

Var(Dn(θ, 0)−
√
nX̄θ) = eθ

2 − 1− θ2, (2.10)

so Var(Dn(θ, 0)−
√
nX̄θ) ∼ eθ

2
as θ → ∞.

We are motivated by (2.10) and Lemma 2.3.2 to consider the stochastic
process (2.9) scaled at each point θ by e−θ2/2. Let

D̃n(θ, X̄) = e−θ2/2Dn(θ, X̄)

= e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)

+
√
nX̄e−θ2/2(θ − An(θ)) +

n

2
X̄2e−θ2/2 1√

n
Bn(θ, αX̄),
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and let R1(θ) denote the remainder terms

R1(θ) =
√
nX̄e−θ2/2(θ − An(θ)) +

n

2
X̄2e−θ2/2 1√

n
Bn(θ, αX̄). (2.11)

If we choose an increasing range to apply Lemma 2.3.2 to, such as [−Ln, Ln] =
[−C

√
log n, C

√
log n], and consider a sequence cn > 0 which works with

Lemma 2.3.1 (for example 0 < cn = ǫ < 1 for all n), then Lemma 2.3.2 shows
that P

(
sup|θ|≤C

√
lognR1(θ) ≥ cn

)
→ 0 as n → ∞. Thus a stochastic process

of interest is

D̃n(θ, X̄) = e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)
+R1(θ). (2.12)

This scaling of Dn(θ, X̄) by a positive value e−θ2/2 at each θ ∈ R cannot
change whether or not any part of it is positive. Therefore our probability of
interest can be reexpressed as

P

(
sup
θ∈R

Dn(θ, X̄) > 0

)
= P

(
sup
θ∈R

e−θ2/2Dn(θ, X̄) > 0

)
= P

(
sup
θ∈R

D̃n(θ, X̄) > 0

)
.

The following picture gives an example of what D̃n(θ, X̄) looks like in prac-
tice. It was obtained from the same samples described in Figures 2.2 and
2.3.

Figure 2.4: D̃n(θ, X̄) for various n
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Regarding the first term in (2.12), we now wish to use some results from
Csörgő et al. (1986) to approximate e−θ2/2

(
Dn(θ, 0)−

√
nX̄θ

)
with a stochas-

tic process which is the sum of a Gaussian part and a less significant remain-
der part. The next section of this proof reexpresses e−θ2/2

(
Dn(θ, 0)−

√
nX̄θ

)

in terms of an empirical process which has the same distribution.
Let U1, . . . , Un be iid uniform U(0, 1), and let Fn(u) denote their empirical

distribution function given by

Fn(u) =
1

n

n∑

i=1

1(Ui≤u),

and let αn(u) be the uniform empirical process defined in Csörgő et al. (1986)
by

αn(u) =
√
n (Fn(u)− u) .

In Section 2.4 we show

e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)

has the same distribution as
∫ 1

0

ℓθ(u)dαn(u), (2.13)

where ℓθ(u) is the deterministic function on (0, 1) given by

ℓθ(u) = e−θ2/2

(
φ(Φ−1(u)− θ)

φ(Φ−1(u))
− 1− θΦ−1(u)

)
. (2.14)

We use the above along with (2.12) to arrive at

P

(
sup
θ∈R

D̃n(θ, X̄) > 0

)
= P

(
sup
θ∈R

Sn(θ) > 0

)
,

where

Sn(θ) =

∫ 1

0

ℓθ(u)dαn(u) +R1(θ). (2.15)

Now that our probability of interest is described in terms of the empirical
processes

∫ 1

0
ℓθ(u)dαn(u), we wish to use 2.2.4, to approximate

∫ 1

0
ℓθ(u)dαn(u)

with a Gaussian process.
We now restrict our attention to θ in the interval [−C

√
logn, C

√
log n].

Let Ln be the sequence of classes of functions on (0, 1) given by

Ln = {ℓθ : −C
√

log n ≤ θ ≤ C
√

logn}, (2.16)
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where each ℓθ is given by (2.14). We show that each Ln is L∗-decomposable
in Section 2.4. Thus by Theorem 2.2.4 of Csörgő et al. (1986) we have

En = sup
ℓθ∈Ln

∣∣∣∣∣

∫ 1

0

ℓθ(u)dαn(u)−
∫ 1−1/n

1/n

ℓθ(u)dBn(u)

∣∣∣∣∣ = Nn(δn)Op(1),

where δn = logn√
n
, and where Nn(δn) is given by Definition 2.2.2. We have the

following lemma about Nn(δn), which is proven is Section 2.4.

Lemma 2.3.3. Let Ln be given by (2.16), and Nn(δn) be as in Definition

2.2.2. With δn = logn√
n
, we have for 1− δn ≥ Φ(e

1
2 ),

Nn(δn) = O(x
− 1

2
n )

where xn = Φ−1(1− δn).

We write (2.15) in terms of a nicer Gaussian process and a couple of

remainder terms by splitting
∫ 1

0
ℓθ(u)dαn(u) as follows.

∫ 1

0

ℓθ(u)dαn(u) =

∫ 1

0

ℓθ(u)dαn(u)−
∫ 1−1/n

1/n

ℓθ(u)dBn(u) +

∫ 1−1/n

1/n

ℓθ(u)dBn(u)

=

∫ 1−1/n

1/n

ℓθ(u)dBn(u) +R2(θ),

where

R2(θ) =

∫ 1

0

ℓθ(u)dαn(u)−
∫ 1−1/n

1/n

ℓθ(u)dBn(u). (2.17)

Since supℓθ∈Ln
|R2(θ)| = En = Nn(δn)Op(1), we know that the approxima-

tion by Csörgő et al. (1986) is useful for looking at Sn(θ) over the interval

[−C
√
log n, C

√
log n]. We can also write

∫ 1−1/n

1/n
ℓθ(u)dBn(u) as

∫ 1−1/n

1/n

ℓθ(u)dBn(u) =

∫ 1−1/n

1/n

ℓθ(u)dBn(u)−
∫ 1

0

ℓθ(u)dBn(u) +

∫ 1

0

ℓθ(u)dBn(u)

=

∫ 1

0

ℓθ(u)dBn(u) +R3(θ),

where

R3(θ) =

∫ 1−1/n

1/n

ℓθ(u)dBn(u)−
∫ 1

0

ℓθ(u)dBn(u). (2.18)
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We show that our situation satisfies the conditions of Corollary 3.4 of
Csörgő et al. (1986) in Section 2.4. Thus we apply Csörgő et al. (1986)’s
corollary to arrive at supℓθ∈Ln

|R3(θ)| = op(1).
Since each Bn(u) is a Brownian bridge, we may consider it as a process

Bn(u) = Wn(u)− uWn(1) where Wn(u) is a Brownian motion. Thus

∫ 1

0

ℓθ(u)dBn(u) =

∫ 1

0

ℓθ(u)d {Wn(u)− uWn(1)}

=

∫ 1

0

ℓθ(u)dWn(u)−Wn(1)

∫ 1

0

ℓθ(u)du

=

∫ 1

0

ℓθ(u)dWn(u),

since
∫ 1

0
ℓθ(u)du = E(ℓθ(U1)) = 0.

Thus we can write
∫ 1

0
ℓθ(u)dαn(u) as

∫ 1

0

ℓθ(u)dαn(u) =

∫ 1

0

ℓθ(u)dWn(u) +R2(θ) +R3(θ).

From (2.15) we thus have

Sn(θ) =

∫ 1

0

ℓθ(u)dWn(u) +R1(θ) +R2(θ) +R3(θ). (2.19)

SinceWn(u) is a Brownian motion, and each ℓθ is a deterministic function,

the process
∫ 1

0
ℓθ(u)dWn(u) is a Gaussian process. Let

Gn(θ) =

∫ 1

0

ℓθ(u)dWn(u) and

Rn(θ) = R1(θ) +R2(θ) +R3(θ).

From (2.19) we can express Sn(θ) as the sum of the Gaussian process Gn(θ)
and the remainder process Rn(θ)

Sn(θ) = Gn(θ) +Rn(θ).

The next idea in this proof makes use of the fact that we only wish to
show P (supθ∈R Sn(θ) > 0) tends to 1 as n → ∞. If we choose any grid of
values Θn = {θ1, . . . , θan} ⊂ R, we can obtain the bound

P

(
sup
θ∈R

Sn(θ) > 0

)
≥ P

(
max
θ∈Θn

Sn(θ) > 0

)
. (2.20)
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If we can find an appropriate grid of values Θn such that the right hand side
of (2.20) tends to 1 as n → ∞ then we can prove our result. This allows us to
concentrate on the easier problem of examining when the maximum of count-
ably many rv {Sn(θi)}θi∈Θn is positive. Before we choose a grid Θn ⊂ R, here
is a lemma which we will use to provide a bound for P (maxθ∈Θn Sn(θ) > 0).

Lemma 2.3.4. Consider any stochastic process Sn(θ) over Θn = {θ1, . . . , θan} ⊂
R which is the sum of two others

Sn(θ) = Gn(θ) +Rn(θ), over θ ∈ Θn.

Suppose for some cn > 0

P

(
max
θ∈Θn

|Rn(θ)| ≥ cn

)
≤ ǫ(1)n , (2.21)

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
≤ ǫ(2)n , (2.22)

then

P

(
max
θ∈Θn

Sn(θ) > 0

)
≥ 1− (ǫ(1)n + ǫ(2)n ).

We prove Lemma 2.3.4 in Section 2.4. We wish to choose an appropriate
Θn such that conditions (2.52) and (2.53) are satisfied, so that Lemma 2.3.4
gives us

P

(
sup
θ∈R

Sn(θ) > 0

)
≥ 1− (ǫ(1)n + ǫ(2)n ),

for some ǫ
(1)
n and ǫ

(2)
n which will tend to 0 as n → ∞. The remainder of this

proof concerns choosing an appropriate Θn and describing the terms ǫ
(1)
n and

ǫ
(2)
n .

We next show the Gaussian part of our process (2.3) satisfies Condition
2.53 of Lemma 2.3.4. To do this we will need the following two lemmas,
which are each proven in Section 2.4.

The following lemma provides a bound for P (maxθ∈Θn Gn(θ) ≤ cn) when
it is given Gn(θ), Θn and cn > 0. The bound will depend on cn, the number
of elements of Θn, the covariance structure of Gn(θ) and the chosen locations
θ ∈ Θn. The lemma after this one will concern the choice of Θn and cn such
that the bound given here is useful.

Lemma 2.3.5. Let Gn(θ) =
∫ 1

0
ℓθ(u)dWn(u), where ℓθ(u) is given by (2.14)

and Wn(u) is a Brownian motion. Let Θn = {θ1, . . . , θan} ⊂ R. Let cn > 0
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and for θ ∈ Θn let

σ2(θ) = Var(Gn(θ)),

Λ1
ij =

Cov (Gn(θi), Gn(θj))

σ(θi)σ(θj)
,

un(θ) =
cn
σ(θ)

,

ρn = max
i 6=j

|Λ1
ij|.

If ρn < 1 then

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
≤ ǫ(2)n ,

where

ǫ(2)n =

an∏

i=1

Φ(un(θi)) +
an(an − 1)

4π
ρn(1− ρ2n)

− 1
2 .

This next lemma constructs conditions for choosing Θn and cn > 0 such
that Lemma 2.3.5 returns a bound ǫ

(2)
n which tends to 0 as n → ∞.

Lemma 2.3.6. Let Gn(θ), σ(θ)2, Λ1
ij, un(θ), ρn and ǫ

(2)
n be defined as in

Lemma 2.3.5, and let cn > 0.
Let 0 < tn ≤ Tn, and divide the interval [tn, Tn] into an/2 equally spaced

points, and divide the interval [−Tn,−tn] into an/2 points with the same
spacings. Let θ1, . . . , θan be the names of these an points (starting from left
to right), and let the spacing between each of these points (in the intervals
excluding 0) be ∆n = θj − θj−1.

Suppose we have the following limits as n → ∞:� cn → c, where c is finite� Φ(cn)
an → 0� tn → ∞� a2ne

−∆2
n/2 → 0.

Then for these θ1, . . . , θan , we have ǫ
(2)
n → 0 as n → ∞.
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We choose Tn = C
√
log n, where C ≥

√
2 because we wish to keep in

mind Lemma 2.3.1. We choose tn → ∞ much slower than Tn and an roughly
equal to

√
log

√
logn so that a2ne

−∆2
n/2 looks roughly like

e
−C2 log n+(log log

√
log n) log

√
log n

2 log
√

logn .

Choosing any cn → c < ∞ will provide us with an ǫ
(2)
n → 0 as n → ∞.

Our remainder terms Rn(θ) satisfy Condition 2.52 with an ǫ
(1)
n which tends

to 0 as n → ∞. We have already shown that R1(θ) → 0 as n → ∞, and
R2(θ) and R3(θ) have been uniformly bounded over θ ∈ [−C

√
logn, C

√
log n]

using the theorem and corollary from Csörgő et al. (1986) by terms which
tend to 0 as n → ∞. Thus we have proven Theorem 2.1.2.

2.4 Details and calculations

This section contains the details and calculations which were omitted in Sec-
tion 2.3. These details are listed in the order they were mentioned in the
proof of Theorem 2.1.2.

2.4.1 Calculation regarding (2.7)

We first show (2.7) can be rewritten as (2.8).

Proof. Recall from (2.6) that

Dn(θ, η) =
1√
n

n∑

i=1

(
e−

1
2
(θ2−η2)e(θ−η)Xi − 1

)
.

The first and second derivatives with respect to η, and at η = 0, αX̄ respec-
tively are thus

∂

∂η
Dn(θ, η) =

1√
n

n∑

i=1

(η −Xi)e
− 1

2
(θ2−η2)+(θ−η)Xi ,

∂

∂η
Dn(θ, η)

∣∣∣∣
η=0

= − 1√
n

n∑

i=1

Xie
− 1

2
θ2+θXi.

∂2

∂η2
Dn(θ, η) =

1√
n

n∑

i=1

((η −Xi)
2 + 1)e−

1
2
(θ2−η2)+(θ−η)Xi ,

∂2

∂η2
Dn(θ, η)

∣∣∣∣
η=αX̄

= n
1√
n

1

n

n∑

i=1

((αX̄ −Xi)
2 + 1)e−

1
2
(θ2−(αX̄)2)+(θ−αX̄)Xi .
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2.4.2 Proof of Lemma 2.3.1.

After we rewrote (2.7) as (2.8), we stated Lemma 2.3.1, which we used to
look at the term n

2
X̄2 1√

n
Bn(θ, αX̄) more closely by considering the behaviour

of 1√
n
Bn(θ, αX̄) when n was large. Note that this proof provides a uniform

bound on the probability in question, independent of θ. This is done to
remove the issue of the possibly different rates of convergence at different
points of the overall stochastic process, and is achieved since we restrict
attention to the range (−C

√
log n, C

√
logn).

Proof of Lemma 2.3.1. Recall that α ∈ [0, 1] and X̄ = 1
n

∑n
i=1Xi. The main

idea of this proof is that we expect αX̄ to be roughly E(X1) = 0 for large
enough n, so we first aim to write Bn(θ, αX̄) as a function of Bn(θ, 0) and
a remainder term, so that we may use the behaviour of αX̄ to examine how
1√
n
Bn(θ, αX̄) behaves.

Bn(θ, αX̄) =
1

n

n∑

i=1

((αX̄ −Xi)
2 + 1)e(θ−αX̄)Xi− 1

2
(θ2−(αX̄)2)

=
1

n

n∑

i=1

(X2
i + 1− 2αX̄Xi + (αX̄)2)eθXi− 1

2
θ2−αX̄Xi+

1
2
(αX̄)2

=
1

n

n∑

i=1

(X2
i + 1)eθXi− 1

2
θ2−αX̄Xi+

1
2
(αX̄)2

+
1

n

n∑

i=1

((αX̄)2 − 2αX̄Xi)e
θXi− 1

2
θ2−αX̄Xi+

1
2
(αX̄)2 . (2.23)

In (2.23), both summands are functions of the Xi, θ and the common term
(αX̄)2 − 2αX̄Xi, so we next note that

(αX̄)2 − 2αX̄Xi ≤ X̄2 + 2|X̄||Xi|. (2.24)

We next consider two events αn, βn where we could expect P (αn) →
1, P (βn) → 1 as n → ∞. For any sequence Rn and for any constant C > 0,
define

αn = αn(Rn) = {ω ∈ Ω :
√
n|X̄(ω)| ≤ Rn},

βn = βn(C) = {ω ∈ Ω :

∣∣∣∣max
1≤i≤n

Xi(ω)

∣∣∣∣ ≤ C
√
log n},

and let us choose Rn and C such that P (αn) → 1, P (βn) → 1 as n → ∞.
For example, any Rn → ∞ will give P (αn) → 1 as n → ∞. Since X1 is
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standard normal, the range of the data maxiXi behaves like
√
2 logn (see

(Leadbetter and Rootzén, 1988)), so choosing C =
√
2 would provide us with

a βn such that P (βn) → 1 as n → ∞. For the remainder of this proof we
will assume we are refering to αn, βn where Rn and C are chosen so that
P (αn) → 1, P (βn) → 1 as n → ∞.

On such an event αn ∩ βn, (2.24) gives us

(αX̄)2 − 2αX̄Xi ≤ γn, (2.25)

where

γn =
R2

n

n
+ 2

Rn√
n
C
√

logn.

From (2.23) we have that on αn ∩ βn

Bn(θ, αX̄) ≤ e2γn
1

n

n∑

i=1

(X2
i + 1)eθXi− 1

2
θ2 + γne

2γn
1

n

n∑

i=1

eθXi− 1
2
θ2. (2.26)

From (2.26) we can bound Bn(θ, αX̄) on αn ∩ βn with

Bn(θ, αX̄) ≤ 2max

{
e2γn

1

n

n∑

i=1

(X2
i + 1)eθXi− 1

2
θ2 , γne

2γn
1

n

n∑

i=1

eθXi− 1
2
θ2

}
.

(2.27)

We next deal with the random exponential terms written in the right
hand side of (2.27). Pick any ǫ > 0, and rewrite eθXi− 1

2
θ2 as

eθXi− 1
2
θ2 = eǫθ

2

eθXi− 1
2
θ2−ǫθ2.

