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1. Introduction

Ricci flow, since the debut in the famous original work [4] by R. Hamilton, has
been one of the major driving forces for the development of Geometric Analysis in
the past decades. Its astonishing power is best demonstrated by the breakthrough
in solving Poincaré Conjecture and Geometrization Program. For this amazing
story, we refer to [1], [7], [10] and the references therein. Meanwhile, Kähler-
Ricci flow, which is Ricci flow with initial metric being Kähler, has shown some of
its own characters coming from the natural relation with complex Monge-Ampère
equation and many interesting Algebraic Geometric objects. G. Tian’s Program,
as described in [14] or [15], has illustrated the direction to further improve people’s
understanding in many classic topics of great importance by Kähler-Ricci flow, for
example, the Minimal Model Program in Algebraic Geometry.

In the current work, we give some very general discussion on Kähler-Ricci flows
over closed manifolds. The closed manifold under consideration is denoted by X
with dimCX = n. The computation would be done for the following version of
Kähler-Ricci flow,

(1.1)
∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t, ω̃0 = ω0.

where ω0 is any Kähler metric on X. The special feature of this version as shown
in [15] and fully discussed in [17] is rather superficial for this work.

The short time existence of the flow is known from either R. Hamilton’s general
existence result on Ricci flow in [4] or the fact that Kähler-Ricci flow is indeed
parabolic when considered as a flow in a properly chosen infinite dimensional space.

In sight of the optimal existence result for Kähler-Ricci flow as in [2] or [15],
we know the classic solution of (1.1) exists exactly as long as the cohomology class
[ω̃t] from formal computation remains to be Kähler. The actual meaning will be
explained later.

Inevitably, it comes down to analyzing the behavior of the t-slice metric solution
when time t approaches the (possibly infinite) singular time from cohomology con-
sideration. In this work, we focus on the case when the flow singularity happens at
some finite time. Now we state the main results.

Theorem 1.1. The Kähler-Ricci flow (1.1) either exists for all time, or the scalar
curvature blows up at some finite time (of singularity), i.e.

supX×[0,T )|R(ω̃t)| = +∞
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where T is the finite time of singularity and R(·) is the scalar curvature for the
corresponding metric.

The possible blow-up of scalar curvature would be from above because of the
known lower bound of scalar curvature (as in [13], for example). Let’s also point
out that the statements of this theorem and the next theorem still hold for the
other two common versions of Kähler-Ricci flow with great individual interests,

∂ω̃t
∂t

= −Ric(ω̃t), ω̃0 = ω0,

∂ω̃t
∂t

= −Ric(ω̃t) + ω̃t, ω̃0 = ω0.

This can be justified by simple rescaling of time and metric to transform these flows
from one to another.

Remark 1.2. Some fundamental results regarding the finite time blow-up of Ricci
flow are known for quite a while. More precisely, it’s known that curvature operator
blows up from R. Hamilton’s work [5] and Ricci curvature blows up from N. Sesum’s
work [11]. The later one also gives the blow-up of scalar curvature in real dimension
3 case.

The next result, which provides some control of the blow-up rate, needs an extra
assumption described in the following with natural background from Algebraic
Geometry. The motivation is the semi-ampleness of the cohomology limit at the
singular time. It is of quite some interest in Algebraic Geometry as explained in
[15], for example.

Still denote the finite singular time by T and use [ωT ] to represent the cohomology
limit of the flow as t→ T whose meaning would be very clear from the discussion
in Section 2. We assume the existence of a holomorphic map

F : X −→ Y

where Y is an analytic variety smooth near the image F (X) and there is a Kähler
metric, ω

M
in a neighborhood of F (X) such that [ωT ] = [F ∗ω

M
].

The most natural way to come up with such a picture is to actually generate
a map F from the class [ωT ]. Of course, this would force some conditions (of
Algebraic Geometry flavor) on [ωT ]. Let’s point out that it would be the case when
X is an algebraic manifold and the initial class [ω0] ∈ H1,1(X,C) ∩ H2(X; Q) by
the classic Rationality Theorem (as stated in [8]).

