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In this paper, we present graphical displays for the theory given in our papers [1] and [2], where we studied tessellations of R3, focussing on the non 
facet-to-facet case (that is, where a cell’s facets do not necessarily coincide with the facets of that cell’s neighbours). Our paper [1] establishes that 
the topological parameter space is 7-dimensional and gives numerous formulae that contribute to the combinatorial topology of such tessellations. 
Paper [2] establishes the inequalities that apply to the 7 parameters and presents many examples. The current supplementary paper shows 
graphically the form of the constraint space for each example in [2]. 

The primitive elements of the tessellation are its vertices, edges, plates and cells (a “plate” being the closed convex polygon which separates two 
cells).  We assume that the cells are convex polyhedra. To avoid confusion arising because of the clash of notations between tessellation theory 
and polyhedron theory, we do not use labels such as “vertex” or “edge” when discussing polyhedral cells. We call a cell’s 0-face an apex, its 1-face 
a ridge and its 2-face a facet. A plate’s 0-face and 1-face are called corner and side respectively, as are the 0- and 1-face of a facet. To resolve any 
ambiguity here, we say (for example) plate-side or facet-side.

Three parameters suffice when a tessellation is facet-to-facet. These are (see [1] or [2] for greater formality):
              ΜVE := the mean number of edges emanating from the typical vertex;
              ΜEP := the mean number of plates emanating from the typical edge;
              ΜPV := the mean number of vertices on the boundary of the typical plate.

Our paper [2] gives the constraints on these three parameters, firstly in the facet-to-facet case. These results are new, but it is the non facet-to-facet 
case which has been our focus --- and that requires four more parameters:             
              Ξ := the proportion of tessellation edges whose interior is contained in the interior of some facet;
              Κ := the proportion of vertices in the tessellation contained in the interior of some facet;
              Ψ := the mean number of ridge interiors whose interior contains v, when v is a typical vertex;
              Τ := the mean number of plate-sides whose interior contains v, when v is a typical vertex. 

See [2] for the algebraic constraints on the 7 parameters and for the detailed definition of each example. See the figures below for a pictorial 
experience of the constraints. Some examples are facet-to-facet, but many are not.

              [1] Weiss, V. and Cowan, R.  Topological relationships in spatial tessellations. Adv. Appl. Prob. 43, 963-984 (2011) 
              [2] Cowan, R. and Weiss, V.  Constraints on the fundamental topological parameters of spatial tessellations. Submitted for
                   publication.  Also available on ArXiv.
                   

Example 10e. The figures immediately below are given (as Fig. 3) in [2].  They illustrate our strategy to display the 7-dimensional space.
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Example 10e. The figures immediately below are given (as Fig. 3) in [2].  They illustrate our strategy to display the 7-dimensional space.

ΜVE = 6
ΜEP = 5.75

ΜPV = 5.30
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One parameter, ΜVE, can take any value ³  4. In Example 10e, ΜVE = 6. The grey regions in the left figure show the allowed domain for ( ΜPV, ΜEP) 
when  ΜVE = 6. The dark grey region (viewed as “open” on its right boundary, but “closed” on its other boundaries) is the allowed domain for ( ΜPV, 
ΜEP) in the facet-to-facet case. Non facet-to-facet tessellations can have ( ΜPV, ΜEP) in either the light or dark grey regions (but not on the left or right 
boundary of the light region nor on the right boundary of the dark region). Note that the light-grey region is unbounded above; it is described by
  ΜEP >  6(1 - 2

ΜVE
),    combined with     ΜVE ΜEP

2 HΜVE-2L    <  ΜPV <  ΜVE ΜEP

ΜVE-2
.  