Let λ(θ) = θx − 1
2
θ2 − ǫθ2. Then λ attains a maximum at λ

(
x

1+2ǫ

)
, which

can be simplified to

λ

(
x

1 + 2ǫ

)
=

x2

1 + 2ǫ
− 1

2

x2

(1 + 2ǫ)2
− ǫ

x2

(1 + 2ǫ)2

=
2(1 + 2ǫ)x2 − x2 − 2ǫx2

2(1 + 2ǫ)2

=
x2 (2(1 + 2ǫ)− 1− 2ǫ)

2(1 + 2ǫ)2

=
x2

2(1 + 2ǫ)2
(2 + 4ǫ− 1− 2ǫ)

=
x2(1 + 2ǫ)

2(1 + 2ǫ)2

=
x2

2(1 + 2ǫ)
.
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So we can conclude that for all θ,

eθXi− 1
2
θ2 ≤ eǫθ

2

e
X2

i
2(1+2ǫ) , for ǫ > 0.

Hence with any choice of ǫ > 0,

1

n

n∑

i=1

(X2
i + 1)eθXi− 1

2
θ2 ≤ eǫθ

2

(
1

n

n∑

i=1

(X2
i + 1)e

X2
i

2(1+2ǫ)

)
(2.28)

1

n

n∑

i=1

eθXi− 1
2
θ2 ≤ eǫθ

2

(
1

n

n∑

i=1

e
X2

i
2(1+2ǫ)

)
. (2.29)

Note that

sup
|θ|≤C

√
logn

eǫθ
2

= eǫ(C
2 logn) = nǫC2

. (2.30)

We use (2.28), (2.29) and (2.30), to conclude for all ǫ > 0, for all |θ| ≤
C
√
log n,

1

n

n∑

i=1

(X2
i + 1)eθXi− 1

2
θ2 ≤ nǫC2

(
1

n

n∑

i=1

(X2
i + 1)e

X2
i

2(1+2ǫ)

)
(2.31)

1

n

n∑

i=1

eθXi− 1
2
θ2 ≤ nǫC2

(
1

n

n∑

i=1

e
X2

i
2(1+2ǫ)

)
. (2.32)

Let the random variables in (2.31) and (2.32) be called

Yn,ǫ =
1

n

n∑

i=1

(X2
i + 1)e

X2
i

2(1+2ǫ) ,

Wn,ǫ =
1

n

n∑

i=1

e
X2

i
2(1+2ǫ) .

Since µǫ = E (Yn,ǫ) and νǫ = E (Wn,ǫ) are both finite, the weak law of large

numbers tells us that Yn,ǫ
P→ µǫ and Wn,ǫ

P→ νǫ, and since convergence in
probability implies boundedness in probability, Yn,ǫ and Wn,ǫ are both Op(1).

We now consider an arbitrary sequence cn > 0. For |θ| ≤ C
√
log n we

split P ( 1√
n
Bn(θ, αX̄) > cn) into

P (
1√
n
Bn(θ, αX̄) > cn) = P

({
1√
n
Bn(θ, αX̄) > cn

}
∩ {αn ∩ βn}

)

+P

({
1√
n
Bn(θ, αX̄) > cn

}
∩ {αn ∩ βn}c

)
,

(2.33)
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and since (2.33) can be bounded by

P (
1√
n
Bn(θ, αX̄) > cn) ≤ P

({
1√
n
Bn(θ, αX̄) > cn

}
∩ {αn ∩ βn}

)
+P (αc

n∪βc
n),

we use (2.27), (2.31) and (2.32) to obtain

P (
1√
n
Bn(θ, αX̄) > cn) ≤ P (e2γnnǫC2− 1

2Yn,ǫ >
cn
2
) + P (γne

2γnnǫC2− 1
2Wn,ǫ >

cn
2
)

+P (αc
n) + P (βc

n). (2.34)

Recall that γn = R2
n

n
+ 2Rn√

n
C
√
logn. When Rn = o

(√
n

logn

)
and Rn →

∞, we get γn = o(1) and P (αc
n) = o(1). For C ≥

√
2, when we choose

0 < ǫ < 1
2C2 , we have P (βc

n) = o(1) and nǫC2− 1
2 = o(1). So since Yn,ǫ and

Wn,ǫ are Op(1), if n
ǫC2− 1

2 e2γn = o(cn), then (2.34) = o(1), and we are done.

2.4.3 Proof of Lemma 2.3.2.

After we stated Lemma 2.3.1, we stated Lemma 2.3.2, which we used to
consider the term |An(θ)− θ| in (2.9).

Proof of Lemma 2.3.2. The idea of this proof uses the fact that An(θ) looks
like the derivative of the empirical moment generating function Mn(θ) of the
observations X1, . . . , Xn.

We use a technique demonstrated in Bickel and Chernoff (1993), where
we express An(θ) as a function of a new process Yn(θ), which is what looks
to be an almost standardised version of Mn(θ).

We will then apply the Kolmogorov bound from Revuz and Yor (1991)
to prove this lemma.

Recall that X1, . . . , Xn iid N(0, 1) and

An(θ) =
1

n

n∑

i=1

Xie
θXi− θ2

2 .

The empirical moment generating function of X1, . . . , Xn, and its deriva-
tive are

Mn(θ) =
1

n

n∑

i=1

eθXi and

M ′
n(θ) =

1

n

n∑

i=1

Xie
θXi = e

θ2

2 An(θ).

50



Let Z ∼ N(0, 1), and let Z be independent of X1, . . . , Xn, and let

Yn(θ) = e−θ2
√
n
(
Mn(θ)− e

θ2

2

)
+ e−

θ2

2 Z.

The derivative of Yn(θ) is

Y ′
n(θ) = −2

√
nθe−θ2(Mn(θ)− eθ

2/2) +
√
ne−θ2(M ′

n(θ)− θeθ
2/2)− θe−θ2/2Z.

Since Yn(θ) = e−θ2
√
n
(
Mn(θ)− e

θ2

2

)
+e−

θ2

2 Z, we can rewrite Mn(θ) and

M ′
n(θ) as

Mn(θ) =
eθ

2

√
n

(
Yn(θ)− e−θ2/2Z

)
+ eθ

2/2

=
eθ

2

√
n
Yn(θ) + eθ

2/2

(
1− Z√

n

)
,

M ′
n(θ) =

2θeθ
2

√
n

Yn(θ) +
eθ

2

√
n
Y ′
n(θ) + θeθ

2/2

(
1− Z√

n

)
.

The process An(θ) = e−θ2/2M ′
n(θ) can then be written as

An(θ) =
2θeθ

2/2

√
n

Yn(θ) +
eθ

2/2

√
n
Y ′
n(θ) + θ

(
1− Z√

n

)
,

and e−θ2/2 (θ − An(θ)) can be written as

e−θ2/2 (θ −An(θ)) =
−2θ√
n
Yn(θ)−

1√
n
Y ′
n(θ) + θe−θ2/2 Z√

n
.

Therefore

e−θ2/2|θ −An(θ)| ≤ 2√
n
|θYn(θ)|+

1√
n
|Y ′

n(θ)|+
e−θ2/2

√
n

|θZ|,

sup
−L≤θ≤L

e−θ2/2|θ −An(θ)| ≤ sup
−L≤θ≤L

2√
n
|θYn(θ)|+ sup

−L≤θ≤L

1√
n
|Y ′

n(θ)|

+ sup
−L≤θ≤L

e−θ2/2

√
n

|θZ|. (2.35)

The right hand side of (2.35) is less than

3max

(
sup

−L≤θ≤L

2√
n
|θYn(θ)|, sup

−L≤θ≤L

1√
n
|Y ′

n(θ)|, sup
−L≤θ≤L

e−θ2/2

√
n

|θZ|
)
,
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so over an interval [−L, L] we can bound

P ( sup
−L≤θ≤L

e−θ2/2|θ −An(θ)| ≥ z)

with

P ( sup
−L≤θ≤L

e−θ2/2|θ − An(θ)| ≥ z)

≤ P

(
sup

−L≤θ≤L

2√
n
|θYn(θ)| ≥

z

3

)
+ P

(
sup

−L≤θ≤L

1√
n
|Y ′

n(θ)| ≥
z

3

)

+P

(
sup

−L≤θ≤L

e−θ2/2

√
n

|θZ| ≥ z

3

)
. (2.36)

Let the terms above concerning [−L, L] be called

p1 = P

(
sup

−L≤θ≤L

2√
n
|θYn(θ)| ≥

z

3

)

p2 = P

(
sup

−L≤θ≤L

1√
n
|Y ′

n(θ)| ≥
z

3

)

p3 = P

(
sup

−L≤θ≤L

e−θ2/2

√
n

|θZ| ≥ z

3

)
.

From (2.36), we have

P ( sup
−L≤θ≤L

e−θ2/2|θ − An(θ)| ≥ z) ≤ p1 + p2 + p3.

The Kolmogorov bound works with stochastic processes Z(t) defined over an
interval 0 ≤ t ≤ L, while the situation we have here for each pi, i = 1, 2, 3
involves an interval −L ≤ θ ≤ L. For p1 we could define a new stochastic
process Ỹn(θ) = (θ + L)Yn(θ + L) so that Ỹn(−L) = 0Yn(0) and Ỹn(L) =

2LYn(2L). Then Ỹn(θ) is defined over the interval [0, 2L] and we can apply
the Kolmogorov bound. Since the effect would be to replace the 2L wide
interval [−L, L] with the 2L wide interval [0, 2L], we will not bother to define

Ỹn(θ) and simply apply the Kolmogorov bound directly by treating [−L, L]
as though it were [0, 2L]. The same argument can be made for bounding p2
and p3.
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We now bound p1.

p1 = P

(
sup

0≤θ≤2L

2√
n
|θYn(θ)| ≥

z

3

)

≤ P

(
sup

0≤θ≤2L

4L√
n
|Yn(θ)| ≥

z

3

)

= P

(
sup

0≤θ≤2L

4L√
n
|Yn(θ)− Yn(0) + Yn(0)| ≥

z

3

)

≤ P

(
sup

0≤θ≤2L

4L√
n
|Yn(θ)− Yn(0)|+

4L√
n
|Yn(0)| ≥

z

3

)
.

Since

sup
0≤θ≤2L

4L√
n
|Yn(θ)−Yn(0)|+

4L√
n
|Yn(0)| ≤ 2max

(
sup

0≤θ≤2L

4L√
n
|Yn(θ)− Yn(0)|,

4L√
n
|Yn(0)|

)
,

we can bound p1 using

p1 ≤ P

(
sup

0≤θ≤2L

4L√
n
|Yn(θ)− Yn(0)| ≥

z

6

)

+P

(
4L√
n
|Yn(0)| ≥

z

6

)
.

We can write this as

p1 ≤ P

(
sup

0≤θ≤2L
|Yn(θ)− Yn(0)| ≥

√
nz

24L

)
+ P

(
|Yn(0)| ≥

√
nz

24L

)
.

(2.37)

A calculation is provided at the end of this proof which shows for all
s, t ∈ R,

E|Yn(s)− Yn(t)|2 ≤ (s− t)2. (2.38)

Thus Yn(θ) satisfies the condition for using the Kolmogorov bound, so we
can arrive at

P ( sup
0≤t≤2L

|Yn(t)− Yn(0)| ≥ z) ≤ K(4L2/z2), (2.39)

where K is some absolute constant.
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Since Yn(0) = Z, we can use (2.39) and (2.37) to arrive at

p1 ≤ K
L2

(
nz2

242L2

) + P (|Z| ≥
√
nz

24L
)

= K ′ L
4

nz2
+ 2(1− Φ(

√
nz

24L
)),

where K ′ = 242K is some absolute constant, and Φ is the distribution func-
tion of the standard normal random variable.

Similarly,

p2 ≤ P

(
sup

0≤θ≤2L
|Y ′

n(θ)− Y ′
n(0)| ≥

√
nz

6

)
+ P

(
|Y ′

n(0)| ≥
√
nz

6

)
.

(2.40)

The calculation at the end of this proof also shows for all s, t ∈ R

E|Y ′
n(s)− Y ′

n(t)|2 ≤ 3(s− t)2. (2.41)

Thus we can once again use the Kolmogorov bound (listed as Theorem 2.2.1)
to arrive at

P ( sup
0≤t≤2L

|Y ′
n(t)− Y ′

n(0)| ≥ z) ≤ 3K(4L2/z2), (2.42)

where K is some absolute constant.
Since Y ′

n(0) =
√
nX̄ ∼ N(0, 1), we can use (2.42) and (2.40) to arrive at

(for some absolute constant K)

p2 ≤ 12KL2

(
36

nz2

)
+ P (|

√
nX̄| ≥

√
nz

6
)

= 432K
L2

nz2
+ 2(1− Φ(

√
nz

6L
)).

Finally we have

p3 = P

(
sup

0≤θ≤2L

e−θ2/2

√
n

|θZ| ≥ z

3

)

≤ P

((
sup
θ∈R

e−θ2/2|θ|
)
|Z| ≥

√
nz

3

)

= P

(
e−

1
2 |Z| ≥

√
nz

3

)

= 2(1− Φ(
e

1
2

3

√
nz)).
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From (2.36), we can thus obtain for any L > 0, z ∈ R

P ( sup
−L≤θ≤L

e−θ2/2|θ −An(θ)| ≥ z) ≤ K1
L4

nz2
+ 2(1− Φ(

√
nz

24L
))

+K2
L2

nz2
+ 2(1− Φ(

√
nz

6L
))

+2

(
1− Φ(

e
1
2

3

√
nz)

)
,

where K1, K2 are absolute constants. Thus for L > 1, we have the bound

P ( sup
−L≤θ≤L

e−θ2/2|θ − An(θ)| ≥ z) ≤ K
L4

nz2
+ 12(1− Φ(

√
nz

24L
)),

where K is an absolute constant, so the lemma is proven.

2.4.4 Calculations for the above proof

Here are the calculations used to show (2.38) and (2.41) which were used in
the above proof.

Calculation showing (2.38) and (2.41). Note that

E(Mn(t)) =

∫
etxφ(x)dx

=

∫
et

2/2φ(x− t)dx

= et
2/2, and

E(M ′
n(t)) =

∫
xetxφ(x)dx

=

∫
xφ(x− t)et

2/2dx

= tet
2/2.

To calculate E(Yn(s)Yn(t)), note that (since Yn(s) = e−s2
√
n
(
Mn(s)− e

s2

2

)
+

e−
s2

2 Z):

Yn(s)Yn(t) =
(
e−s2

√
n
(
Mn(s)− e

s2

2

)
+ e−

s2

2 Z
)(

e−t2
√
n
(
Mn(t)− e

t2

2

)
+ e−

t2

2 Z
)

= ne−s2−t2(Mn(s)− es
2/2)(Mn(t)− et

2/2)

+
√
ne−s2−t2/2(Mn(s)− es

2/2)Z

+
√
ne−t2−s2/2(Mn(t)− et

2/2)Z

+e−s2/2−t2/2Z2.
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So,

E(Yn(s)Yn(t)) = ne−s2−t2Cov (Mn(s),Mn(t))

+
√
ne−s2−t2/2Cov (Mn(s), Z)

+
√
ne−t2−s2/2Cov (Mn(t), Z)

+e−s2/2−t2/2.

Since Z is independent of X1, . . . , Xn, Cov (Mn(θ), Z) = 0 for any θ, so

E(Yn(s)Yn(t)) = ne−s2−t2Cov (Mn(s),Mn(t)) + e−s2/2−t2/2.

Noting that E(eθX1) = eθ
2/2, and that

Mn(s)Mn(t) =

(
1

n

n∑

i=1

esXi

)(
1

n

n∑

i=1

etXi

)

=
1

n2

n∑

i=1

n∑

j=1

esXi+tXj

=
1

n2

(
n∑

i=1

esXi+tXi +
∑

i 6=j

esXi+tXj

)
,

we can arrive at

E(Mn(s)Mn(t)) =
1

n2

(
nE(e(s+t)X1) + (n2 − n)E(esX1+tX2)

)

=
1

n

(
e(s+t)2/2 + (n− 1)es

2/2+t2/2
)
,

since X1 and X2 are independent.
So to summarise,

Cov (Mn(s),Mn(t)) =
1

n

(
e(s+t)2/2 + (n− 1)es

2/2+t2/2
)
− es

2/2+t2/2,

E(Yn(s)Yn(t)) = ne−s2−t2Cov (Mn(s),Mn(t)) + e−s2/2−t2/2,

= ne−s2−t2
(
1

n

(
e(s+t)2/2 + (n− 1)es

2/2+t2/2
))

−ne−s2−t2
(
es

2/2+t2/2
)
+ e−s2/2−t2/2

= e−s2−t2+(s+t)2/2 + (n− 1)e−s2−t2+s2/2+t2/2

−ne−s2−t2+s2/2+t2/2 + e−s2/2−t2/2

= e−s2−t2+s2/2+t2/2+st + (n− 1)e−s2/2−t2/2 − (n− 1)e−s2/2−t2/2

= e−s2/2−t2/2+st

= e−(s−t)2/2.
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Hence

E|Yn(s)− Yn(t)|2 = E(Yn(s)
2) + E(Yn(t)

2)− 2E(Yn(s)Yn(t))

= 1 + 1− 2e−(s−t)2/2

= 2(1− e−(s−t)2/2),

and since 1− e−x ≤ x, 1− e−(s−t)2/2 ≤ (s− t)2/2. So

E|Yn(s)− Yn(t)|2 ≤ (s− t)2.

For the similar result regarding {Y ′
n(t)}t∈R, recall

Y ′
n(t) = −2

√
nte−t2(Mn(t)− et

2/2) +
√
ne−t2(M ′

n(t)− tet
2/2)− te−t2/2Z,

and denote Y ′
n(t) = a(t) + b(t) + c(t), where

a(t) = −2
√
nte−t2(Mn(t)− et

2/2),

b(t) =
√
ne−t2(M ′

n(t)− tet
2/2),

c(t) = −te−t2/2Z.

Then we can write Y ′
n(s)Y

′
n(t) as

Y ′
n(s)Y

′
n(t) = a(s)a(t) +a(s)b(t) +a(s)c(t)

+b(s)a(t) +b(s)b(t) +b(s)c(t)
+c(s)a(t) +c(s)b(t) +c(s)c(t).