Theorem 1.3. In the above setting, for the Kähler-Ricci flow (1.1) with finite time
singularity at T ,

R(ω̃t) 6
C

(T − t)2

where C is a positive constant depending on the specific flow.
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result by N. Sesum and G. Tian following G. Perelman as mentioned in the last
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the way. Furthermore, the referees’ interesting feedback helps a lot to improve the
organization of this paper.

2. Proof of Theorem 1.1

The proof of such a result is usually by contradiction. Let’s assume the scalar
curvature stays uniformly bounded along the flow (1.1) with finite time
singularity at T . One then makes use of J. Song and G. Tian’s computation for
parabolic Schwarz Lemma (as in [13]) and some basic computations on the Kähler-
Ricci flow to get some uniform control of the flow metric. The contradiction then
comes from the general result on the existence of Kähler-Ricci flow and the nu-
merical characterization of Kähler cone for closed Kähler manifolds by J. Demailly
and M. Paun. The rest of this section contains the detailed argument. Before
that, we briefly introduce the standard machinery to reduce the Kähler-Ricci flow
to the level of scalar function flow as in [15] and give some explanations to some
statements in Introduction.

Define ωt := ω∞+ e−t(ω0−ω∞) where [ω∞] = KX , the canonical class of X. In
practice, one chooses

ω∞ = −Ric(Ω) :=
√
−1∂∂̄ log

Ω
V olE

for some smooth volume form Ω over X where V olE is the Euclidean volume form
with respect to local holomorphic coordinate system of X. Obviously the choice of
coordinates won’t affect the form, −Ric(Ω).

Formally, it is clear that [ωt] = [ω̃t]. Now set ω̃t = ωt +
√
−1∂∂̄u, and then one

has the following parabolic evolution equation for u over space-time,

(2.1)
∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(·, 0) = 0,

which is equivalent to the original Kähler-Ricci flow (1.1).

It is time to quote the following optimal existence result of Kähler-Ricci flow (as
in [2] and [15]) mentioned in Introduction.

Proposition 2.1. (1.1) (or (2.1) equivalently) exists as long as [ωt] remains Kähler,
i.e. the solution is for the time interval [0, T ) where

T = sup{t| [ωt] is Kähler.}.

The appearance of finite time singularity means [ωT ], which is the cohomology
limit mentioned in Introduction, is on the boundary of the (open) Kähler cone of
X in H1,1(X,C)∩H2(X,R), and thus no longer Kähler. Clearly it is ”numerically
effective” using the natural generalization of the notion from Algebraic Geometry.
From now on, we focus on those flows existing only for some finite interval [0, T ).

The C’s below might stand for different positive constants at places. In case
that this might cause unnecessary confusion, lower indices are added to tell them
apart. These constants might well depend on the specific flow, for example, the
finite singular time T .

The argument is divided into the following three steps.

• Step 1. Volume Uniform Bound
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With the uniform bound on scalar curvature in [0, T ), we can easily derive the
uniform control on the volume form along the flow, using the following evolution
equation of volume form,

∂ω̃nt
∂t

= n
∂ω̃t
∂t
∧ ω̃n−1

t

= n(−Ric(ω̃t)− ω̃t) ∧ ω̃n−1
t

= (−R− n)ω̃nt .

Since ω̃nt = e
∂u
∂t +uΩ, this actually tells that

|∂u
∂t

+ u| 6 C.

Remark 2.2. Instead of the assumption on scalar curvature, one can also directly
assume positive lower bound for the volume form or equivalently, ∂u∂t > −C since we
are considering the finite time singularity case 1. This simple observation actually
brings up a very intuitive analytic understanding of Theorem 1.1, i.e. the flow (2.1)
can be stopped at some finite time only because the term in log is tending to 0, i.e.
no uniform lower bound.

• Step 2. Metric Estimate

We begin with the inequality from parabolic Schwarz Lemma. Throughout this
note, the Laplacian ∆ without lower index, is always with respect to the changing
metric along the flow, ω̃t.

Set φ = 〈ω̃t, ω0〉 which is obviously positive for t ∈ [0, T ). Using computation
for (1.1) in [13], one has

(2.2) (
∂

∂t
−∆)logφ 6 C1φ+ 1,

where C1 is a positive constant depending on the bisectional curvature of ω0. It’s
quite irrelevant here that ω0 is the initial metric for the Kähler-Ricci flow. In fact,
it doesn’t even have to be a metric over X which is an interesting part of this
computation as indicated in [13], which is useful for the proof of Theorem 1.3.

Applying Maximum Principle to (2.1) gives u 6 C. Taking t-derivative for (2.1)
gives

∂

∂t

(
∂u

∂t

)
= ∆

(
∂u

∂t

)
− e−t〈ω̃t, ω0 − ω∞〉 −

∂u

∂t
,

where 〈·, ·〉 means taking trace of the right term with respect to the left (metric)
term. This equation can be reformulated into the following two equations,

∂

∂t

(
et
∂u

∂t

)
= ∆

(
et
∂u

∂t

)
− 〈ω̃t, ω0 − ω∞〉,

∂

∂t

(
∂u

∂t
+ u

)
= ∆

(
∂u

∂t
+ u

)
− n+ 〈ω̃t, ω∞〉.

Their difference gives

(2.3)
∂

∂t

(
(et − 1)

∂u

∂t
− u
)

= ∆
(

(et − 1)
∂u

∂t
− u
)

+ n− 〈ω̃t, ω0〉.

1The upper bounds for u and ∂u
∂t

are available in general from later discussion.
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By Maximum Principle, this gives

(et − 1)
∂u

∂t
− u− nt 6 C,

which, together with the upper bound of u and local bound for ∂u
∂t near t = 0,

would provide
∂u

∂t
6 C.

The upper bounds on ∂u
∂t and u together with |∂u∂t + u| 6 C from volume control

give the uniform (lower) bounds on ∂u
∂t and u.

Multiplying (2.3) by a large enough constant C2 > C1 + 1 and combining it with
(2.2), one arrives at

(
∂

∂t
−∆)

(
logφ+ C2

(
(et − 1)

∂u

∂t
− u
))

6 nC2 + 1− (C2 − C1)φ

6 C − φ.
(2.4)

Now we apply Maximum Principle for the term logφ+C2

(
(et − 1)∂u∂t − u

)
. Con-

sidering the place where it achieves maximum value, one has

φ 6 C,

and so by the bounds of u and ∂u
∂t ,

logφ+ C2

(
(et − 1)

∂u

∂t
− u
)

6 C.

Hence we conclude φ = 〈ω̃t, ω0〉 6 C using again the bounds on ∂u
∂t and u. This

trace bound, together with volume bound ω̃nt 6 Cωn0 , provide the uniform bound
of ω̃t as metric, i.e.

C−1ω0 6 ω̃t 6 Cω0.

The easiest way to see this is to diagonalize ω̃t with respect to ω0 and deduce the
uniform control of the eigenvalues from the above trace and volume bounds.

• Step 3. Contradiction

The metric (lower) bound makes sure that for any fixed analytic variety in X,
the integral of the proper power of ω̃t is bounded away from 0, and so the limiting
class [ωT ] would have positive intersection with any analytic variety by taking the
cohomology limit. Thus by Theorem 4.1 in [3], we conclude that [ωT ] is actually
Kähler. This contradicts with the assumption of finite time singularity at T in sight
of Proposition 2.1.

Hence we have finished the proof of Theorem 1.1.

Remark 2.3. In sight of this numerical characterization of Kähler cone for any gen-
eral closed Kähler manifold by J. Demailly and M. Paun, the blow-up of curvature
operator or Ricci curvature in closed Kähler manifold case is fairly obvious. The
situation of scalar curvature is the first non-trivial statement.