(2.43)

We now calculate E(Y ′
n(s)Y

′
n(t)) one term at a time.

a(s)a(t) = 4nste−s2−t2(Mn(s)− es
2/2)(Mn(t)− et

2/2),

E(a(s)a(t)) = 4nste−s2−t2Cov (Mn(s),Mn(t)) ,

Cov (Mn(s),Mn(t)) =
1

n

(
e(s+t)2/2 + (n− 1)es

2/2+t2/2
)
− es

2/2+t2/2,

E(a(s)a(t)) = 4ste−s2−t2
(
e(s+t)2/2 − es

2/2+t2/2
)

= 4st
(
e−(s−t)2/2 − e−s2/2−t2/2

)
.
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b(t) =
√
ne−t2(M ′

n(t)− tet
2/2).

a(s)b(t) = −2nse−s2−t2(Mn(s)− es
2/2)(M ′

n(t)− tet
2/2).

E(a(s)b(t)) = −2nse−s2−t2Cov (Mn(s),M
′
n(t)) .

Mn(s)M
′
n(t) =

(
1

n

n∑

i=1

esXi

)(
1

n

n∑

i=1

Xie
tXi

)

=
1

n2

n∑

i=1

n∑

j=1

Xje
sXi+tXj

=
1

n2

(
n∑

i=1

Xie
(s+t)Xi +

∑

i 6=j

Xje
sXi+tXj

)
.

E(Mn(s)M
′
n(t)) =

1

n

(
E(X1e

(s+t)X1) + (n− 1)E(X2e
sX1+tX2)

)

=
1

n
(s+ t)e(s+t)2/2 +

n− 1

n
tes

2/2+t2/2.

Cov (Mn(s),M
′
n(t)) =

1

n
(s+ t)e(s+t)2/2 +

n− 1

n
tes

2/2+t2/2 − tes
2/2+t2/2

=
1

n
(s+ t)e(s+t)2/2 − 1

n
tes

2/2+t2/2.

E(a(s)b(t)) = −2se−s2−t2
(
(s+ t)e(s+t)2/2 − tes

2/2+t2/2
)

= −2s(s+ t)e−(s−t)2/2 + 2ste−s2/2−t2/2.
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b(t) =
√
ne−t2(M ′

n(t)− tet
2/2)

b(s)b(t) = ne−s2−t2(M ′
n(s)− ses

2/2)(M ′
n(t)− tet

2/2)

E(b(s)b(t)) = ne−s2−t2Cov (M ′
n(s),M

′
n(t))

M ′
n(s)M

′
n(t) =

(
1

n

n∑

i=1

Xie
sXi

)(
1

n

n∑

i=1

Xie
tXi

)

=
1

n2

(
n∑

i=1

X2
i e

(s+t)Xi +
∑

i 6=j

XiXje
(sXi+tXj)

)

E(M ′
n(s)M

′
n(t)) =

1

n
E(X2

1e
(s+t)X1) +

n− 1

n
E(X1e

sX1)E(X2e
tX2)

E(X2
1e

θX1) =

∫
x2eθxφ(x)dx

= eθ
2/2

∫
x2φ(x− θ)dx

= eθ
2/2(1 + θ2)

E(M ′
n(s)M

′
n(t)) =

1

n
e(s+t)2/2(1 + (s+ t)2) +

n− 1

n
stes

2/2+t2/2

Cov (M ′
n(s)M

′
n(t)) =

1

n
e(s+t)2/2(1 + (s+ t)2) +

n− 1

n
stes

2/2+t2/2 − stes
2/2+t2/2

=
1

n
e(s+t)2/2(1 + (s+ t)2)− 1

n
stes

2/2+t2/2

E(b(s)b(t)) = e−(s−t)2/2(1 + (s+ t)2)− ste−s2/2−t2/2

Since Z is independent of X1, . . . , Xn, each term in (2.43) with only one c(s)
or c(t) in it has expectation 0. The remaining term is

c(s)c(t) = ste−s2/2−t2/2Z2,

and since Z is standard normal, it clearly has expectation

E(c(s)c(t)) = ste−s2/2−t2/2.

So in summary

E(Y ′
n(s)Y

′
n(t)) = E(a(s)a(t)) +E(a(s)b(t)) +0

+E(b(s)a(t)) +E(b(s)b(t)) +0
+0 +0 +E(c(s)c(t)),
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where

E(a(s)a(t)) = 4st
(
e−(s−t)2/2 − e−s2/2−t2/2

)
,

E(a(s)b(t)) = −2s(s+ t)e−(s−t)2/2 + 2ste−s2/2−t2/2,

E(b(s)b(t)) = e−(s−t)2/2(1 + (s+ t)2)− ste−s2/2−t2/2,

E(c(s)c(t)) = ste−s2/2−t2/2.

E(a(s)b(t)) + E(b(s)a(t)) = −2s(s+ t)e−(s−t)2/2 + 2ste−s2/2−t2/2

−2t(s+ t)e−(s−t)2/2 + 2ste−s2/2−t2/2

= −2(s+ t)2e−(s−t)2/2 + 4ste−s2/2−t2/2.

So

E(Y ′
n(s)Y

′
n(t)) = 4st

(
e−(s−t)2/2 − e−s2/2−t2/2

)

−2(s+ t)2e−(s−t)2/2 + 4ste−s2/2−t2/2

+e−(s−t)2/2(1 + (s+ t)2)

= e−(s−t)2/2
(
4st− 2(s+ t)2 + 1 + (s+ t)2

)

+e−s2/2−t2/2 (−4st + 4st)

=
(
1− (s− t)2

)
e−(s−t)2/2

In summary, we have

E|Y ′
n(s)− Y ′

n(t)|2 = E(Y ′
n(s)

2) + E(Y ′
n(t)

2)− 2E(Y ′
n(s)Y

′
n(t))

= 1 + 1− 2
(
1− (s− t)2

)
e−(s−t)2/2

= 2− 2
(
1− (s− t)2

)
e−(s−t)2/2

= 2− 2e−(s−t)2/2 + 2(s− t)2e−(s−t)2/2.

As noted in the first part of this calculation, 2 − 2e−(s−t)2/2 ≤ (s − t)2, and
since e−x ≤ 1, we can bound E|Y ′

n(s)− Y ′
n(t)|2 by

E|Y ′
n(s)− Y ′

n(t)|2 ≤ 3(s− t)2.
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2.4.5 Calculation for (2.10)

The following is the calculation of Var(Dn(θ, 0) −
√
nX̄θ) as mentioned by

(2.10) in the proof of Theorem 2.1.2.

Calculation for (2.10). Recall that Dn(θ, η) =
1√
n

∑n
i=1(

φ(Xi−θ)
φ(Xi−η)

− 1).

Var(Dn(θ, 0)−
√
nX̄θ) = Var

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− 1

)
− 1√

n

n∑

i=1

θXi

)

= Var

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− 1− θXi

))

= Var

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− θXi

))

= Var

(
φ(X1 − θ)

φ(X1)
− θX1

)

= Var

(
φ(X1 − θ)

φ(X1)

)
+ θ2Var(X1)− 2θCov

(
φ(X1 − θ)

φ(X1)
, X1

)
.

Cov

(
φ(X1 − θ)

φ(X1)
, X1

)
=

∫
xeθx−θ2/2φ(x)dx

=

∫
(x− θ + θ)φ(x− θ)dx

= θ.

Var

(
φ(X1 − θ)

φ(X1)

)
=

∫
e2θx−θ2φ(x)dx−

(∫
eθx−θ2/2φ(x)dx

)2

= e−θ2
∫
φ(x− 2θ)e(2θ)

2/2dx−
(∫

φ(x− θ)dx

)2

= eθ
2 − 1.

Var(Dn(θ, 0)−
√
nX̄θ) = eθ

2 − 1− θ2.

2.4.6 The distribution of e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)
.

The next proof shows that e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)
has the same distribu-

tion as (2.14), as mentioned in Section 2.3.

61



Proof.

e−θ2/2
(
Dn(θ, 0)−

√
nX̄θ

)
= e−θ2/2

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− 1

)
−

√
nX̄θ

)

= e−θ2/2

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− 1− θXi

))
.

The distribution function of each Xi is Φ, given by

Φ(x) =

∫ x

−∞
φ(z)dz,

so the random variables Φ−1(Ui) are also N(0, 1). The distribution of

e−θ2/2

(
1√
n

n∑

i=1

(
φ(Xi − θ)

φ(Xi)
− 1− θXi

))

is thus the same as the distribution of

e−θ2/2

(
1√
n

n∑

i=1

(
φ(Φ−1(Ui)− θ)

φ(Φ−1(Ui))
− 1− θΦ−1(Ui)

))
. (2.44)

For u ∈ [0, 1] let ℓθ be given by

ℓθ(u) = e−θ2/2

(
φ(Φ−1(u)− θ)

φ(Φ−1(u))
− 1− θΦ−1(u)

)
,

then (2.44) is

1√
n

n∑

i=1

ℓθ(Ui).

Since for each θ ∈ R we have E(Dn(θ, 0) −
√
nX̄θ) = 0, we also have

E(ℓθ(U1)) = 0. Note, to show E(Dn(θ, 0)) −
√
nX̄θ) = 0, we only need a

direct calculation and to recognise that φ(Xi−θ)
φ(Xi)

is a multiple of the moment
generating function of Xi, and that each Xi has mean 0 by assumption.
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We can thus write 1√
n

∑n
i=1 ℓθ(Ui) as

1√
n

n∑

i=1

ℓθ(Ui) =
1√
n

n∑

i=1

(ℓθ(Ui)− E(ℓθ(Ui)))

=
1√
n

n∑

i=1

(
ℓθ(Ui)−

∫ 1

0

ℓθ(u)du

)

=
1√
n

n∑

i=1

ℓθ(Ui)−
1√
n

n∑

i=1

∫ 1

0

ℓθ(u)du

=
√
n
1

n

n∑

i=1

ℓθ(Ui)−
√
n

∫ 1

0

ℓθ(u)du

=
√
n

∫ 1

0

ℓθ(u)dFn(u)−
√
n

∫ 1

0

ℓθ(u)du

=
√
n

∫ 1

0

ℓθ(u)d{Fn(u)− u}

=

∫ 1

0

ℓθ(u)dαn(u).

2.4.7 Proof that (2.16) is L∗−decomposable

The next proof shows that (2.16) is L∗−decomposable.

Proof. Let L be
L = {ℓθ : θ ∈ R}.

To show that (2.16) is L∗-decomposable, we show that L is L∗-decomposable.
The lemma then follows, since (2.16) is a subset of L.

Pick any ℓθ ∈ L. The function ℓ0 is identically 0 everywhere, so the only
nontrivial cases to consider are when θ > 0 or when θ < 0.

Suppose θ > 0. Then ℓθ(u) can be written as ℓθ(u) = ℓθ1(u)− ℓθ2(u), where

ℓθ1(u) = e−θ2/2
(
eθΦ

−1(u)−θ2/2 − 1
)
, (2.45)

ℓθ2(u) = θe−θ2/2Φ−1(u). (2.46)

Since Φ−1 is non decreasing, ℓθ1 and ℓθ1 are non decreasing.
Suppose θ < 0. Let ℓ−θ

1 (u) = −ℓθ2(u), and ℓ−θ
2 (u) = −ℓθ1(u). Then ℓ−θ

1

and ℓ−θ
2 (u) are non decreasing functions of u, and we can write ℓθ(u) =

ℓ−θ
1 (u)− ℓ−θ

2 (u).
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Hence for all θ ∈ R, ℓθ can be written as ℓθ = ℓ1− ℓ2 for some ℓ1, ℓ2 ∈ L∗,
and hence L is L∗-decomposable.

2.4.8 Bound for Nn(δn)

In Section 2.3, Lemma 2.3.3 provided a bound for Nn(δn). The proof of the
lemma is here.

Proof. Denote the inner sup of Nn(δn) by I(θ, δn), so that

Nn(δn) = sup
ℓ∈Ln

sup
0≤u≤δn

{
(|ℓ1(u)|+ |ℓ2(u)|+ |ℓ1(1− u)|+ |ℓ2(1− u)|)u 1

2

}

= sup
ℓ∈Ln

I(θ, δn).

Using the functions listed at (2.45) and (2.46) we can split ℓθ into

ℓθ =

{
ℓθ1 − ℓθ2, θ > 0
(−ℓθ2)− (−ℓθ1), θ < 0.

It follows that I(θ, δn) = I(−θ, δn), and so Nn(δn) is

Nn(δn) = sup
ℓ∈Ln

I(θ, δn)

= sup
ℓθ,0≤θ≤C

√
logn

I(θ, δn).

Therefore without loss of generality, we wish to consider I(θ, δn) for θ > 0.
The four terms |ℓ1(u)|, |ℓ2(u)|, |ℓ1(1− u)| and |ℓ2(1− u)| can be bounded

as follows:

|ℓ1(u)| = |e−θ2eθΦ
−1(u) − e−θ2/2|

≤ e−θ2eθΦ
−1(u) + e−θ2/2

|ℓ1(1− u)| ≤ e−θ2eθΦ
−1(1−u) + e−θ2/2

≤ e−θ2eθ|Φ
−1(1−u)| + e−θ2/2

= e−θ2eθ|Φ
−1(u)| + e−θ2/2, since Φ−1(u) = −Φ−1(1− u)

|ℓ2(u)| = θe−θ2/2|Φ−1(u)|
|ℓ2(1− u)| = θe−θ2/2|Φ−1(1− u)|

= θe−θ2/2|Φ−1(u)|,

thus I(θ, δn) may be bounded with

I(θ, δn) ≤ 2 sup
0≤u≤δn

{(
e−θ2eθ|Φ

−1(u)| + e−θ2/2 + θe−θ2/2|Φ−1(u)|
)
u

1
2

}
. (2.47)
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Let v = 1−u and let us change variables from 0 ≤ u ≤ δn to 1− δn ≤ v ≤ 1.
The sup in (2.47) is

sup
1−δn≤v≤1

{(
e−θ2eθ|Φ

−1(1−v)| + e−θ2/2 + θe−θ2/2|Φ−1(1− v)|
)
(1− v)

1
2

}
.(2.48)

Let v = Φ(x), and let us change variables again from 1 − δn ≤ v ≤ 1 to
x ≥ Φ−1(1− δn). Noting that |Φ−1(1− v)| = |Φ−1(v)|, we can write the sup
in (2.48) as

sup
x≥Φ−1(1−δn)

{(
e−θ2eθ|x| + e−θ2/2 + θe−θ2/2|x|

)
(1− Φ(x))

1
2

}
.

Let xn = Φ−1(1 − δn). If 1 − δn > 1
2
then xn > 0. So if 1 − δn > 1

2
, we

have

I(θ, δn) ≤ 2 sup
x≥xn

{(
e−θ2eθx + e−θ2/2 + θe−θ2/2x

)
(1− Φ(x))

1
2

}
.

In fact if we assume 1− δn > Φ(1), we get xn > 1 and may use the inequality

1− Φ(x) ≤ φ(x)

x

to get

I(θ, δn) ≤ 2 sup
x≥xn

{(
e−θ2eθx + e−θ2/2 + θe−θ2/2x

)(φ(x)

x

) 1
2

}
.

Let

fθ(x) =
(
e−θ2eθx + e−θ2/2 + θe−θ2/2x

)(φ(x)

x

) 1
2

. (2.49)

We now show supx≥xn
fθ(x) = O(x

− 1
2

n ), so I(θ, δn) = O(x
− 1

2
n ) for any θ ∈ R.

We first note that

(2π)
1
4fθ(x) =

(
e−θ2eθx + e−θ2/2 + θe−θ2/2x

)
x− 1

2 e−x2/4,

so since θe−θ2/2 is maximised when θ = 1, we have

(2π)
1
4 fθ(x) = x− 1

2 e−θ2+θx−x2/4 + x− 1
2 e−θ2/2−x2/4 + θx

1
2 e−θ2/2−x2/4

= x− 1
2 e−(θ−x

2
)2 + x− 1

2 e−θ2/2−x2/4 + θx
1
2 e−θ2/2−x2/4

≤ x− 1
2 e−(θ−x

2
)2 + x− 1

2 e−x2/4 + x
1
2 e−

1
2
−x2/4.
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So

sup
x≥xn

(2π)
1
4 fθ(x) ≤ sup

x≥xn

x− 1
2 e−(θ−x

2
)2 + sup

x≥xn

x− 1
2 e−x2/4 + sup

x≥xn

x
1
2 e−

1
2
−x2/4.

(2.50)

The functions x− 1
2 e−x2/4 and x

1
2 e−

1
2
−x2/4 are maximised over [xn,∞) at their

left endpoint xn, so (2.50) becomes

sup
x≥xn

(2π)
1
4 fθ(x) ≤ sup

x≥xn

x− 1
2 e−(θ−x

2
)2 + x

− 1
2

n e−x2
n/4 + x

1
2
ne

− 1
2
−x2

n/4,(2.51)

and since e−(θ−x
2
)2 ≤ 1, we have

sup
x≥xn

(2π)
1
4 fθ(x) ≤ x

− 1
2

n + x
− 1

2
n e−x2

n/4 + x
1
2
ne

− 1
2
−x2

n/4,

and since x
1
2 e−x2/4 = O(x− 1

2 ), we thus have supx≥xn
fθ(x) = O(x

− 1
2

n ) for any
θ ∈ R.

Hence
Nn(δn) = sup

ℓθ,0≤θ≤C
√
logn

I(θ, δn) = O(x
− 1

2
n ).

2.4.9 Proof of Lemma 2.3.4.

The next lemma proven here is Lemma 2.3.4. This lemma provided us with
a tool in Section 2.3 which motivated us to view our stochastic process of
interest as the sum of a Gaussian process and a remainder process. Recall
that the statement of Lemma 2.3.4 is as follows:

Consider any stochastic process Sn(θ) over Θn = {θ1, . . . , θan} ⊂ R which
is the sum of two others

Sn(θ) = Gn(θ) +Rn(θ), over θ ∈ Θn.

Suppose for some cn > 0

P

(
max
θ∈Θn

|Rn(θ)| ≥ cn

)
≤ ǫ(1)n , (2.52)

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
≤ ǫ(2)n , (2.53)

then

P

(
max
θ∈Θn

Sn(θ) > 0

)
≥ 1− (ǫ(1)n + ǫ(2)n ).
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Proof of Lemma 2.3.4. Consider the cn > 0 for which the conditions in this
lemma hold, and define

An =

{
max
θ∈Θn

Gn(θ) > cn

}
,

Bn =

{
min
θ∈Θn

Rn(θ) > −cn

}
.

We first show P (An ∩ Bn) ≤ P (maxθ∈Θn Sn(θ) > 0).
Suppose

max
θ∈Θn

Gn(θ) > cn, and min
θ∈Θn

Rn(θ) > −cn,

then for θ ∈ Θn, Gn(θ) +Rn(θ) > Gn(θ)− cn, and hence

max
θ∈Θn

Sn(θ) = max
θ∈Θn

(Gn(θ) +Rn(θ))

> max
θ∈Θn

(Gn(θ)− cn)

= max
θ∈Θn

Gn(θ)− cn

> cn − cn

= 0.