Also, if X is an algebraic manifold, then we can apply the more classic charac-
terization of ampleness by S. Kleiman as in [6] to draw the contradiction (see [9]
for the complete story in Algebraic Geometry).
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3. Proof of Theorem 1.3

It would be more satisfying to gain some control for the blow-up of scalar cur-
vature at finite time of singularity. Of course, this is also important for further
analysis of the singularity. That is what we are going to do in this section by
mainly following the argument in [18]. It is also divided into three steps.

• Step 1. 0-th Order Estimates

u 6 C is directly from (2.1). Recall that t-derivative of (2.1) is

∂

∂t

(
∂u

∂t

)
= ∆

(
∂u

∂t

)
− e−t〈ω̃t, ω0 − ω∞〉 −

∂u

∂t
,

which has the following variations,

∂

∂t

(
et
∂u

∂t

)
= ∆

(
et
∂u

∂t

)
− 〈ω̃t, ω0 − ω∞〉,

(3.1)
∂

∂t

(
∂u

∂t
+ u

)
= ∆

(
∂u

∂t
+ u

)
− n+ 〈ω̃t, ω∞〉.

A proper linear combination of these equations provides the following ”finite
time version” of the second equation above 2,

∂

∂t

(
(1− et−T )

∂u

∂t
+ u

)
= ∆

(
(1− et−T )

∂u

∂t
+ u

)
− n+ 〈ω̃t, ωT 〉.

As before, the difference of the original two equations gives

∂

∂t

(
(1− et)∂u

∂t
+ u

)
= ∆

(
(1− et)∂u

∂t
+ u

)
− n+ 〈ω̃t, ω0〉,

which implies the ”essential decreasing” of metric potential along the flow, i.e.
∂u

∂t
6
nt+ C

et − 1
.

Notice that this estimate only depends on the initial value of u and its upper
bound along the flow. It is uniform away from the initial time.

Another t-derivative gives

∂

∂t

(
∂2u

∂t2

)
= ∆

(
∂2u

∂t2

)
+ e−t〈ω̃t, ω0 − ω∞〉 −

∂2u

∂t2
− |∂ω̃t

∂t
|2ω̃t
.

Take summation with the one time t-derivative to arrive at
∂

∂t

(
∂2u

∂t2
+
∂u

∂t

)
= ∆

(
∂2u

∂t2
+
∂u

∂t

)
−
(
∂2u

∂t2
+
∂u

∂t

)
− |∂ω̃t

∂t
|2ω̃t
,

which gives
∂2u

∂t2
+
∂u

∂t
6 Ce−t.

This implies the ”essential decreasing” of volume form along the flow, i.e.

∂

∂t

(
∂u

∂t
+ u

)
6 Ce−t.

2By taking e−∞ = 0, this is exactly (3.1).
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One also has ∂
∂t

(
et ∂u∂t

)
6 C which induces

∂u

∂t
6 (Ct+ C)e−t.

After plugging in ω̃t = ωt +
√
−1∂∂̄u, the metric flow equation (1.1) becomes,

Ric(ω̃t) = −
√
−1∂∂̄

(
u+

∂u

∂t

)
− ω∞.

Taking trace with respect to ω̃t for the equation above and using the trivial
identity n = 〈ω̃t, ωt +

√
−1∂∂̄u〉, we have

R = −∆
(
u+

∂u

∂t

)
− 〈ω̃t, ω∞〉 = e−t〈ω̃t, ω0 − ω∞〉 −∆

(
∂u

∂t

)
− n,

where R denotes the scalar curvature of ω̃t. In sight of (3.1), we also have

R = −n− ∂

∂t

(
∂u

∂t
+ u

)
,

and so the estimate got for ∂
∂t

(
∂u
∂t + u

)
before is nothing but the well known lower

bound for scalar curvature.

Recall that we focus on the smooth solution of Kähler-Ricci flow in X × [0, T )
with finite time singularity at T .

Remark 3.1. For Step 1, we only need that the smooth limiting background form
ωT > 0. It is indeed equivalent to assume [ωT ] has a smooth non-negative represen-
tative and presumably weaker than the class being ”semi-ample”, i.e. the existence
of a map F described before that statement of Theorem 1.3 in Introduction.