Thus An ∩ Bn ⊆ {maxθ∈Θn Sn(θ) > 0}, and

P (An ∩ Bn) ≤ P

(
max
θ∈Θn

Sn(θ) > 0

)
.

We can write P (An ∩Bn) as

P (An ∩ Bn) = 1− P (Ac
n ∪ Bc

n),

where Ac
n and Bc

n are the complements of An and Bn. Since

− min
θ∈Θn

Rn(θ) ≤ | min
θ∈Θn

Rn(θ)| ≤ max
θ∈Θn

|Rn(θ)|,

if minθ∈Θn Rn(θ) ≤ −cn, then maxθ∈Θn |Rn(θ)| ≥ cn. Thus

P (Bc
n) ≤ P (max

θ∈Θn

|Rn(θ)| ≥ cn),

and hence

P (Ac
n ∪Bc

n) ≤ P (Ac
n) + P (Bc

n)

≤ ǫ(2)n + P (max
θ∈Θn

|Rn(θ)| ≥ cn)

≤ ǫ(1)n + ǫ(2)n ,
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so

P

(
max
θ∈Θn

Sn(θ) > 0

)
≥ P (An ∩Bn) ≥ 1−

(
ǫ(1)n + ǫ(2)n

)
,

and since

P

(
sup
θ∈R

Sn(θ) > 0

)
≥ P

(
sup
θ∈Θn

Sn(θ) > 0

)
,

we are done.

2.4.10 Proof of Lemma 2.3.5

The next proof uses an application of the Normal Comparison Lemma men-
tioned in Section 2.2.

Proof of Lemma 2.3.5. Enumerate the an elements of Θn via θi, i = 1, 2, . . . , an.
For each θi ∈ Θn we have a corresponding normal random variable

Gn(θi) =
∫ 1

0
ℓθi(u)dWn(u), and a calculation directly after this proof tells

us

E(Gn(θ)) = 0, and

Cov (Gn(t), Gn(s)) = e−(s−t)2/2 − e−t2/2−s2/2 − ste−t2/2−s2/2. (2.54)

To apply the Normal Comparison Lemma, we introduce the notation σ2(θ) =
Var(Gn(θ)) and denote the standardised versions of each Gn(θi) by Yn(θ) =
Gn(θ)
σ(θ)

. Let Y1, . . . , Yan be given by Yi = Yn(θi) so that the covariance structure

of the Gn(θi) is directly related to Λ1 =
(
Λ1

ij

)
, given by

Λ1
ij = Cov (Yi, Yj) = Cov

(
Gn(θi)

σ(θi)
,
Gn(θj)

σ(θj)

)
=

Cov (Gn(θi), Gn(θj))

σ(θi)σ(θj)
.

Let Z1, . . . , Zan be iid N(0, 1) and let Λ0 be their covariance matrix. Clearly
Λ0 is simply the an×an identity matrix Ian . The probability we are interested
in is

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
,

for some cn > 0.
Note that

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
= P

( ⋂

θ∈Θn

{Gn(θ) ≤ cn}
)

= P

( ⋂

θ∈Θn

{
Gn(θ)

σ(θ)
≤ cn

σ(θ)

})
.
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If we denote each cn
σ(θ)

by

un(θ) =
cn
σ(θ)

,

then

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
= P

(
an⋂

i=1

{Yi ≤ un(θi)}
)
.

By applying the Normal Comparison Lemma to Y1, . . . , Yan and Z1, . . . , Zan,
we can arrive at

∣∣∣∣∣P
(

an⋂

i=1

Yi ≤ un(θi)

)
−

an∏

i=1

Φ(un(θi))

∣∣∣∣∣

≤ 1
2π

∑
1≤i<j≤an

|Λ1
ij|(1− ρ2ij)

− 1
2 exp

(
−(un(θi)2+un(θj)2)

2(1+ρij )

)
. (2.55)

Since ρij = max(|Λ1
ij|, |Λ0

ij|), when i 6= j ρij = |Λ1
ij|. Let ρn = maxi 6=j ρij . If

ρn < 1, then

|Λ1
ij|(1− ρ2ij)

− 1
2 ≤ ρn(1− ρ2n)

− 1
2 ,

and
−1

1 + ρij
≤ −1

1 + ρn
.

Let un = minθ∈Θn un(θ). Then un(θi)
2 + un(θj)

2 ≥ 2u2
n, and

exp

(−(un(θi)
2 + un(θj)

2)

2(1 + ρn)

)
≤ exp

( −u2
n

1 + ρn

)
≤ 1.

So if ρn < 1 then (2.55) becomes

∣∣∣∣∣P
(

an⋂

i=1

Yi ≤ un(θi)

)
−

an∏

i=1

Φ(un(θi))

∣∣∣∣∣
≤ 1

2π

∑
1≤i<j≤an

ρn(1− ρ2n)
− 1

2

= an(an−1)
4π

ρn(1− ρ2n)
− 1

2 . (2.56)

Using (2.56) we thus arrive at

P

(
max
θ∈Θn

Gn(θ) ≤ cn

)
≤

an∏

i=1

Φ(un(θi)) +
an(an − 1)

4π
ρn(1− ρ2n)

− 1
2 .
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2.4.11 Covariance calculation for above proof

We now provide a calculation of the covariances of the random variables
Gn(θ) mentioned in the above proof.

Calculation to show (2.54). It is established in McKean (1969) that for a
stochastic integral of the form Gn(t) =

∫
[0,1]

ft(u)dWn(u),

E(Gn(t)) = 0,

E(Gn(t)Gn(s)) =

∫ 1

0

ft(u)fs(u)du.

So when Gn(θ) =
∫ 1

0
ℓθ(u)dWn(u),

E(Gn(θ)) = 0,

E(Gn(t)Gn(s)) =

∫ 1

0

ℓt(u)ℓs(u)du.

So Cov (Gn(t)Gn(s)) = E(Gn(t)Gn(s)). We now calculate E(Gn(t)Gn(s)), so
making the substitution x = Φ−1(u) we have

E(Gn(t)Gn(s)) =

∫ ∞

−∞
ℓt(Φ(x))ℓs(Φ(x))φ(x)dx.

Recall that

ℓθ(u) = e−θ2/2

(
φ(Φ−1(u)− θ)

φ(Φ−1(u))
− 1− θΦ−1(u)

)
.

Elementary calculations show

ℓt(Φ(x)) = e−t2/2

(
φ(x− t)

φ(x)
− 1− tx

)
,

ℓt(Φ(x))ℓs(Φ(x)) = e−t2/2−s2/2

(
φ(x− t)

φ(x)
− 1− tx

)(
φ(x− s)

φ(x)
− 1− sx

)
,

et
2/2+s2/2ℓt(Φ(x))ℓs(Φ(x)) =

(
e−t2/2+tx − 1− tx

)(
e−s2/2+sx − 1− sx

)

= e−t2/2−s2/2+(s+t)x − e−t2/2+tx − e−s2/2+sx + sxe−t2/2+tx

+1 + (s+ t)x+ txe−s2/2+sx + stx2,

et
2/2+s2/2

E(Gn(t)Gn(s)) = e−t2/2−s2/2+(s+t)2/2 − 1− st,

E(Gn(t)Gn(s)) = e−(s−t)2/2 − e−t2/2−s2/2 − ste−t2/2−s2/2,

and we are now done.

70



2.4.12 Proof of Lemma Lemma 2.3.6

We now prove Lemma 2.3.6, which specifies conditions in which the bound
provided by Lemma 2.3.5 is useful for our proof of Theorem 2.1.2.

Proof. We first consider conditions for which
∏an

i=1Φ(un(θi)) → 0 as n → ∞.

Recall that un(θi) = cn
σ(θi)

, where σ(θ)2 = 1 − e−θ2(1 + θ2). For x > 0,
d
dx

(1− e−x(1 + x)) > 0, so when θ2i ≤ θ2j we have σ(θi)
2 ≤ σ(θj)

2.
Therefore

max
i

un(θi) =
cn

mini σ(θi)
=

cn
σ(tn)

,

and so
an∏

i=1

Φ(un(θi)) ≤ Φ(un)
an ,

where un = cn
σ(tn)

. Note that un is defined for the purposes of this proof, and
that it is not the same un used in the proof of Lemma 2.3.5. Since tn → ∞
as n → ∞, σ(tn) → 1 as n → ∞, so since c = limn→∞ cn is finite, un → c.
Therefore if cn and an satisfy Φ(cn)

an → 0 as n → ∞, then

an∏

i=1

Φ(un(θi)) ≤ Φ(un)
an → 0, as n → ∞.

We next bound the maximum correlation ρn = maxi 6=j

∣∣∣Cov(Gn(θi),Gn(θj))

σ(θi)σ(θj )

∣∣∣
with

ρn ≤
(
max
i 6=j

1

σ(θi)σ(θj)

)
max
i 6=j

|Cov (Gn(θi), Gn(θj))| .

The two smallest values of θ2i and θ2j 6= θ2i are t2n and (tn + ∆n)
2. Therefore

since σ(θ) is increasing as θ2 increases

max
i 6=j

1

σ(θi)σ(θj)
=

1

σ(tn)σ(tn +∆n)
.

As n → ∞, σ(tn) → 1 from below, so

ρn ≤ (1 + ǫn)max
i 6=j

|Cov (Gn(θi), Gn(θj)) |

for some ǫn → 0 as n → ∞.
For s, t ∈ R,

st ≤ |st| ≤ max{s2, t2} ≤ s2 + t2,

so we can bound Cov (Gn(θi), Gn(θj)) by
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Cov (Gn(s), Gn(t)) = e−
1
2
(s−t)2 − e−t2/2−s2/2(1 + st)

≤ e−
1
2
(s−t)2 + e−t2/2−s2/2(1 + s2 + t2),

and since ∆n is the smallest spacing between any different θi, θj , we have

ρn ≤ (1 + ǫn)

(
e−∆2

n/2 +max
i 6=j

(
(θ2i + θ2j + 1)e−θ2i /2−θ2j /2

))
.

Let f(x) = e−x(x+ 1
2
). Then

max
i 6=j

(
(θ2i + θ2j + 1)e−θ2i /2−θ2j /2

)
= 2f

(
θ2i + θ2j

2

)
,

and moreover d
dx
f(x) = e−x(1

2
− x), and since

θ2i +θ2j
2

≥ t2n, when t2n ≥ 1
2
,

f
(

θ2i +θ2j
2

)
≤ f(t2n). Therefore

max
i 6=j

(
(θ2i + θ2j + 1)e−θ2i /2−θ2j /2

)
≤ e−t2n(2t2n + 1),

and so
ρn ≤ (1 + ǫn)

(
e−∆2

n/2 + e−t2n(2t2n + 1)
)
.

If t2ne
−t2n

e−∆2
n/2

→ 0 as n → ∞ then ρn behaves like e−∆2
n/2 for large n.

Recall that

ǫ(2)n =

an∏

i=1

Φ(un(θi)) +
an(an − 1)

4π
ρn(1− ρ2n)

− 1
2 .

Since ρn(1− ρ2n)
− 1

2 looks like ρn when ρn looks like e−∆2
n/2, the condition

a2nρn → 0, as n → ∞

is enough for
an(an − 1)ρn(1− ρ2n)

− 1
2 → 0, as n → ∞.
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2.4.13 Showing that (2.16) satisfies Corollary 3.4 of
Csörgő et al. (1986)

We now show that (2.16) satisfies the conditions of Corollary 3.4 of Csörgő
et al. (1986). These satisfied conditions imply that in Section 2.3, supℓθ∈Ln

|R3(θ)| =
op(1).

Proof. We first describe the conditions given in Csörgő et al. (1986) that we
wish to check. We will need some definitions to do this.

Definition (Positive function). A function q defined on (0, 1] is called posi-
tive if

inf
δ≤s≤ 1

2

q(s) > 0, for all 0 < δ <
1

2
.

For the purposes of this proof, we will consider the following characterisa-
tions as definitions. We refer to Theorems 3.3 and 3.4 of Csörgő et al. (1986)
for the actual definitions.

Definition 2.4.1 (EFKP upper-class function of a Brownian bridge). Let
q be any positive function defined on (0, 1

2
], nondecreasing in a neighbour-

hood of zero. Such a function q will be called an Erdös-Feller-Kolmogorov-
Petrovski (EFKP) upper class function of a Brownian bridge {B(s); 0 ≤ s ≤
1} if and only if the integral

I(q, c) =

∫ 1
2

0

s−1 exp(−cs−1q2(s))ds < ∞ (2.57)

for some c > 0. An EFKP upper-class function of a Brownian bridge q is
called a Chibisov-O’Reilly function if I(q, c) < ∞ for all c > 0.

We now are in a position to state Corollary 3.4 of Csörgő et al. (1986).

Corollary 2.4.2 (from Csörgő et al. (1986)). Let L be any L∗−decomposable
class of functions, and let q11, q12, q21, q22 be any positive functions defined on
(0, 1

2
], nondecreasing in a neighbourhood of zero and assumed to be right-

continuous. For δ > 0 and small enough so that the qij(i, j = 1, 2) are
already nondecreasing on (0, δ], define

N
(1)
i (δ) = sup

ℓ∈L

∫ δ

0

|ℓi(s)|dq1i(s),

N
(2)
i (δ) = sup

ℓ∈L

∫ δ

0

|ℓi(1− s)|dq2i(s),

i = 1, 2, ℓ = ℓ1 − ℓ2 ∈ L.
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If these qij functions are each EFKP upper-class functions of a Brownian
bridge and

lim
δ↓0

max
1≤i,j≤2

N
(j)
i (δ) = 0, (2.58)

then on the probability space of Theorem 1.1 by Csörgő et al. (1986) (listed
in this chapter as Theorem 2.2.4 in Section 2.2), we have as n → ∞,

Ẽn = sup
ℓ∈L

∣∣∣∣
∫ 1

0

ℓ(s)dαn(s)−
∫ 1

0

ℓ(s)dBn(s)

∣∣∣∣ = op(1).

The proof of this corollary mentions that if (2.58) holds, then

sup
ℓ∈L

(∣∣∣∣∣

∫ 1/n

0

ℓ(s)dBn(s)

∣∣∣∣∣+
∣∣∣∣
∫ 1

1−1/n

ℓ(s)dBn(s)

∣∣∣∣

)
= op(1). (2.59)

In our chapter here, we wish to apply the above corollary to Ln (as defined
by (2.16)) to arrive at

sup
ℓ∈Ln

(∣∣∣∣∣

∫ 1/n

0

ℓ(s)dBn(s)

∣∣∣∣∣+
∣∣∣∣
∫ 1

1−1/n

ℓ(s)dBn(s)

∣∣∣∣

)
= op(1).

We are now in a position where we can check the conditions of the above
corollary. Recall that we wish to apply this corollary to the class

Ln = {ℓθ : θ ∈ [−C
√

log n, C
√

logn]},

where for u ∈ [0, 1],

ℓθ(u) = e−θ2/2
(
eθΦ

−1(u)−θ2/2 − 1− θΦ−1(u)
)
.

We have already shown with (2.45) and (2.46) that Ln is L∗−decomposable.
Choose any constant λ > 0 and for s ∈ (0, 1

2
] let q(s) = eλΦ

−1(s). The
function q is a positive function on (0, 1

2
], continuous and also non decreasing

in a neighbourhood of zero. We show through the remainder of this proof
that this choice of q satisfies all the necessary conditions to check, and we
use it as our choice of q11, q12, q21 and q22.

We first show that q is a Chibisov-O’Reilly function (and thus an EFKP
upper-class function of a Brownian bridge). To reduce clutter in this part of

the proof, suppose we have defined q via q(s) = e
λ
2
Φ−1(s), with some λ > 0.
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From Definition 2.4.1, q is Chibisov-O’Reilly if and only if (2.57) holds for
all c > 0. Choose any c > 0. We wish to show

I(q, c) =

∫ 1
2

0

s−1 exp
(
−cs−1eλΦ

−1(s)
)
ds < ∞.

We provide a bound for the integrand s−1 exp
(
−cs−1eλΦ

−1(s)
)
by first com-

paring the left tail behaviour of φ with the tail behaviour of an exponential
function.

Figure 2.5: An exponential’s tail is eventually higher than the left tail of a
normal.

Looking at the speeds of e−t2 and et as t → −∞, we see for any 0 < b < 1
λ

there exists some t0 < 0 such that we have

φ(t) = e−t2/2−log(
√
2π) < et/b, when t < t0.

Thus for any y < t0 < 0 we have

Φ(y) =

∫ y

−∞
φ(t)dt <

∫ y

−∞
et/bdt = bey/b.

Since Φ−1 is monotone increasing,

y < Φ−1(bey/b) for y < t0 < 0. (2.60)

Let us make the substitution s = bey/b, so that y = b log
(
s
b

)
. Using (2.60),

for s sufficiently close to 0 we have

b log
(s
b

)
< Φ−1(s).
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Since λ > 0 and c > 0, for s > 0 sufficiently close to 0 we have

eλb log(
s
b) < eλΦ

−1(s),

−eλb log(
s
b) > −eλΦ

−1(s),

−ceλb log(
s
b)/s > −ceλΦ

−1(s)/s,
1

s
exp(−ceλb log(

s
b )/s) >

1

s
exp(−ceλΦ

−1(s)/s).

Also, since b < 1
λ
we have

eλb log(
s
b)/s = sλb−1/bλb

=

(
1

s

)1−λb

/bλb, where 1− λb > 0.

Thus for s sufficiently small we have this bound for the integrand of I(q, c)

1

s
exp

(
−ceλΦ

−1(s)/s
)
<

1

s
exp

(
−c

(
1

s

)1−λb

/bλb

)
. (2.61)

Let a range of s where (2.61) holds be called 0 < s < ǫ. We can break I(q, c)
into

I(q, c) =

∫ ǫ

0

1

s
exp

(
−ceλΦ

−1(s)/s
)
ds+

∫ 1
2

ǫ

1

s
exp

(
−ceλΦ

−1(s)/s
)
ds,

and since ∫ 1
2

ǫ

1

s
exp

(
−ceλΦ

−1(s)/s
)
ds < ∞,

it is sufficient for us to show
∫ ǫ

0
1
s
exp

(
−ceλΦ

−1(s)/s
)
ds < ∞.

∫ ǫ

0

1

s
exp(−ceλΦ

−1(s)/s)ds <

∫ ǫ

0

1

s
exp(−c

(
1

s

)1−λb

/bλb)ds, where 1− λb > 0

=

∫ ∞

1
ǫ

1

x
e−cx1−λb/bλbdx < ∞, using x =

1

s
.

Since this is true for any c > 0, we have shown that q given by q(s) = e
λ
2
Φ−1(s)

is Chibisov-O’Reilly. Since λ > 0 was arbitrary, q(s) = eλΦ
−1(s) is also

Chibisov-O’Reilly.
We now show

lim
δ↓0

max
1≤i,j≤2

N
(j)
i (δ) = 0.
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We first consider

N
(1)
1 (δ) = sup

ℓθ∈Ln

∫ δ

0

|ℓ1(s)|dq(s).

Since the decomposition of any ℓθ ∈ Ln depends on whether θ > 0 or θ ≤ 0,
let us split the nontrivial parts of Ln into the classes

L+
n = {ℓθ : 0 < θ ≤ C

√
log n},

L−
n = {ℓθ : −C

√
log n ≤ θ < 0}.

When θ = 0, ℓθ is the constant function ℓθ = 0, so N
(1)
1 (δ) is

N
(1)
1 (δ) = sup

{
sup
ℓθ∈L−

n

∫ δ

0

|ℓ1(s)|dq(s), 0, sup
ℓθ∈L+

n

∫ δ

0

|ℓ1(s)|dq(s)
}
.

We now consider each case θ > 0, θ < 0 seperately. Suppose θ > 0, then
ℓθ = ℓ1 − ℓ2 where

ℓ1(u) = e−θ2/2
(
eθΦ

−1(u)−θ2/2 − 1
)
,

ℓ2(u) = θe−θ2/2Φ−1(u).

For convenience we will refer to ℓ1 as the increasing part of ℓθ, and ℓ2 as the
decreasing part. It should be noted that ℓ2 is also an increasing function but
ℓθ = ℓ1 − ℓ2. We are currently focusing on N

(1)
1 (δ) so for now we speak only

of the increasing part of ℓθ, which is ℓ1.
We have

∫ δ

0

|ℓ1(s)|dq(s) = |ℓ1(s)|q(s)
]δ

0

−
∫ δ

0

(
d

ds
|ℓ1(s)|

)
q(s)ds,

and the form of ℓ1 allows us to choose δ > 0 small enough so that ℓ1(s) < 0
for s ∈ (0, δ], so we may assume |ℓ1(s)| = −ℓ1(s) over (0, δ] to arrive at

∫ δ

0

|ℓ1(s)|dq(s) = −ℓ1(δ)q(δ) + ℓ1(0)q(0) +

∫ δ

0

(
d

ds
ℓ1(s)

)
eλΦ

−1(s)ds.

(2.62)

Considering the first group of terms, we note

ℓ1(s)q(s) = e−θ2/2
(
e(θ+λ)Φ−1(s)−θ2/2 − eλΦ

−1(s)
)

(2.63)
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so ℓ1(0)q(0) = 0. Also, d
ds
ℓ1(s) is

d

ds
ℓ1(s) = θe−θ2eθΦ

−1(s)

(
d

ds
Φ−1(s)

)
, (2.64)

and thus
∫ δ

0

(
d

ds
ℓ1(s)

)
eλΦ

−1(s)ds = θe−θ2
∫ δ

0

(
d

ds
Φ−1(s)

)
e(θ+λ)Φ−1(s)ds

=
θe−θ2

θ + λ

∫ δ

0

(
d

ds
e(θ+λ)Φ−1(s)

)
ds (2.65)

Since θ + λ > 0, e(θ+λ)Φ−1(s) → 0 as s → 0, so (2.65) converges, and is

∫ δ

0

(
d

ds
ℓ1(s)

)
eλΦ

−1(s)ds =
θe−θ2

θ + λ
e(θ+λ)Φ−1(δ). (2.66)

Thus
∫ δ

0

|ℓ1(s)|dq(s) = −e−θ2/2(e(θ+λ)Φ−1(δ)−θ2/2 − eλΦ
−1(δ)) +

θe−θ2

θ + λ
e(θ+λ)Φ−1(δ),

and so

sup
ℓθ∈L+

n

∫ δ

0

|ℓ1(s)|dq(s) ≤ sup
0<θ≤C

√
logn

e(θ+λ)Φ−1(δ)

+eλΦ
−1(δ)

+ sup
0<θ≤C

√
logn

θe−θ2

θ + λ
e(θ+λ)Φ−1(δ)

= 3eλΦ
−1(δ).

Suppose θ < 0. Then the increasing and decreasing parts of ℓθ are
swapped to

ℓ1(u) = −θe−θ2/2Φ−1(u),

ℓ2(u) = −e−θ2/2
(
eθΦ

−1(u)−θ2/2 − 1
)
.

In this case we can also choose a δ > 0 small enough so that ℓ1(s) < 0 for
0 < s < δ, and arrive again at (2.62).

In this case we replace (2.63) with

−θe−θ2/2Φ−1(s)eλΦ
−1(s),

78



and replace (2.64) with

−θe−θ2/2

(
d

ds
Φ−1(s)

)
.

The calculation at (2.65) in this case ends with

−θe−θ2/2

λ

∫ δ

0

eλΦ
−1(s)ds,

and since λ > 0 the integral converges and is

∫ δ

0

(
d

ds
ℓ1(s)

)
eλΦ

−1(s)ds =
−θe−θ2

λ
eλΦ

−1(δ).

Thus when θ < 0 we arrive at

∫ δ

0

|ℓ1(s)|dq(s) = θe−θ2/2Φ−1(δ)eλΦ
−1(δ) +

θe−θ2

λ
eλΦ

−1(δ)

≤ Φ−1(δ)eλΦ
−1(δ) + 0,

so in summary we have (for δ > 0 small enough)

N
(1)
1 (δ) ≤ 3eλΦ

−1(δ) + Φ−1(δ)eλΦ
−1(δ).

Since

N
(1)
1 (δ) = sup

{
sup
ℓθ∈L−

n

∫ δ

0

|ℓ1(s)|dq(s), 0, sup
ℓθ∈L+

n

∫ δ

0

|ℓ1(s)|dq(s)
}
,

we further have

0 ≤ N
(1)
1 (δ) ≤ 3eλΦ

−1(δ) + Φ−1(δ)eλΦ
−1(δ),

so in conclusion we must have

lim
δ↓0

N
(1)
1 (δ) = 0.

A similar argument can be made to show

lim
δ↓0

N
(1)
2 (δ) = 0.

If θ > 0, the decreasing function ℓ2 is (up to a − sign) the increasing function

ℓ1 in the N
(1)
1 (δ) situation in the θ < 0 case, and the bound Φ−1(δ)eλΦ

−1(δ) is
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used for supℓθ∈L+
n

∫ δ

0
|ℓ2(s)|dq(s). If θ < 0, the same ideas from the θ > 0 case

in the N
(1)
1 (δ) part of this proof produce supℓθ∈L−

n

∫ δ

0
|ℓ2(s)|dq(s) ≤ 3eλΦ

−1(s).

Similarly again, we can show limδ↓0 N
(2)
i (δ) = 0 for i = 1, 2. When we

replace ℓ1(s) with ℓ1(1−s), we can use the fact that Φ−1(s) = −Φ−1(1−s) to
arrive back to similar arguments. The signs in some of the earlier equations
like (2.62) will be reversed in some cases, but the bounds remain the same
(or swapped).

Thus
lim
δ↓0

max
1≤i,j≤2

N
(j)
i (δ) = 0,

so all the conditions of Corollary 2.4.2 hold for Ln.

2.5 Simulated demonstration

This section details a simulation we ran in R. The names of functions written
in R are typeset like this, and the full code for each function mentioned can
be found in Appendix A.

Demonstrating the inconsistency of K in this chapter only required we
provide one example. A practical bonus of our example’s simplicity is we
do not need to use some of the slower algorithms described in Chapter 3 to
illustrate Theorem 2.1.2.

Let X1, . . . , Xn be iid with density f given by

f(x) =

∫
φ(x− µ)dQ0(µ),

and let Kn be the number of mass points of the NPMLE Q̂ of Q0. Recall
that in our example in Theorem 2.1.2, Q0 was the degenerate distribution δ0
and so the true density of X1 was φ.

Recall from Section 2.3 that

P (Kn = 1) = P

(
sup
θ∈R

Dn(θ, X̄) = 0

)
,

where

Dn(θ, X̄) =
1√
n

n∑

i=1

{
φ(Xi − θ)

φ(Xi − X̄)
− 1

}
.

The condition supθ∈RDn(θ, X̄) = 0 is quite easy to check computationally.
Given a vector of observations x=c(x1, . . . , xn) and a range theta=c(θ1, . . . , θan),
the function Dn calculates Dn(θ, X̄).
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Here is an example of whatDn(θ, X̄) looked like in practice. We simulated
n = 100 standard normals.

> set.seed(98097629)

> n <- 100

> x <- rnorm(n)

> hist(x, n = 50)

Figure 2.6: n = 100 random normals

We then chose a range theta=Θ ⊂ R and plotted our observed stochastic
process Dn(x,theta).

> source("Dn.r")

> theta <- (-50:50)/10

> plot(theta, Dn(x, theta))

> abline(0, 0)
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Figure 2.7: The observed stochastic process, sometimes positive.

In this case, maxθ∈Θ Dn(θ, X̄) > 0, so supθ∈R Dn(θ, X̄) > 0 and hence
Kn > 1.

Here is an example of when Kn = 1.

> set.seed(98097629)

> n <- 30

> x <- rnorm(n)

> hist(x, n = 10)

Figure 2.8: n = 30 standard normals.
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> theta <- (-50:50)/10

> plot(theta, Dn(x, theta))

> abline(0, 0)

> abline(v = mean(x))

Figure 2.9: The observed stochastic process, which in this case is always ≤ 0.

With Θn ⊂ R, let

pn = P

(
max
θ∈Θn

Dn(θ, X̄) = 0

)
.

Since Θn ⊂ R, we have the bound P (Kn = 1) ≤ pn, and so to demonstrate
Theorem 2.1.2 it is sufficient to demonstrate pn → 0 as n → ∞.

For each n = 10i, i = 1, . . . , 8, we wished to estimate pn, so we generated
n iid standard normals x1, . . . , xn and used the function Dn_ispositive_C

to check whether any of the function values calculated over a sensible choice
of range Θn ⊂ R was positive.

The function Dn_ispositive_C returned 0 if maxθ∈Θn Dn(θ, X̄) = 0 and
it returned 1 as soon as any positive value was returned (if any).

This was done B times. Let Yn be the number of times (out of B times)
that Dn_ispositive_C returned 0. Then Yn ∼ B(B, pn), so our estimate

p̂n = Yn/B had expectation E(p̂n) = pn and standard error
(

p̂n(1−p̂n)
B

) 1
2
.

We noticed that the maximum max(x) was like
√
2 logn, so we chose to

estimate each pn using a range Θn depending on the range of the data. We
used the range Θn =floor(1.5*min(x)):floor(1.5*max(x)) to ensure we
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checked past the range of the data. We obtained the following estimates of
pn.

> load("aug26.RData")

> temp <- p[1:7]

> load("aug28.RData")

> p <- c(temp, p)

> p

[1] 0.546 0.384 0.252 0.204 0.150 0.112 0.102 0.070

> se <- sqrt(p * (1 - p)/500)

> i <- 1:8

> b1 <- p - se

> b2 <- p + se

> plot(1:8, p, main = "B=500, theta=floor(1.5*min(x)):floor(1.5*max(x))",

+ ylab = "pn hat plusminus se(pn hat)", xlab = "i=1:8,n=10^i")

> points(i, b2, pch = 3)

> points(i, b1, pch = 3)

Figure 2.10: Our estimates p̂n of pn ≥ P (Kn = 1), obtained by using the
ranges Θn = (−1.5maxi(Xi), 1.5maxi(Xi)).
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In the above figure, our estimates p̂n of pn for n = 10i, i = 1, . . . , 8,
were made with B = 500 repetitions. The values on the horizontal axis are
i = 1, . . . , 8. Calculating p̂108 took about a week, so we decided not to keep
estimating pn for i ≥ 9.
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Chapter 3

Using NPMLE results for
density estimation

In this chapter we investigate a density estimation approach using normal
mixtures and Non Parametric Maximum Likelihood Estimation (NPMLE).
We first draw an analogy between a bandwidth selection problem in Kernel
density estimation, and in density estimation via NPMLE of location mix-
tures of normals. We have implemented the Intra Simplex Direction Method
(ISDM) of Lesperance and Kalbfleisch (1992) in R code. The slowest parts
of the ISDM were implemented in C and wrapped into our code, which can
be found in Appendix B. This code is faster than the same algorithm im-
plemented in only R by a factor of 10. This chapter concludes with some
comments about how the stopping criterion for the code we have written can
be calibrated.

3.1 Introduction

The notion of some sort of smoothness parameter in the construction of a
non parametric density estimate exists in multiple contexts. Even the con-
struction of a simple histogram depends upon how many breaks are chosen
to be drawn or displayed. The following example shows three histograms
constructed from the same data set (of size 200). The dataset and the dis-
tribution it was sampled from are listed in Appendix D.

Example 3.1.1. The red curve overlaid is the true density from which the
data were generated.
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Figure 3.1: Three histograms of the same data set.

The effect of a poor choice of number of breaks may lead to the loss of
key features in the data, or too much detail to focus upon. The simplest
description of the data which does not lose sight of valuable features is ideal.

This simple example highlights a problem of interest which occurs in the
popular kernel density estimation method, and in Section 3.3 we show it also
exists in the use of applying normal mixture models to density estimation.

3.2 A multiscale approach in kernel density

estimation

In this section we first provide some comments about well known aspects
of the kernel density estimation method. We then describe a multiscale
approach to bandwidth selection in the kernel density estimation context.
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3.2.1 Kernel density estimation

Suppose we model X1, . . . , Xn as iid with density f0 (on R), where f0 is
unknown. We may wish to use the data X1, . . . , Xn to construct a function
f̂ which in some sense is close to f0. Let h > 0 and let a density k satisfy
k(−x) = −k(x) for x ∈ R. The kernel density estimator f̂h of f0 using the
function k and the number h > 0 as presented in Silverman (1986) is

f̂h(x) =
1

nh

n∑

i=1

k

(
x−Xi

h

)
, for x ∈ R. (3.1)

In the literature, the function k in (3.1) is called the kernel function and the

number h is referred to as the bandwidth of the estimator f̂h. Figure 3.2
contains some of the popular choices of k in practice.

Figure 3.2: Several popular choices of kernel function.

As noted in Wand and Jones (1994), in kernel density estimation the
choice of most unimodal kernels does little to alter the performance of the
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estimator. On the other hand the choice of bandwidth h > 0 can have a
dramatic effect on the performance of the estimator produced.

Figure 3.3 shows different kernel density estimates constructed from the
data set from Example 3.1.1, with either their choice of kernel varied or their
choice of bandwidth varied. Both kernels were densities of a random variable
with variance 1.

Figure 3.3: Different kernel density estimates with choice of bandwidth or
choice of kernel varied.

In Figure 3.3, when the bandwidth is chosen to be h = 1, both the
Epanechnikov kernel estimate and Gaussian kernel estimate produces a func-
tion with only one peak, which misses the multimodal nature of the true
density (listed in Appendix D). On the other hand, when the bandwidth is
chosen to be h = 0.01, the kernel density estimates (using either kernel func-
tion) displayed too many peaks which were only reflecting features present
from that particular data set. The choice of h = 0.1 looks sensible in com-
parison to either of those extremes, however this choice is neither an obvious
one nor a necessarily optimal one, in any sense.

In Section 3.3 we present a more general setting in which kernel density
estimates can be viewed as one type of mixture density estimate out of a
whole class of such estimates. The following simulation study is one which
could be performed in the absence of the known theoretical results about
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kernel density estimators, and in Section 3.3 we mention a study of a similar
flavour.

3.2.2 A multiscale approach to bandwidth selection

Suppose we were interested in estimating the underlying density from Ex-
ample 3.1.1 via kernel density estimation, and wished to choose a sensible
bandwidth h. We could embark upon a naive and computationally intensive
procedure where we simply try a range of choices

h = 0.01, h = 0.02, . . . , h = 0.99, h = 1

and examine each of the density estimates visually.
We would end up looking at plots (using a Gaussian kernel), the following

are 11 examples out of the 100 density estimates constructed:

Figure 3.4: Kernel density estimates with varied bandwidth h.
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Figure 3.5: Kernel density estimates with varied bandwidth h.

On its own, this theoretically unsatisfying and computationally intense
procedure still would not give us any precise idea of how to choose a band-
width h. However once the introduction of a way to measure distance between
the true density and an estimated density is added to this approach, we can
plot the distances between the true density and the related estimators against
the bandwidth h.

Example 3.2.1. Figure 3.6 shows four plots of an approximate measure of
distance against choice of bandwidth. The data set (X1, . . . , Xn) is from
Example 3.1.1, and some of the density estimates are displayed in Figures
3.4 and 3.5.
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Figure 3.6: Clockwise from the top left: Plot (a), Plot (b), Plot (d), Plot (c).

The true density in this example is

f0 = 0.3φ−1,0.2 + 0.7φ0.5,0.5.

Let the names of the 100 density estimates from Figures 3.4 to 3.5 be f̂h,
with h = 0.01, 0.11, 0.21, . . . , 0.91, 1 corresponding the the bandwidths used.
Each of the estimates f̂h were calculated over the range of the data at equally
spaced values t1 = mini(xi), . . . , t100 = maxi(xi).

The plots in Figure 3.6 were produced as follows:

Plot (a): To examine what
∫ t100
t1

∣∣∣f0(x)− f̂h(x)
∣∣∣dx looked like as a function of h,

we calculated
∑

i=1 |f0(ti)− f̂h(ti)| (ignoring the constant factor of 100)
for each h.

Plot (b): Similarly, to examine what
∫ t100
t1

(f0(x) − f̂h(x))
2dx looked like we cal-

culated
∑

i=1(f0(ti)− f̂h(ti))
2 for each h.

Plot (c): We used 0.5
∑

i=1

(√
f0(ti)−

√
f̂h(ti)

)2

to approximate Hellinger dis-

tance as a function of h.
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Plot (d): We used maxi{|f0(ti)− f̂h(ti)|} to approximate each supt∈[t1,t100] |f0(t)−
f̂h(t)|.