Recall the following equation derived before

(3.2)
∂

∂t

(
(1− et−T )

∂u

∂t
+ u

)
= ∆

(
(1− et−T )

∂u

∂t
+ u

)
− n+ 〈ω̃t, ωT 〉.

With ωT > 0, by Maximum Principle, one has

(1− et−T )
∂u

∂t
+ u > −C.

Together with the known upper bounds, we conclude

|(1− et−T )
∂u

∂t
+ u| 6 C.

• Step 2. Parabolic Schwarz Estimate

Use the set-up as in [13] for the map F described before the statement of Theorem
1.3. Let ϕ = 〈ω̃t, F ∗ωM

〉 which is clearly non-negative, then one has, over X×[0, T ),

(
∂

∂t
−∆)ϕ 6 ϕ+ Cϕ2 −H,

where C is related to the bisectional curvature bound of ω
M

near F (X) and H > 0
is described as follows. Using normal coordinates locally over X and Y , with
indices i, j and α, β respectively, ϕ = |Fαi |2 and H = |Fαij |2 with summations for
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all indices. Notice that the normal coordinates over X is changing along the flow
with the metric. Using this inequality, one has

(
∂

∂t
−∆)logϕ 6 Cϕ+ 1.

Remark 3.2. For application, the map F is generated by (some multiple of) the
class [ωT ] with Y being some projective space CPN , and so ωT is F ∗ω where ω is
(some multiple of) Fubini-Study metric over Y .

Define

v := (1− et−T )
∂u

∂t
+ u

and we know |v| 6 C for the previous step. We also have (3.2),

(
∂

∂t
−∆)v = −n+ 〈ω̃t, ωT 〉 = −n+ ϕ.

After taking a large enough positive constant A, the following inequality is true,

(
∂

∂t
−∆)(logϕ−Av) 6 −ϕ+ C.

Since v is bounded, Maximum Principle can be used to deduce ϕ 6 C, i.e.

〈ω̃t, ωT 〉 6 C.

• Step 3. Gradient and Laplacian Estimates

In this part, we derive gradient and Laplacian estimates for v. Recall that

(
∂

∂t
−∆)v = −n+ ϕ, ϕ = 〈ω̃t, ωT 〉.

Standard computation (as in [13]) gives:

(
∂

∂t
−∆)(|∇v|2) = |∇v|2 − |∇∇v|2 − |∇∇̄v|2 + 2Re(∇ϕ,∇v),

(
∂

∂t
−∆)(∆v) = ∆v + (Ric(ω̃t),

√
−1∂∂̄v) + ∆ϕ.

Again, all the ∇, ∆ and (·, ·) are with respect to ω̃t and ∇∇̄v is just ∂∂̄v.

Define

Ψ :=
|∇v|2

C − v
.

Since v is bounded, one can easily make sure the denominator is positive, bounded
and also away from 0. We have the following computation,

(
∂

∂t
−∆)Ψ = (

∂

∂t
−∆)

(
|∇v|2

C − v

)
=

1
C − v

· ∂
∂t

(|∇v|2) +
|∇v|2

(C − v)2
· ∂v
∂t
−
(

(|∇v|2)ī
C − v

+
vī|∇v|2

(C − v)2

)
i

=
|∇v|2

(C − v)2
· ( ∂
∂t
−∆)v +

1
C − v

· ( ∂
∂t
−∆)(|∇v|2)− vi · (|∇v|2)ī

(C − v)2
− vī ·

(
|∇v|2

(C − v)2

)
i

=
|∇v|2

(C − v)2
· ( ∂
∂t
−∆)v +

1
C − v

· ( ∂
∂t
−∆)(|∇v|2)− 2Re(∇v,∇|∇v|2)

(C − v)2
− 2|∇v|4

(C − v)3
.
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Plug in the equalities from before and rewrite the differential equality for Ψ as
follows,

(
∂

∂t
−∆)Ψ

=
(−n+ ϕ)|∇v|2

(C − v)2
+
|∇v|2 − |∇∇v|2 − |∇∇̄v|2

C − v
+

2Re(∇ϕ,∇v)
C − v

− 2Re(∇v,∇|∇v|2)
(C − v)2

− 2|∇v|4

(C − v)3
.