In each of the above plots, there existed a clear minimum distance between
the true density and an estimate f̂h at some h in any of the senses listed,
over the range of bandwidth choices [0.01, 1]. All four plots suggested that
a bandwidth choice of approximately h = 0.115 would lead to an optimally
close estimate f̂h to f0 in terms of the various notions of distance we used.

We wished to replicate this procedure as a tool for examining bandwidth
selection options in the more general setting of mixture density estimation.
Unfortunately we did not develop any satisfactory computational technique
to aid the choice of bandwidth in the more general case. However, in the next
sections we present a basic theoretical bound for the choice of bandwidth.

Given the similarity between kernel density estimation and normal mix-
ture approach it would have been natural to discuss whether standard meth-
ods such as cross validation or plug-in methods which are commonly used
in kernel density estimation can be used in mixture density context as well.
However due to the nature of mixture model work quickly becoming compli-
cated for even two component mixtures, we have not focused on generalising
these ideas. Nor have we found much work that has focused on this area.
They would provide an interesting topic to further investigate.

3.3 An analogous bandwidth selection prob-

lem

In Chapter 1 we defined Fh to be given by

Fh = {fQ,h : Q is on R},
where

fQ,h =

∫
φµ,hdQ(µ).

In this section we present a nesting result about the classes {Fh, h > 0}.
We then show that the bandwidth selection problem described in Section
3.2 appears in the mixture setting described as well, and define a theoretical
sense of optimality using the nesting property of {Fh, h > 0}. We lastly
show how kernel density estimates can be viewed as a special case of mixture
density estimates.
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3.3.1 A nesting property of Fh

Lemma 3.3.1. For 0 < s < t, we have Ft ⊆ Fs.

Proof. Recalling the definition of F (a)
h in Definition 1.4.1, this result follows

immediately since the elements of {F (a)
h , h > 0} are easily shown to be nested.

Suppose 0 < s < t and pick any f ∈ Ft. From the definition of F (a)
h there

exists a mixing distribution Q on R× [t,∞) such that we can write f as

f =

∫

R×[t,∞)

φµ,σdQ(µ, σ).

Since 0 < s < t, R × [t,∞) is a subset of R × [s,∞), so define Q̃(A) (for
A ⊆ R× [s,∞)) via

Q̃(A) =

{
Q(A) , A ⊆ R× [t,∞)

Q(A ∩ (R× [t,∞))) , otherwise
.

Then f can be written as

f =

∫

R×[s,∞)

φµ,σdQ̃(µ, σ),

and hence f ∈ Fs.

3.3.2 Possible values of h

Suppose σ > 0. Lemma 3.3.1 shows if f ∈ Fσ then f ∈ Fh for all 0 < h < σ.
Since it is possible to reexpress normal location-mixture densities in terms of
another with a smaller component variance, the following question arises:

“If f ∈ Fh, does there exist a σ > h such that f /∈ Fσ?”.

The answer is yes. For any f ∈
⋃

h>0Fh, we define the following.

Definition. For f ∈
⋃

h>0Fh, let hf be given by

hf = sup{σ > 0 : f ∈ Fσ}.

We have the following lemma about hf .

Lemma 3.3.2. Suppose f ∈ Fσ for some σ > 0. Then

hf ≤ 1

(supx∈R f(x))
√
2π

. (3.2)

(Note that any f ∈ Fσ will be bounded, so hf < ∞ for any f ∈ Fσ.)
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Proof. We first bound supx∈R f(x) by a quantity depending on σ. Since
f ∈ Fσ, there is a Q on R such that

sup
x∈R

f(x) = sup
x∈R

∫
φµ,σ(x)dQ(µ)

≤
∫ ∣∣∣∣sup

x∈R
φµ,σ(x)

∣∣∣∣ dQ(µ)

=
1

σ
√
2π

∫

R

dQ(µ)

=
1

σ
√
2π

. (3.3)

Let y = supx∈R f(x) and consider the normal density φ0,s with maximum
height y/2. We have

y/2 = max
x∈R

φ0,s(x) =
1

s
√
2π

. (3.4)

We now prove Lemma 3.3.2 by contradiction. Suppose for all h > 0, hf > h.
Then f ∈ Fs where s =

2
y
√
2π
. Using the same argument in (3.3) we arrive at

y = sup
x∈R

f(x) ≤ 1

s
√
2π

= y/2.

Since f ≥ 0 almost everywhere, we conclude f = 0 almost everywhere, and
thus

∫
f(x)dx = 0, contradicting the fact that f is a density. Hence there

exists an s > 0 such that f /∈ Fs, so hf ≤ s.
To show the remainder of this lemma, we choose a standard deviation s in

(3.4) which gives a density with maximum height y(1− ǫ) for some ǫ ∈ (0, 1)
(instead of 1

2
of y) and apply the same argument above to arrive at

hf ≤ 1

(supx∈R f(x))(1− ǫ)
√
2π

.

Since our choice of ǫ was arbitrary, we get

hf ≤ 1

(supx∈R f(x))
√
2π

.

We can use Lemma 3.3.2 to get an idea of what hf is for any f ∈
⋃

h>0Fh\⋂
h>0Fh. Using this chapter’s example density

f = 0.3φ−1,0.2 + 0.7φ 1
2
, 1
2
,
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we know that f ∈ F0.2, and therefore 0.2 ≤ hf . Since maxx∈R f(x) = f(−1),
we get

0.2 ≤ hf ≤ 1

f(−1)
√
2π

≈ 0.6598253.

A special case: single component normals.

When the density f is a single normal, the bound in Lemma 3.3.2 allows us
to calculate hf directly. For example, if f = φ, then f ∈ F1 and therefore
hf ≥ 1. Lemma 3.3.2 gives us hf ≤ 1. Note that f ∈ Fh for h ≤ 1, but
f /∈ Fh for h > 1.

An interval/value of interest

For any f ∈
⋃

h>0Fh \
⋂

h>0Fh, Lemmas 3.3.1 and 3.3.2 together tell us the
following two intervals

I1 = (0, hf ],

and

I2 =

(
1

(supx∈R f(x))
√
2π

,∞
)

have the following properties:

Lemma Lemma 3.3.1 Lemma 3.3.2

Interval I1 = (0, hf ] I2 =

(
1

(supx∈R f(x))
√
2π
,∞
)

Property f ∈ Fh for any h ∈ I1 f /∈ Fh for any h ∈ I2

To our knowledge, little is known about what hf for a given f could
be. Although our Lemma 3.3.2 provides a theoretical upper bound for it, in
practical senses it is not very useful or enlightening. The following section
provides an example of why this quantity might be useful to estimate or
investigate.

3.3.3 Amounts of smoothness in mixture density esti-
mation

Suppose we have data X1, . . . , Xn which we wish to model being iid from
density f , where f ∈ Fhf

is unknown. For any h ∈ (0, hf ], Lemma 3.3.1
implies there exists a mixing distribution Q on R such that we can write f
as

f =

∫
φµ,hdQ(µ).
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To estimate f (with such a bandwidth h in mind) it would make sense to

produce an estimate Q̂ of Q first and then arrive at

f̂h =

∫
φµ,hdQ̂(µ). (3.5)

Algorithms to calculate such estimates Q̂ (or f̂h) are widely available; we will
discuss several of them in Sections 3.5 and 3.6. We will call estimates such
as (3.5) mixture density estimates with bandwidth h, or more specifically,
normal location-mixture density estimates with bandwidth h.

However, for h > hf , there is no Q on R such that
∫
φµ,hdQ(µ) is the

same as f . It is not sensible to find an estimate of f based on the approach
described in (3.5).

In either case, the following questions are equivalent:

“For which values of h > 0 is there a Q on R such that f can be
written as

∫
φµ,hdQ(µ)?”,

and

“What is hf?”.

For unknown f , the quantity hf is also unknown, so a given estimate

f̂h of f may not even have been calculated over a large enough space Fh of
densities. Choice of bandwidth h in (3.5) is thus an important problem to
consider in mixture density estimation.

We now describe the behaviour of mixture density estimates in two sce-
narios. The first scenario is when the choice of bandwidth h > 0 is decreased
to a small enough number so that h < hf . The second is when the choice of
bandwidth h > 0 is chosen to be large, such that h > hf .

h is chosen to be too small

When the bandwidth h of a mixture density estimate is very small relative
to hf , the estimate tends to look more ‘wiggly’ than the original density f .
While choosing h small enough so that Fh contains f is a sensible approach,
there is a tradeoff between how small h can be chosen. The time taken to
compute estimates tends to increase as h comes closer to 0, and unnecessary
features in the estimated density appear more often as the bandwidth is
reduced towards 0.
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h is chosen to be too large

On the other hand, if the bandwidth h is chosen to be too large, the estimate
loses too much detail and looks ‘oversmooth’. A larger choice of h tends to
result in a faster computation of the density estimate f̂h, however the risk of
estimating over a set Fh which does not contain the true density f is higher
as h increases.

As indicated above, we do not wish to choose a bandwidth h to be too
small or large, as in either case problems arise. This analogous behaviour
of the mixture density bandwidth parameter h to that of the bandwidth
parameter in the kernel density estimation context (from Section 3.2) is the
motivator for our choice of notation h and terminology. In fact, we next show
that kernel density estimation can be interpreted as a special case of mixture
density estimation.

3.3.4 A special case of mixture density estimation

Recall the kernel density estimation setting, and suppose we are using the
Gaussian kernal φ. The random variables X1, . . . , Xn with unknown den-
sity f are observed to be x1, . . . , xn. The kernel density estimate of f with
bandwidth h is given by

f̂h(x) =
1

nh

n∑

i=1

φ

(
x−Xi

h

)
.

Suppose now we were to produce a mixture density estimate f̂ of f with
(mixture) bandwidth h. The mixture density (if h < hf) would be expressible
as

f =

∫
φµ,hdQ(µ)

for some Q on R. Instead of estimating Q, suppose we assumed Q placed
equal probability on each of the n observed xi as a choice of component mean;
Q({xi}) = 1

n
for i = 1, . . . , n, and since it is our guess for Q, let the name of

this assumed mixing distribution be Q̂. Since Q̂ is discrete with the n mass
points x1, . . . , xn and probabilities 1

n
, . . . , 1

n
, the mixture density estimate is
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given by

f̂(x) =

∫
φµ,h(x)dQ̂(µ)

=

n∑

i=1

1

n
φxi,h(x)

=
1

nh

n∑

i=1

φ

(
x− xi

h

)
,

which is just the observed value of the kernel density estimator f̂h. Thus
kernel density estimation can be viewed as a special case of mixture den-
sity estimation where the mixing distribution Q is estimated by a specific
distribution Q̂.

In general we may wish to relax this estimator Q̂ of Q to be the maximiser
of the log likelihood over a larger class of distributions on R. The very useful
and elegant results from Lindsay (1983) allow us to do so via algorithms such
as the ones mentioned in Section 3.5.

3.4 A multiscale approach in normal mixture

density estimation

Lemma 3.3.2 suggests a way to estimate an upper bound for hf , however we
do not know of any way to estimate a lower bound, which would be more
useful in practice for reducing computational times in simulation studies such
as the one we have performed.

Based upon the similarities between Kernel density estimation bandwidth
selection and the mixture density estimation bandwidth selection problem,
we ran a simulation study using the multiscale approach to examine whether
we could produce a data driven technique for getting some intuition about
hf .

Multiscale approach

The procedure we used in our simulation study was as follows.

1. We generated data x1, . . . , xn from a known mixture density.

2. For a sensible set of {h1, h2, · · · > 0}, we calculated the fitted density

f̂hj
, j = 1, . . . according to (3.5), via NPMLE.
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3. We examined the goodness of fit between f̂h and f as a function of h
to see if we could mimic a technique similar to the one illustrated by
Figure 3.6.

Unfortunately our simulation study provided us with little intuition to-
wards how a sensible interval or estimate for hf could be produced in practice,
so we do not describe the details here. It would be interesting to see future
research shed light towards this problem.

In the following section, we describe the algorithms we used in the context
of this multiscale approach. The bandwidth parameter h will be fixed in the
next section.

3.5 Outline of algorithms used

In this section we describe three algorithms from the literature which are
useful for the multiscale approach mentioned in Section 3.3.

Recall from Chapter 1 that Lindsay (1983) showed the log likelihood

n∑

i=1

∫
φµ,h(Xi)dQ(µ)

had a maximiser Q̂ which exists, is unique, is a discrete distribution, and
has up to n mass points. Also recall that the following statements were
equivalent:

1. Q̂ maximises
∑n

i=1

∫
φµ,h(Xi)dQ(µ)

2. Q̂ minimizes supθ∈R DQ(θ), where DQ(θ) =
∑n

i=1

{
φθ,h(Xi)∫

φµ,h(Xi)dQ(µ)
− 1
}

3. supθ∈R DQ̂(θ) = 0,

and moreover, the mass points of Q̂ are the values θ̂1, θ̂2, . . . , θ̂K satisfying

DQ̂(θ̂i) = 0, for i = 1, 2, . . . , K.

These results allow the problem of finding

Q̂ = argmax
Q

n∑

i=1

∫
φµ,h(Xi)dQ(µ)

to be transformed from a theoretical problem to an implementable computa-
tional problem. A particular consequence of these results is that algorithms

100



such as the Expectation Maximisation (EM) algorithm (Laird, 1978) may be

applied to find the K mass points of Q̂ along with their associated proba-
bilities, and thus be used to calculate density estimates of the form given
by

f̂h(x) =

∫
φµ,h(x)dQ̂(µ).

The discreteness of the NPMLE Q̂ can be used to suggest a way to implement
a method of computing density estimates f̂h in practice. Algorithms such as
the Intra Simplex Direction Method (ISDM) by Lesperance and Kalbfleisch

(1992) make use of Lindsay’s characterisation of Q̂ in terms of the minimizer
of supθ∈R DQ(θ) to provide a hill-search type method of computing such es-
timates.

The next subsection discusses how density estimates can be calculated
via NPMLE using the EM algorithm.

3.5.1 The EM algorithm

In this subsection we outline the Expectation Maximisation (EM) algorithm
as it can be used in the context of applying Non Parametric Maximum Like-
lihood Estimation (NPMLE) to the problem of mixture density estimation
for a fixed choice of (mixture) bandwidth h.

In our code we iteratively applied the EM algorithm to estimate Q̂ for
a non random number of mass points k, where k was a value chosen by
the steps within the Intra Simplex Direction Method (ISDM), presented by
Lesperance and Kalbfleisch (1992).

Alternatively we could regard Q̂ to have exactly n mass points (some
points with 0 probability) and apply the EM algorithm directly to the prob-
lem of maximising the log likelihood, however in practice the k chosen by the
ISDM is smaller than n and leads to a faster computational EM algorithm
run time. Assuming n mass points also garuntees our model to be from the
overspecified scenario mentioned in Chen (1995).

Suppose we are iteratively computing estimates Q̂1, Q̂2, . . . of the NPMLE
Q̂ of the model’s true mixing distribution Q. When the estimated density
associated with any estimate Q̂j of Q̂ has k mass points (µ

(j)
1 , . . . , µ

(j)
k with

probabilities p
(j)
1 , . . . , p

(j)
k−1), the estimated mixture density would be

∫
φµ,hdQ̂j(µ) =

k∑

ℓ=1

p
(j)
ℓ φ

µ
(j)
ℓ ,h

.

If we regarded the n observations X1, . . . , Xn as being drawn from a mixture
density with a discrete mixing distribution (like Q̂j above), we could consider
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them to be the observed parts of the bivariate random variables (Xi,Mi),
where the random component means Mi were unobservable.

In such a context, since the conditional random variables Xi|Mi = µ are
N(µ, h2), the joint density of any Xi and Mi is hence

fX1M1(x, µ1) = P (M1 = µj)fX1|M1=µj
(x|µj) = P (M1 = µj)φµj ,h(x).

The log likelihood function of a model with random variables (X,M) =
X1, . . . , Xn,M1, . . . ,Mn), parameters θ = (µ1, . . . , µk, p1, . . . , pk−1) is

ℓ(θ) := log

{
n∏

i=1

fX1M1(Xi,Mi)

}

=

n∑

i=1

log

{
k∏

j=1

(pjφMi,h(Xi))
I(Mi=µj)

}
,

where

I(Mi = µj) =

{
1 , if Mi = µj

0 , if Mi 6= µj

and pk = 1 −∑k−1
j=1 pj . Note that we want each pj ≥ 0. We can rearrange

ℓ(θ) to

ℓ(θ;X,M) =
n∑

i=1

k∑

j=1

I(Mi = µj)
{
log(pj) + log(φµj ,h(Xi))

}
.

Suppose we currently estimate θ to be θ0 = (ν1, . . . , νk, q1, . . . , qk−1) and the
observed values of X = X1, . . . , Xn are x = x1, . . . , xn. The EM algorithm’s
expectation step computes the EM log likelihood ℓEM(θ|θ0), which is the
expected value of ℓ(θ) with respect to the conditional distribution of M given
X = x under the current estimate θ0 of θ, to be

ℓEM(θ|θ0) = EM |X=x,θ0(ℓ(θ;X,M))

= EM |X=x,θ0(

n∑

i=1

k∑

j=1

I(Mi = µj)
{
log(pj) + log(φµj ,h(Xi))

}
)

=

n∑

i=1

k∑

j=1

EMi|Xi=xi,θ0(I(Mi = µj))
{
log(pj) + log(φµj ,h(xi))

}
.

(3.6)
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The conditional expectation EMi|Xi=xi
(I(Mi = µj)) is

EMi|Xi=xi
(I(Mi = µj)) = P (Mi = µj|Xi = xi) =

pjφµj ,h(xi)∑k
j=1 pjφµj ,h(xi)

,

so under the current estimate θ0 of θ, that is

EMi|Xi=xi,θ0(I(Mi = µj)) =
qjφνj ,h(xi)∑k
j=1 qjφνj ,h(xi)

.

Let πj|i be given by

πj|i :=
qjφνj ,h(xi)∑k
j=1 qjφνj ,h(xi)

.

From (3.6) we can write the EM log likelihood as

ℓEM(θ|θ0) =
n∑

i=1

k∑

j=1

πj|i log(pj) +

n∑

i=1

k∑

j=1

πj|i log(φµj ,h(xi)). (3.7)

Since the possible values of pj are constrained by
∑k

j=1 pj = 1, we use the
method of Lagrange multipliers to maximise (3.7) with respect to p1, . . . , pk−1.
The possible values of µ1, . . . , µk are unconstrained so we can simply maxi-
mize (3.7) with respect to µ1, . . . , µk. The EM estimates for θ based on the
initial estimate θ0 are thus

p̂j =
1

n

n∑

i=1

πj|i, (3.8)

µ̂j =

∑n
i=1 xiπj|i
np̂j

. (3.9)

The following property of the EM algorithm provides a way to implement
it in practice.

Remark 3.5.1. Suppose θ0 and θ1 are two estimates of θ. If

ℓEM(θ1|θ0) ≥ ℓEM(θ0|θ0),

then

n∑

i=1

log(fX1(xi|θ1)) ≥
n∑

i=1

log(fX1(xi|θ0)), (3.10)

where fX1(·|θ) is the marginal density of X1 in this bivariate interpretation
of our observations.
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The proof of Remark 3.5.1 is in Appendix C.
Note our original aim in the multiscale method from Section 3.3 was to

estimate the parameters θ of the NPMLE Q̂. The log likelihood

ℓ(Q) =

n∑

i=1

log

(∫
φµ,h(Xi)dQ(µ)

)

when restricted to being defined over a class of discrete distributions Q could
be regarded as

ℓ(θ) =

n∑

i=1

log(fX1(Xi|θ)), (3.11)

where fX1(·|θ) is given in Remark 3.5.1. Thus if we start with an initial
estimate θ0 of θ, and then apply the EM algorithm to produce

θ1 := argmax
θ

ℓEM(θ|θ0)

(which is by definition ≥ ℓEM(θ0|θ0)), then the log likelihood given by (3.11)
at θ1 is at least as big as the log likelihood at θ0.

Thus iteratively applying the EM algorithm to our mixture distribution
estimation problem within our multiscale bandwidth selection approach for
our mixture density estimation application to produce estimates θ1, θ2, . . .
will always produce a non decreasing sequence of log likelihood values ℓ(θ0) ≤
ℓ(θ1) ≤ ℓ(θ2) ≤ . . . . In the code for our simulation study, we implemented the
EM estimates (3.8) in the main ISDM algorithm to estimate the probabilities
associated with the means chosen by the ISDM, rather than implementing a
full blown EM to estimate Q̂ directly. One issue with the ISDM as mentioned
by Lesperance and Kalbfleisch (1992) is that the estimated distribution Q̂
tends to be hairy, though the estimated density was good.

3.5.2 The ISDM

In this subsection we outline how we implemented the Intra Simplex Direc-
tion Method (ISDM) from Lesperance and Kalbfleisch (1992) to address our
mixture density estimation problem.

Recall the density in our mixture model is of the form
∫

φµ,hdQ(µ)

and we wish to estimate Q by the NPMLE Q̂ as defined by Lindsay (1983).
The ISDM is based upon the theorem by Lindsay (1983) which states that
the following are equivalent
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1. Q̂ maximises ℓ(Q) =
∑n

i=1

∫
φµ,h(Xi)dQ(µ)

2. Q̂ minimizes supθ∈R DQ(θ), where DQ(θ) =
∑n

i=1

{
φθ,h(Xi)∫

φµ,h(Xi)dQ(µ)
− 1
}

3. supθ∈R DQ̂(θ) = 0,

and moreover, the mass points of Q̂ are the values θ̂1, θ̂2, . . . , θ̂K satisfying

DQ̂(θ̂i) = 0, for i = 1, 2, . . . , K.

The ISDM is described as follows.

0. Start with an initial estimate Qj of Q, with iteration counter j := 1.

1. Compute all the local maxima of DQj
(θ). Suppose the kj values calcu-

lated are θ1, . . . , θkj .� If maxs=1,...,kj θs = 0, stop.

2. Compute the proportions p0, p1, . . . , pkj which maximise

ℓ(p0Qj +

kj∑

s=1

psδθs),

subject to the constraints
∑kj

s=0 ps = 1 and ps ≥ 0 for all s = 0, . . . , kj.

3. The new estimate Qj+1 becomes

Qj+1 = p0Qj +

kj∑

s=1

psδθs,

and j := j + 1. Return to Step 1.

3.6 Discussion of algorithms

In this section we discuss how we calibrated the settings used in the ISDM
with its internal EM step. The code we used is listed in Appendix B.

Since the stopping criterion for Step 1 of the ISDM is:

“If max
s=1,...,kj

θs = 0, stop”,
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we implemented the following criterion for our code to check whether:

max
s=1,...,kj

θs < epsilon1,

where epsilon1 was specified as some small positive number, for example
0.1. In order to prevent the code from potentially never stopping, we added
a counter which stopped the algorithm if more than giveUp iterations of the
ISDM were performed.

Figure 3.7 displays a graphical comparison of maxs θs over (up to) giveUp
iterations of the ISDM, with giveUp= 50 or giveUp= 100. The ISDM in this
comparison was applied to the same data set with the same vector of initial
density estimate values. The only difference is the variation of the parameter
giveUp.

Figure 3.7: Above: maxs θs over 50 iterations of the ISDM. Below: maxs θs
over 100 iterations of the ISDM

As can be seen in the above figure, iterating the steps in the ISDM 50 or
100 times did not tend to dramatically change the distance between maxs θs
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and epsilon1= 0.1. The smallest value of maxs θs in both scenarios were only
about 14.7250 and 12.1884, which seemed rather larger than epsilon1= 0.1,
let alone 0.

However, by decreasing the parameter associated with the stopping con-
dition of the EM algorithm in step 2 of the ISDM, tolEM, we found the code
produced values of maxs θs which were closer to 0. This is illustrated in
Figure 3.8.

Figure 3.8: Varying the stopping condition of the EM algorithm affects how
quickly the stopping condition of the overall ISDM is approached.

In all cases illustrated by Figures 3.7 and 3.8, the dataset used to compare
the ISDM was of size n = 1000. The next figure contains the same plot from
the top of Figure 3.8, compared to the plot produced via the same choice
of stopping condition parameters, by applying the ISDM to a dataset of size
n = 10000. Both datasets were generated from the same mixture density.
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Figure 3.9: Calibration of stopping condition parameters seems dependent
upon the dataset size.

As Figures 3.7, 3.8 and 3.9 suggest, the global stopping criterion

sup
s

θs = 0

is approached at speeds depending upon the size of the dataset, as well as the
EM stopping tolerance value tolEM. A choice of a maximum of giveUp= 50
iterations of the ISDM seemed more than enough in all cases, and in all the
above cases the closest any sups θs value came to 0 was unfortunately larger
than our choice of epsilon1= 0.1.

The main parameter of interest regarding the calibration of the ISDM
settings in our code was thus the tolerance tolEM. This parameter appeared
in the following condition in our code within our EM step in step 2 of the
ISDM:

While ℓ(Qj)− ℓ(Qj−1) > tolEM,

iterate the EM algorithm.
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In the above condition, the index j refers to the EM iterations within step 2,
and the quantity ℓ(Qj) refers to the value of the log likelihood function at the
jth EM algorithm estimate of the weights. Note that ℓ(Qj) − ℓ(Qj−1) > 0,
by (C.1).

Unfortunately, while the distance between the NPMLE Q̂ and the esti-
mates Q̂ISDM produced by the ISDM seems to be sensitive to the choice of
tolEM, the speed of the ISDM is also sensitive to tolEM.

Figure 3.10 shows the value of the log likelihood over (what turned out
to be) 79 applications of the EM algorithm in one iteration of Step 2 of the
ISDM, with the EM stopping tolerance set to tolEM= 0.0001. Figure 3.11 is
a closer look at Figure 3.10 with the first 10 values ommitted.

Figure 3.10: Change in log likelihood between each EM step quickly becomes
slow.
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Figure 3.11: Same figure as 3.10, with the first 10 values ommitted.

As visualised by the above figures, convergence of the EM algorithm can
become quite slow when change in the log likelihood is required to be less than
tolEM= 0.0001. When this stopping parameter was changed to tolEM= 0.001
(in this same example), the EM algorithm was only applied 49 times, yet the
final calculated values of the log likelihood were −2803.631 (tolEM= 0.0001)
and −2803.64 (tolEM= 0.001).

This slowness of convergence of the EM algorithm suggested that the
difference between choosing tolEM= 0.0001 versus tolEM= 0.001 did not
seem to significantly impact how close the EM algorithm came to converging.

We wished to calibrate the choice of tolEM to be large enough to produce
a satisfactory computational speed, yet small enough to produce density
estimates

∫
φµ,hdQ̂ISDM(µ) close enough to

∫
φµ,hdQ̂(µ).
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Fortunately, as mentioned in Lesperance and Kalbfleisch (1992), the dis-

tribution estimates Q̂ISDM produced by the ISDM tend to be rougher than
the density estimates.

In the following example, we applied the ISDM to the same dataset (of size
n = 1000) to produce two density estimates, f1 and f2. The first estimate f1
was produced with the parameter tolEM= 0.0001 and the second estimate f2
was produced with tolEM= 0.001. The top plot in the above figure actually
displays f1 and f2, but the estimates are so similar that it looks like only one
curve. We have plotted the difference f1− f2 underneath. Figure 3.12 shows
the two estimated densities (at a reasonable choice of bandwidth h = 1)
look similar when tolEM= 0.0001 and tolEM= 0.001. The value hf in this
example was

√
2.

Figure 3.12: When a sensible bandwidth of h = 1 was chosen, f1 and f2 look
similar, even when the parameter ‘tolEM’ is varied from 0.0001 to 0.001.

The following Figures 3.13 and 3.14 were produced in the same way as
Figure 3.12, except the bandwidth h was chosen to be h = 0.5 and h = 3

111



respectively. Note that the true density f is a member of F0.5 but not a
member of F3 (so h = 0.5 could have been chosen to be larger, and h = 3
was too large), yet in all cases the variation of the stopping parameter tolEM
did not seem to produce problematic consequences for this density estimation
application.

Figure 3.13: When an unnecessarily small bandwidth of h = 0.5 was chosen,
f1 and f2 still look similar when ‘tolEM’ is varied.
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Figure 3.14: When the bandwidth was chosen to be too large (h = 3), f1 and
f2 still look similar when ‘tolEM’ is varied.

Once these details were calibrated, we addressed the main speed problem
of this algorithm by implementing the slowest parts in C (as specified in
Appendix B). We found the new code ran more than 10 times faster than
the old. Below is the output for the two versions of code run on the same
data set x with the same settings. The dataset had n = 1000 observations.

> source("isdm")

> source("isdmC")

> h <- 1.4

> settings <- c(100, 0.1, 50, 0.01, 0.001)

> C0 <- make.C0(x, h)

> print(system.time(isdm(x, h, C0, settings)))

user system elapsed

40.27 0.02 40.47
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> print(system.time(isdmC(x, h, C0, settings)))

user system elapsed

2.99 0.02 3.01

The full R and C code for this implementation of the ISDM can be found
in Appendix B. There are several packages with tools for analyzing (or
fitting) finite models (using the EM or newton type algorithms but not the
ISDM). To the author’s knowledge there does not exist a package which
provides tools as an aid towards the multiscale mixture bandwidth selection
problem outlined in this thesis.
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Appendix A

Code for demonstration in
Chapter 2

Given vectors θ and X , the following code calculates (viewed as a function
of θ)

Dn(θ,X) =

n∑

i=1

{
φ(Xi − θ)

φ(Xi − X̄)
− 1

}
.

Dn <- function(x,theta){

n <- length(x)

m <- length(theta)

xmean <- mean(x)

temp <- matrix(0, nrow = 1, ncol = m)

for(i in 1:n){

denom <- dnorm(x[i]-xmean)

for(j in 1:m){

temp[j] <- temp[j] + dnorm(x[i]-theta[j])/denom-1

}

}

temp

}

The code above was then translated into C for a speed increase, as follows.

#include<R.h>

#include<Rmath.h>

// if(*mode), cast output to double* and write all
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// *pm function values to it

// otherwise cast to int* and return 1 or 0 if the function

// does or doesn't exceed 0

void Dn(double* x,int* pn,double* theta,int* pm,

int* mode,void* output){

int n=*pn, m=*pm;

double xbar=0;

for(int i=0;i<n;++i) xbar+=x[i];

xbar/=n;

for(int j=0;j<m;++j){

double tmp=-n;

double a=theta[j]-xbar;

double b=(xbar*xbar-theta[j]*theta[j])/2;

for(int i=0;i<n;++i) tmp+=exp(x[i]*a+b);

if(*mode) ((double*)output)[j]=tmp;

else if(tmp>0){

*((int*)output)=1;

return;

}

}

if(*mode==0) *((int*)output)=0;

return;

}

// phi(x_i-theta_j)/phi(x_i-xbar)-1 =

// exp(x_i(theta_j-xbar)+(xbar^2-theta_j^2)/2)-1

The above was compiled into dn.dll and the following functions are
wrappers for that C code.

dyn.load("dn.dll")

Dn_ispositive_C <- function(x,theta){

.C("Dn",as.double(x),as.integer(length(x)),

as.double(theta),as.integer(length(theta)),

as.integer(0),out=integer(1))$out

}

Dn_C <- function(x,theta){

.C("Dn",as.double(x),as.integer(length(x)),

as.double(theta),as.integer(length(theta)),
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as.integer(1),out=double(length(theta)))$out

}

The simulated demonstration in Chapter 2 was then implemented in R
as follows.

# first demo with plot of Dn(theta)

#set.seed(98097629)

#cat("seed is 98097629\n")

#n<-100;

#x<-sort(rnorm(n))

#cat("The simple dataset for a picture is:\n",x,"\n")

#hist(x,n=10)

# this function is used only to quickly plot a Dn(theta),

# not for estimating probs.

Dn <- function(x,theta){

n <- length(x)

m <- length(theta)

xmean <- mean(x)

temp <- matrix(0, nrow = 1, ncol = m)

for(i in 1:n){

denom <- dnorm(x[i]-xmean)

for(j in 1:m){

temp[j] <- temp[j] + dnorm(x[i]-theta[j])/denom-1

}

}

(temp/sqrt(n))

}

# plot of Dn(theta) using function Dn

#theta<-(-500:500)/100

#Dntheta<-Dn(x,theta)

#plot(theta,Dntheta,type="l")

#abline(0,0)

# testing prob estimate without going too crazy first..

# choosing n=100 and B=10

#b<-10;n<-100;
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#set.seed(98097629)

#theta<-(-500:500)/100

#D<-0

#for(i in 1:b){

# x<-rnorm(n)

# D[i]<-Dn_C(x,theta)

#}

#pn100b10<-sum(D==0)/b

#this took from about 11am to 9:44pm to run

# B was 500, and theta was (-50:50)/10. Dn_C was used

# Update: now this uses Dn_ispositive_C and the range

# depends on the range of the data

# started about 7:58pm aug 24, finished sometime before

# the next morning

#B<-100

#N<-c(10,100,1000,10000,100000,1000000,10000000,100000000)

#p<-matrix(0, nrow=length(B),ncol=length(N))

#set.seed(98097629)

# for(j in 1:length(N)){

# D<-0

# for(k in 1:B){

# x<-rnorm(N[j])

# theta<-floor(1.5*min(x)):floor(1.5*max(x))

# D[k]<-Dn_ispositive_C(x,theta)

# }

# p[j]<-sum(D==0)/B

# }

#save(p,file="aug24.RData")

# new edit: making theta finer to get a tighter bound. B=500

# started:2:03pm aug26

# finished:didn't finish by aug 28

# new edit: same as just above, but theta is kept the
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# same as the aug24 run

# started: about lunchtime aug 28

# finished: accidentally closed before the last point was calculated

#B<-500

#N<-c(10,100,1000,10000,100000,1000000,10000000)

#p<-matrix(0, nrow=length(B),ncol=length(N))

#set.seed(98097629)

# for(j in 1:length(N)){

# D<-0

# for(k in 1:B){

# x<-rnorm(N[j])

# theta<-floor(1.5*min(x)):floor(1.5*max(x))

# D[k]<-Dn_ispositive_C(x,theta)

# }

# p[j]<-sum(D==0)/B

# save(p,file="aug26.RData")

# }

# doing the last point on aug 28

#set.seed(98097629)

#B<-500

#N<-100000000

#p<-matrix(0, nrow=length(B),ncol=length(N))

#set.seed(98097629)

# for(j in 1:length(N)){

# D<-0

# for(k in 1:B){

# x<-rnorm(N[j])

# theta<-floor(1.5*min(x)):floor(1.5*max(x))

# D[k]<-Dn_ispositive_C(x,theta)

# save(D,file="aug28_log.RData")

# }

# p[j]<-sum(D==0)/B

# save(p,file="aug28.RData")

# }

# started 9:55pm aug17

#set.seed(98097629)

#B<-500

#N<-100000000
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#theta<-(-50:50)/10

#p<-0

#D<-0

#for(j in 1:B){

# x<-rnorm(N)

# D[j]<-Dn_C(x,theta)

#}

#pn8<-sum(D==0)/B

# prob with n=10^8

#print(pn8)

#save(pn8,file="aug17b.RData")
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Appendix B

Code for Chapter 3

The following R code was used to implement the ISDM.