(3.3)

We also need the following computations,

|(∇v,∇|∇v|2)| = |vi(vjvj̄)ī|
= |vivj̄vjī + vivjvj̄ī|
6 |∇v|2(|∇∇v|+ |∇∇̄v|)

6
√

2|∇v|2(|∇∇v|2 + |∇∇̄v|2)
1
2 ,

∇Ψ = ∇
(
|∇v|2

C − v

)
=
∇(|∇v|2)
C − v

+
|∇v|2∇v
(C − v)2

.

Together with the bounds for ϕ and C−v, we can have the following computation
with ε being a small positive constant which might be different from place to place,

(
∂

∂t
−∆)Ψ

6 C|∇v|2 + ε · |∇ϕ|2 − C(|∇∇v|2 + |∇∇̄v|2)

− (2− ε)Re
(
∇Ψ,

∇v
C − v

)
− ε · Re(∇v,∇|∇v|2)

(C − v)2
− ε · |∇v|

4

(C − v)3

6 C|∇v|2 + ε · |∇ϕ|2 − C(|∇∇v|2 + |∇∇̄v|2)

− (2− ε)Re
(
∇Ψ,

∇v
C − v

)
+ ε · (|∇∇v|2 + |∇∇̄v|2)− ε · |∇v|4

6 C|∇v|2 + ε · |∇ϕ|2 − (2− ε)Re
(
∇Ψ,

∇v
C − v

)
− ε · |∇v|4.

We need a few more calculations to set up Maximum Principle argument. Recall
that ϕ = 〈ω̃t, ωT 〉 and,

(
∂

∂t
−∆)ϕ 6 ϕ+ Cϕ2 −H.

With the description of ϕ and H before and the estimate for ϕ from Step 2, i.e.
ϕ 6 C, we can conclude as in [13] that

H > C|∇ϕ|2.

Now one arrives at

(3.4) (
∂

∂t
−∆)ϕ 6 C − C|∇ϕ|2.

We also have the following inequality,

(3.5) |
(
∇ϕ, ∇v

C − v

)
| 6 ε · |∇ϕ|2 + C · |∇v|2.
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Now we look at the function Ψ+ϕ. By choosing ε > 0 small enough in the above
computation, which also affects the choices of C’s, we have

(
∂

∂t
−∆)(Ψ + ϕ) 6 C + C|∇v|2 − ε · |∇v|4 − (2− ε)Re

(
∇(Ψ + ϕ),

∇v
C − v

)
.

At the maximum value point of Ψ +ϕ, which is either at the initial time or not,
we see |∇v|2 can not be too large. It’s then easy to conclude the upper bound for
Ψ + ϕ, and so for Ψ. Hence we have bounded the gradient, i.e.

|∇v| 6 C.

Now we want to do similar thing for the Laplacian, ∆v. Define

Φ :=
C −∆v
C − v

.

Similar computation as before gives the following

(
∂

∂t
−∆)Φ = (

∂

∂t
−∆)

(
C −∆v
C − v

)
= − 1

C − v
· ( ∂
∂t
−∆)∆v +

C −∆v
(C − v)2

· ( ∂
∂t
−∆)v +

2Re(∇v,∇∆v)
(C − v)2

− 2|∇v|2(C −∆v)
(C − v)3

= − 1
C − v

·
(
∆v + (Ric(ω̃t),

√
−1∂∂̄v) + ∆ϕ

)
+
C −∆v
C − v

· (−n+ ϕ)

+
2Re(∇v,∇∆v)

(C − v)2
− 2|∇v|2(C −∆v)

(C − v)3
.

(3.6)

We also have

∇
(
C −∆v
C − v

)
=

(C −∆v)∇v
(C − v)2

− ∇∆v
C − v

.