# ISDM code

# Contents

# (1) Mixture density functions

# rmixnorm - generates random vector of observations

# dmixnorm - calculates density values

# pmixnorm - cdf of mixture

# (2) Setting up initial estimate of density for ISDM

# form.f - returns a matrix where each element is

# \frac1h\phi(\frac{X_i-\theta_j}h)

# make.C0 - makes Kernel density estimate with normal kernel

# and bandwidth h, based on data x, evaluated at each x

# (3) Setting up a grid to plot a function over

# form.gr - creats a non decreasing vector of points of

# length m and endpoints min(x) and max(x).

# (4) Functions for step1 to call

# get.d - given C1(x), observations x and a grid gr, calculates

# the function \Sum1ni (\frac{\phi_h(X_i-gr_j)}{C1_i} -1)

# examine.d - for a given set of function values of a
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# function d=d(theta) and corresponding values theta, calculates

# the locations of the local maxima of d

# ~~~

# (1) Mixture density functions

# rmixnorm - generates random vector of observations

# returns a random sample from a mixture density (assumes a

# default mixture)

rmixnorm<-function(n,mu=c(-10,0,5),sig=sqrt(c(2,3,4)),

Prob=c(2,3,1)/6){

K<-length(mu)

which<-sample(size=n,x=1:K,prob=Prob,repl=T)

as.vector(rnorm(n,mu[which],sig[which]))

}

# dmixnorm - calculates density values

# returns the density of a normal mixture, evaluated at

# each grid point gr

dmixnorm<-function(gr,mu=c(-10,0,5),sig=sqrt(c(2,3,4)),

prob=c(2,3,1)/6){

K<-length(mu)

n<-length(gr)

dmat<-matrix(0,n,K)

for(j in 1:K){

dmat[,j]<-dnorm(gr,mu[j],sig[j])

}

as.vector(dmat%*%prob)

}

# pmixnorm - cdf of mixture

# returns the cdf of a normal mixture, evaluated at each gr

# gr should be an increasing vector for this to be sensical

pmixnorm<-function(gr,mu=c(-10,0,5),sig=sqrt(c(2,3,4)),
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prob=c(2,3,1)/6){

gr<-sort(gr)

K<-length(mu)

n<-length(gr)

pmat<-matrix(0,n,K)

for(j in 1:K){

pmat[,j]<-pnorm(gr,mu[j],sig[j])

}

as.vector(pmat%*%prob)

}

# ~~~

# (2) Setting up initial estimate of density for ISDM

# form.f - returns a matrix where each element is

# \frac1h\phi(\frac{X_i-\theta_j}h)

form.f<-function(x,th,h){

z<-outer(x,th,FUN="-") # removing means

sdevs<-matrix(h,length(x),length(th))

sdevs<-1/sdevs

z<-z*sdevs # dividing by the scale sd

f<-sdevs*dnorm(z)

(f)

}

# form.f is in the innermost loop of the code so it

# might be good to optimize this

# make.C0 - makes Kernel density estimate with

# normal kernel and bandwidth h, based on data x,

# evaluated at each x

# Only for creating initial estimates for feeding

# into the ISDM, not for general kernel density

# estimation since the grid is only x each time

make.C0<-function(x,h){
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x<-sort(x)

f<-form.f(x,x,h)

apply(f,2,mean)

}

# ~~~

# (3) Setting up a grid to plot a function over

# form.gr - creats a non decreasing vector of points of

# length m and endpoints min(x) and max(x).

# x is the data, m is the number of points in the grid

# alternatively, x is a vector c(min,max) which defines

# where the boundary of the grid is

form.gr<-function(x,m){

as.vector(seq(from=min(x),to=max(x),len=m))

}

# ~~~

# (4) Functions for step1 to call

# get.d - given C1(x), observations x and a grid gr, calculates

# the function \Sum1ni (\frac{\phi_h(X_i-gr_j)}{C1_i} -1)

get.d<-function(x,gr,h,C1){

z<-outer(x,gr,FUN="-")

z<-z/h

f<-dnorm(z)/h

d<-(1/C1)%*%f-length(C1)

as.vector(d)

}

# examine.d - for a given set of function values of a function

# d=d(theta) and corresponding values theta, calculates the

# locations of the local maxima of d

examine.d<-function(theta,d){

# constructing vectors to store info in:

maxima<-where.max<-rep(-1,length(d))
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thresh=-1

# checking the end point

if (d[1]>=d[2] & d[1]>=thresh){

maxima[1]<-d[1]

where.max[1]<-1

}

# looking through the function values

for (i in 2:(length(d)-1)){

if (d[i]>=d[i+1] & d[i]>=d[i-1] & d[i]>=thresh){

maxima[i]<-d[i]

where.max[i]<-i

}

}

# checking the other end point

if (d[length(d)]>=d[length(d)-1] & d[length(d)]>=thresh){

maxima[length(d)]<-d[length(d)]

where.max[length(d)]<-length(d)

}

maxima<-maxima[maxima>thresh]

where.max<-where.max[where.max>0]

where.max<-theta[where.max]

list(global=max(maxima),where.max=where.max)

}

# ~~~

# (5) Functions for step2 to call

# applyEM - one iteration of EM for probabilities

applyEM<-function(fmat,e0){

# e0 is the initial vector of probabilities

# fmat is a matrix with the first column being C1, and the rest

# of the matrix being form.f(x,thetas,h), where thetas is

# the output of step1's estimates of the means

n<-dim(fmat)[1]

m<-dim(fmat)[2]

E<-matrix(e0,n,m,byrow=TRUE)
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numer<-E*fmat

denom<-apply(numer,1,sum)

denom<-matrix(denom,n,m,byrow=FALSE)

piji<-numer/denom

e<-apply(piji,2,sum)/n

as.vector(e)

}

iter.EM<-function(fmat,e0,tolEM){

LL<-0

di<-tolEM+1

count<-1

while(di>tolEM){

temp<-log(fmat%*%e0)

LL[count]<-sum(temp[temp>-Inf])

e0<-applyEM(fmat,e0)

if(count>1){

di<-LL[count]-LL[count-1]

}

count<-count+1

}

(e0)

}

# Main code section:

# x is the data

# h is the bandwidth (component sd, not component variance)

# settings is a vector of scalar values which determine

# stopping conditions, etc within the ISDM

isdm<-function(x,h,C0,settings){

# Pulling out the scalars from settings

gridNum<-settings[1] # integer, maybe about 100 or so

epsilon1<-settings[2] # should be positive and close to zero.

# ^ Criteria to halt ISDM.

giveUp<-settings[3] # integer, number of times to

126



# iterate ISDM before giving up

smallbit<-settings[4] # if there are an expected maximum of

# k=k(h) mass points then smallbit should be around 1/(2k),

# not so important, this is to give an initial EM

# estimate of the weights.

tolEM<-settings[5] # tolerance for the EM algorithm's
# stopping criteria.

# The ISDM is quite sensitive to this.

# It should be positive, and ideally if computers

# were super fast it should be very small.

# About 0.01 for now (Edit: investigation finished).

# Making initial density estimate

x<-sort(x)

C1<-C0

# Making grid for step 1

gr<-form.gr(x,gridNum)

# Starting ISDM

eps<-epsilon1+1 # Stopping criteria 1 (real one)

count<-1 # Stopping criteria 2 (to ensure ISDM finishes)

LL<-0 # To keep track of the log likelihood value

epsTrack<-0 # To keep track of the epsilon values to

# see if the code gave up

while((eps > epsilon1)&(count<=giveUp)){

# Step 1

s1<-step1(x,gr,h,C1)

thetas<-s1$thetas

eps<-s1$global

epsTrack[count]<-eps

# Step 2

s2<-step2(x,thetas,h,C1,smallbit,tolEM)

e<-s2$e

fmat<-s2$fmat
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# Step 3

C1<-as.vector(fmat%*%e)

# The LL

LL[count]<-sum(log(C1))

count<-count+1

}

list(C1=C1, e=e, thetas=thetas, LL=LL, epsTrack=epsTrack)

}

iter.ISDM<-function(x,H,settings){

# H is a vector of bandwidths h_j now

# x are the observations x_i

# settings is the same thing to feed into the ISDM

x<-sort(x) # arranging in ascending order

H<-rev(sort(H)) # arranging in descending

#order (since it is faster to compute estimates on larger h)

# For storage

Out<-list()

LL<-0

C0<-make.C0(x,H[1])

for(i in 1:length(H)){

cat("Starting iteration number ",i," out of ",

length(H)," iterations.\n")

Contents<-isdm(x,H[i],C0,settings)

Out[[i]]<-Contents

names(Out)[i]<-paste("When bandwidth h =",H[i])

C0<-Contents$C1

LL[i]<-Contents$LL[length(Contents$LL)]

cat("Log likelihood for bandwidth h =",H[i]

," was ",LL[i],"\n")

}

cat("Finished running code.\n")

list(Out=Out,x=x,H=H,LLh=LL)

}

step1<-function(x,gr,h,C1){
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d<-get.d(x,gr,h,C1)

#plot(gr,d,type="l")

#abline(0,0)

temp<-examine.d(gr,d)

thetas<-temp$where.max

global<-temp$global

list(thetas=thetas,global=global)

}

step2<-function(x,thetas,h,C1,smallbit,tolEM){

# thetas is the vector of mean estimates output from step 1

fmat<-cbind(C1,form.f(x,thetas,h))

# making an initial weight vector

temp<-1/(2*length(thetas))

small<-min(smallbit,temp)

e0<-rep(c(1-length(thetas)*small,small),c(1,length(thetas)))

e<-iter.EM(fmat,e0,tolEM)

list(fmat=fmat,e=e)

}

The slowest step within the ISDM was rewritten in C for speed purposes.
The file code.dll was compiled from the following C code.

#include<R.h>

#include<Rmath.h>

/*

finds all indices i for which x[i] is a local maximum >= thresh

positions should initially be a list the same length as x

on return n will be the number of such indices,

and the first n entries of positions will be the indices

themselves (R style, ie starting at 1)

*/

void examine_d(double* x,int* xn,double* thresh,

double* positions,int* n){

*n=0; // the number of valid indices found so far

for(int i=0;i<*xn;++i)
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// check it's a local max

if((i==0||x[i-1]<=x[i])&&(i==*xn-1||x[i+1]<=x[i])

//check it's at least thresh

&&x[i]>=*thresh){

positions[(*n)++]=i+1;

}

}

//computes the value of the normal density with

//standard deviation h at x

double phi(double x,double h){

static double one_over_sqrt_2_pi=1.0/sqrt(2.0*M_PI);

x/=h; x*=x;

return one_over_sqrt_2_pi/h*exp(-x/2);

}

/*

Uses the EM method to approximate the weighted average

p_0 C_i + \sum_j p_j(phi_{h,\theta_j}(x_i))

which maximises

\sum_i log[p_0 C_i + \sum_j p_j(phi_{h,\theta_j}(x_i))]

Input:

x = the observed measurements (vector of length xn)

C = the current density, evaluated at the x_i (vector of

length xn)

theta = means of the normals being added to the

density (vector of length thetan)

h = the standard deviation of the normals being added

to the density (double)

smallbit = initial weights of new components

Output:
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C will be changed to the above weighted average

p = the weights (vector of length thetan+1)

*/

void step2(double* x,int* xn,double* theta,int* thetan,

double* h,double* C,double* tol,double* p,double* smallbit){

// extra space for weights, used in calculations

double* p2=(double*)Calloc(*thetan+1,double);

// space to store the phi_{h,\theta_j}(x_i)

double* phi_matrix=(double*)Calloc(*thetan*(*xn),double);

// space to store phi_{h,\theta_j}(x_i) p_j

double* phi_p=(double*)Calloc(*thetan+1,double);

// compute all the phi's
for(int i=0;i<*xn;++i)

for(int j=0;j<*thetan;++j)

phi_matrix[i+j*(*xn)]=phi(x[i]-theta[j],*h);

// initialise the weights arbitrarily

double small=0.5/(*thetan);

if(small>*smallbit) small=*smallbit;

p[*thetan]=1-small*(*thetan);

for(int j=0;j<*thetan;++j) p[j]=small;

double old_ll=-INFINITY;

while(1){

double new_ll=0;

for(int j=0;j<=*thetan;++j) p2[j]=0;

for(int i=0;i<*xn;++i){

double tot=0;

for(int j=0;j<=*thetan;++j)

tot+=(phi_p[j]=((j<*thetan)?

phi_matrix[i+j*(*xn)]:C[i])*p[j]);

for(int j=0;j<=*thetan;++j) p2[j]+=phi_p[j]/tot;

new_ll+=log(tot);

}

for(int j=0;j<=*thetan;++j) p[j]=p2[j]/(*xn);
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// ll didn't change much, so stop

if(old_ll+*tol>new_ll) break;

old_ll=new_ll;

}

// replace C by the weighted average

for(int i=0;i<*xn;++i){

C[i]*=p[*thetan];

for(int j=0;j<*thetan;++j)

C[i]+=phi_matrix[i+j*(*xn)]*p[j];

}

// free the memory we allocated

Free(p2);

Free(phi_matrix);

Free(phi_p);

}

After the above code was compiled into code.dll, the R function isdm

was then replaced with the following function (isdmC).

dyn.load("code.dll")

# Wrapper for the C code

examine_d<-function(theta,d,thresh=-1){

positions<-rep(0,length(d))

result_of_code=.C("examine_d",as.double(d),

as.integer(length(d)),as.double(thresh),

positions=as.double(positions),n=integer(1))

# truncate positions to the number of valid indices

positions=result_of_code$positions[1:result_of_code$n]

maxima<-d[positions]

# list(maxima=maxima,global=max(maxima),

# where.max=theta[positions],theta=theta)

list(global=max(maxima),where.max=theta[positions])

}

# returns the new C1 vector

step2and3<-function(x,theta,h,C1,tol,smallbit){
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p<-rep(0,length(theta)+1)

output<-.C("step2",as.double(x),as.integer(length(x)),

as.double(theta),as.integer(length(theta)),as.double(h),

C1=as.double(C1),as.double(tol),p=as.double(p),

as.double(smallbit))

list(C1=output$C1,p=output$p)

}

# End of wrappers

# ISDM code

# x is the data

# h is the bandwidth (component sd, not component variance)

# settings is a vector of scalar values which determine

# stopping conditions, etc within the ISDM

isdmC<-function(x,h,C0,settings){

... (Same as original code in the function isdm)

# Starting ISDM

eps<-epsilon1+1 # Stopping criteria 1 (real one)

count<-1 # Stopping criteria 2 (to ensure ISDM finishes)

LL<-0 # To keep track of the log likelihood value

epsTrack<-0 # To keep track of the epsilon values to

# see if the code gave up

while((eps > epsilon1)&(count<=giveUp)){

# Step 1

s1<-step1(x,gr,h,C1)

thetas<-s1$thetas

eps<-s1$global

epsTrack[count]<-eps

# Step 2 and 3

coutput<-step2and3(x,thetas,h,C1,tolEM,smallbit)

e<-coutput$p
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C1<-coutput$C1

# The LL

LL[count]<-sum(log(C1))

count<-count+1

}

list(C1=C1, e=e, thetas=thetas, LL=LL, epsTrack=epsTrack)

}
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Appendix C

Miscellaneous Appendices

Remark 3.5.1 was as follows.
Suppose θ0 and θ1 are two estimates of θ. If

ℓEM(θ1|θ0) ≥ ℓEM(θ0|θ0),

then

n∑

i=1

log(fX1(xi|θ1)) ≥
n∑

i=1

log(fX1(xi|θ0)), (C.1)

where fX1(·|θ) is the marginal density of X1 in this bivariate interpretation
of our observations.

Here is a proof.

Proof. We prove this in the case where we have n = 1 observation, since the
general case follows a similar proof, with the letters x and X representing
vectors and the integrals over R being over Rn instead.

Suppose (X, Y ) is a bivariate random vector with joint density fXY (x, y|θ)
andX marginal given by fX(x|θ) =

∫
R
fXY (x,y|θ)dy. We assume each fX(·|θ) 6=

0 a.e, and so we define the conditional density of Y given X = x to be given

by fY |X=x(y|x, θ) = 1(fX(x|θ)>0)
fXY (x,y|θ)
fX(x|θ) .

Fix θ0 = (θ01, . . . , θ0k) and let θ be arbitrary. Given the observed value of
X is x, the conditional expectation of the full data log likelihood log (fXY (X, Y |θ)),
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evaluated under the probability corresponding to θ0 is:

ℓEM(θ|θ0) = EY |X=x,θ0 (log(fXY (X, Y |θ)))

=

∫

R

log {fXY (x, y|θ)} fY |X=x(y|x, θ0)dy

=

∫

R

(
log{fY |X=x(y|x, θ)}+ log{fX(x|θ)}

)
fY |X=x(y|x, θ0)dy

=

∫

R

log{fY |X=x(y|x, θ)}fY |X=x(y|x, θ0)dy

+

∫

R

log{fX(x|θ)}fY |X=x(y|x, θ0)dy

=

∫

R

log{fY |X=x(y|x, θ)}fY |X=x(y|x, θ0)dy + log{fX(x|θ)},

(C.2)

since fY |X=x(y|x, θ0) is a density and since log{fX(x|θ)} does not depend on
y.

Using (C.2), we have

log {fX(x|θ1)} − log {fX(x|θ0)} = ℓEM(θ1|θ0)− ℓEM(θ0|θ0)

+

∫

R

log
{
fY |X=x(y|x,θ0)

}
fY |X=x(y|x, θ0)dy

−
∫

R

log
{
fY |X=x(y|x,θ1)

}
fY |X=x(y|x, θ0)dy.

Suppose now that ℓEM(θ1|x, θ0)− ℓEM(θ0|x,θ0) ≥ 0. Then

log {fX(x|θ1)} − log {fX(x|θ0)} ≥
∫

R

log
{
fY |X=x(y|x, θ0)

}
fY |X=x(y|x, θ0)dy

−
∫

R

log
{
fY |X=x(y|x, θ1)

}
fY |X=x(y|x, θ0)dy

= −
∫

R

log

{
fY |X=x(y|x, θ1)
fY |X=x(y|x, θ0)

}
fY |X=x(y|x, θ0)dy

= EY |X=x

(
− log

{
Y |X = x, θ1
Y |X = x, θ0

})
,

≥ − log

{
EY |X=x

(
Y |X = x, θ1
Y |X = x, θ0

)}
,
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by Jensen’s Inequality, and so

log {fX(x|θ1)} − log {fX(x|θ0)} ≥ − log

{∫

R

fY |X=x(y|x, θ1)
fY |X=x(y|x, θ0)

fY |X=x(y|x, θ0)dy
}

= − log

{∫

R

fY |X=x(y|x, θ1)dy
}

= − log{1}, since fY |X=x(y|x, θ1) is a density.

Thus if ℓEM(θ1|x, θ0)− ℓEM(θ0|x,θ0) ≥ 0 then

log {fX(x|θ1)} − log {fX(x|θ0)} ≥ 0,

and we are done.
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Appendix D

Example data set

The data set in Example 3.1.1 of Chapter 3 is an iid sample of size n = 200,
generated from the distribution with mixture density

0.3φ−1,0.2 + 0.7φ0.5,0.5

via the following R code:

> rmixnorm <- function(n, weights, means, sds) {

+ J <- sample(size = n, x = 1:length(weights), prob = weights,

+ repl = TRUE)

+ as.vector(rnorm(n, mean = means[J], sd = sds[J]))

+ }

> dmixnorm <- function(x, prob, means, sds) {

+ z <- matrix(0, length(x), length(prob))

+ for (j in 1:length(prob)) {

+ z[, j] <- dnorm(x, means[j], sds[j])

+ }

+ as.vector(z %*% prob)

+ }

> set.seed(98097629)

> x <- rmixnorm(200, c(0.3, 0.7), c(-1, 0.5), c(0.2, 0.5))

> x <- sort(x)
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