Recall that it is already known (0 6)ϕ 6 C. The following inequality follows
from standard computation as in [13] and has actually been used to derive the
inequality for the parabolic Schwarz estimate,

∆ϕ >
(
Ric(ω̃t), ωT

)
+H − Cϕ2.

As H > 0 and 0 6 ϕ 6 C, we have

(3.7) (Ric(ω̃t),
√
−1∂∂̄v) + ∆ϕ > (Ric(ω̃t),

√
−1∂∂̄v + ωT )− C.
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Recall that we are considering the finite time singularity case T < ∞, v =
(1− et−T )∂u∂t + u and ωT = ω∞ + e−T (ω0 − ω∞). The following is then obvious,

Ric(ω̃t) = −
√
−1∂∂̄

(
∂u

∂t
+ u

)
− ω∞

= −
√
−1∂∂̄v − ωT − et−T

√
−1∂∂̄

(
∂u

∂t

)
+ e−T (ω0 − ω∞)

= −
√
−1∂∂̄v − ωT − et−T

(√
−1∂∂̄

(
∂u

∂t

)
− e−t(ω0 − ω∞)

)
= −
√
−1∂∂̄v − ωT − et−T

∂ω̃t
∂t

= −
√
−1∂∂̄v − ωT − et−T

(
−Ric(ω̃t)− ω̃t

)
,

This gives
(1− et−T )Ric(ω̃t) = −

√
−1∂∂̄v − ωT + et−T ω̃t,

and so we have the two equations below,

Ric(ω̃t) = −
√
−1∂∂̄v + ωT
1− et−T

+
et−T ω̃t

1− et−T
,

(1− et−T )R = −∆v − 〈ω̃t, ωT 〉+ net−T .

As R > −C and 〈ω̃t, ωT 〉 > 0, we have ∆v 6 C. So the numerator of Φ, C−∆v,
is positive for large enough C.

Now we can continue the estimation (3.7) as follows.(
Ric(ω̃t),

√
−1∂∂̄v

)
+ ∆ϕ

>
(
Ric(ω̃t),

√
−1∂∂̄v + ωT

)
− C

=
(
−
√
−1∂∂̄v + ωT
1− et−T

+
et−T ω̃t

1− et−T
,
√
−1∂∂̄v + ωT

)
− C

= −|
√
−1∂∂̄v + ωT |2

1− et−T
+
et−T (∆v + 〈ω̃t, ωT 〉)

1− et−T
− C.

As C−1(T − t) 6 1 − et−T 6 C(T − t) for t ∈ [0, T ), using ∆v = ∆v − C + C
and 0 6 〈ω̃t, ωT 〉 6 C, we have(

Ric(ω̃t),
√
−1∂∂̄v

)
+ ∆ϕ

= −|
√
−1∂∂̄v + ωT |2

1− et−T
+
et−T (∆v + 〈ω̃t, ωT 〉)

1− et−T
− C

> − 1
T − t

(
(1 + ε)|

√
−1∂∂̄v|2 + C|ωT |2

)
− C

T − t
(C −∆v)− C

T − t

> − 1 + ε

T − t
|
√
−1∂∂̄v|2 − C

T − t
(C −∆v)− C

T − t
,

where |ωT |2 6 C, which follows from 0 6 〈ω̃t, ωT 〉 6 C, is applied in the last step.

Now we can continue the computation for Φ, (3.6), as follows.

(
∂

∂t
−∆)Φ 6

C

T − t
+

C

T − t
· (C −∆v) +

(1 + ε)|∇∇̄v|2

(T − t)(C − v)
− 2Re

(
∇Φ,

∇v
C − v

)
.
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Using Φ = C−∆v
C−v > C(C −∆v), one arrives at

(
∂

∂t
−∆)((T−t)Φ) 6 C+C ·(C−∆v)+

(1 + ε)|∇∇̄v|2

C − v
−2Re

(
∇
(
(T − t)Φ

)
,
∇v
C − v

)
.

In sight of (3.4) and (3.5), we have

(
∂

∂t
−∆)ϕ 6 C − 4Re

(
∇ϕ, ∇v

C − v

)
+ C|∇v|2.

Also, (3.3) can be rewritten as

(
∂

∂t
−∆)Ψ 6

(−n+ ϕ)|∇v|2

(C − v)2
+
|∇v|2 − |∇∇v|2 − |∇∇̄v|2

C − v

+ 2Re
(
∇ϕ, ∇v

C − v

)
− 2Re

(
Ψ,
∇v
C − v

)
.

Using the known bound for |∇v| and choosing proper 0 < ε < 1, we have

(
∂

∂t
−∆)

(
(T − t)Φ + 2Ψ + 2ϕ

)
6 C + C · (C −∆v)− 2Re

(
∇
(
(T − t)Φ + 2Ψ + 2ϕ

)
,
∇v
C − v

)
− C|∇∇̄v|2

6 C + C · (C −∆v)− 2Re
(
∇
(
(T − t)Φ + 2Ψ + 2ϕ

)
,
∇v
C − v

)
− C(C −∆v)2

where |∇∇̄v|2 > C(∆v)2 > C(C −∆v)2 − C is applied in the last step.

Now we apply Maximum Principle. At maximum value point of the function
(T − t)Φ + 2Ψ + 2ϕ, we have C −∆v 6 C1. Using the known bounds on Ψ and ϕ,
we arrive at

(T − t)Φ + 2Ψ + 2ϕ 6 C,

and so

Φ 6
C

T − t
, i.e. ∆v > − C

T − t
.

Finally since (1− et−T )R = −∆v − 〈ω̃t, ωT 〉+ net−T , we conclude that

R 6
C

(T − t)2

and finish the proof of Theorem 1.3.

4. Further Remarks

Here we want to indicate how these results would sit in the big picture. There are
several closely related results also worth mentioning. Some remarks below should
give people some idea about the essential difference between finite and infinite time
singularities for Kähler-Ricci flow.

• In [12], following Perelman’s idea, N. Sesum and G. Tian have proved that
for X with c1(X) > 0, for any initial Kähler metric ω such that [ω] = c1(X),
the Kähler-Ricci flow

∂ω̃t
∂t

= −Ric(ω̃t) + ω̃t
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has uniformly bounded scalar curvature and diameter for t ∈ [0,∞). Notice
that this is not finite time singularity, and so does not bring trouble to our
comments after Theorem 1.1. Using simply rescaling of time and metric,
one can see for our flow (1.1) with [ω0] = c1(X) > 0,

R(ω̃t) 6
C

T − t
for t ∈ [0, T ) where the finite singular time T = log 2, which is a better
control than Theorem 1.3 in this special case. So the conclusion of Theorem
1.3, though fairly general, should not be optimal for many special cases of
interests.
• For the infinite time singularity case, the scalar curvature would be uni-

formly bounded for all time if the infinite time limiting class, [ω∞], provides
a holomorphic fiber bundle structure for X, i.e. the map F as in our setting
is a smooth (holomorphic) bundle map. This is actually proved in [13] if
one restricts to smooth collapsing case.
• Still for the infinite time singularity case, the scalar curvature would also

be bounded if the limiting class is ”semi-ample and big”, i.e. the (possibly
singular) image of the map F is of the same dimension asX, which is usually
called global volume non-collapsing case. This result is proved in [18]. The
more recent work of Yuguang Zhang, [16], has given a nice application.
• A major character of Kähler-Ricci flow is the cohomology information in

a finite dimensional cohomology space. It provides natural expectation
of the behavior for flow metric, though up to this moment, most of the
behavior remains very difficult to justify. Meanwhile, scalar curvature also
provides very condensed information about metric, and so it is reasonable
to conjecture close relation between cohomology data of Kähler-Ricci flow
and behavior of scalar curvature. That is exactly what we have achieved in
this note. It gives us hope that the cohomology data would indeed provide
good prediction of Kähler-Ricci flow.

References

[1] Cao, Huaidong; Zhu, Xiping: A complete proof of the Poincaré and Geometrization Conjec-
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