The dot in the left figure corresponds to the actual value of ( ΜPV, ΜEP) in Example 10e. Given this value and the value of ΜVE, the pink region in the 
middle figure is the permitted domain for (Ψ, Τ). There are 6 constraints (shown as lines) that might be active, in addition to the obvious constraints 
Ψ ³ 0 and Τ ³ 0. The dot in the middle figure is the actual value in Example 10e of  (Ψ, Τ). Given the values of ΜVE, ΜEP, ΜPV, Ψ and Τ, the right figure 
shows (in pink) the permitted domain for (Κ, Ξ). The dot shows the actual value for Example 10e. 

For the meaning of the dashed line in the left picture and the algebraic detail of all the constraining lines, see our paper [2].

                                                                     

The examples in our paper [2]
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The examples in our paper [2]

Example 1:  Voronoi             Note, in the figure above, that the (Κ, Ξ) domain is bounded above and below by two parallel lines. This is a universal 
feature in our theory. Sometimes, however, these two lines coincide and the permitted domain becomes a line-segment. Example 1, below, is a 
case in point. Note also (and this is something independent of the comment above) that the dark grey zone in the left figure below has also been 
reduced to a line-segment. 
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Example 2:  Delaunay            This example, where every cell is a tetrahedron, produces permitted domains in the middle and right figures which 
contain only one point, namely (0,0), and we note that the values in Example 2 lie at that point. It is a general fact that if a tessellation is facet-to-
facet, and Examples 1 and 2 are,  then Ξ = Κ = Ψ = Τ = 0.
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Example 3:  Poisson plane process .... another facet-to-facet tessellation

ΜVE = 6
ΜEP = 4

ΜPV = 4
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Example 4:  STIT ..... one of the most important and best studied non facet-to-facet models

ΜVE = 4
ΜEP = 3

ΜPV = 5.14
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Example 6a: triangular prisms ..... the many cases within Example 6 deal with the so-called “column” models (which comprise columns made from 
prisms). 5



Example 6a: triangular prisms ..... the many cases within Example 6 deal with the so-called “column” models (which comprise columns made from 
prisms).

ΜVE = 4
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Example 6b: quadrilateral prisms

ΜVE = 4
ΜEP = 3.5

ΜPV = 5.6
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Example 6c: pentagonal prisms (Cairo style, see [2])

ΜVE = 4
ΜEP = 3.2

ΜPV = 5.33
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Example 6d: hexagonal prisms

ΜVE = 4
ΜEP = 3

ΜPV = 5.14
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Example 7:  Three pyramids  .... cubes partitioned into three congruent pyramids, then packed so that the tessellation is facet-to-facet
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Example 7:  Three pyramids  .... cubes partitioned into three congruent pyramids, then packed so that the tessellation is facet-to-facet

ΜVE = 8
ΜEP = 4

ΜPV = 3.2
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Example 8:  Divided Delaunay         Here, the right figure looks strange, because the permitted domain for (Κ, Ξ) has been reduced to one point. 
This point is the only point which lies on or below the higher of the two parallel constraints AND on or above the dashed constraint.
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Example 9a:  ....... The many cases for Example 9 are based on the so-called “stratum” models, 9a-9c being facet-to-facet.
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Example 9b:  

ΜVE = 8
ΜEP = 4.5

ΜPV = 3.6
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Example 9c:  

ΜVE = 6
ΜEP = 4

ΜPV = 4
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Examples 9d:  

ΜVE = 5
ΜEP = 3.6
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Example 10a:  ...........Examples 10 are based on a “central-point” construction 

ΜVE = 10.4
ΜEP = 4

ΜPV = 3.35
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Example 10b:   Once again we see the permitted domains collapse to a point in the middle and right figures.

ΜVE = 8.97
ΜEP = 4.66

ΜPV = 3
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Example 10c:  
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Example 10c:  

ΜVE = 5.71
ΜEP = 4.2

ΜPV = 4.42
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Example 10d:  

ΜVE = 11
ΜEP = 4.36

ΜPV = 3.2
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Example 10e:        We saw this example at the top of this document.

ΜVE = 6
ΜEP = 5.75

ΜPV = 5.30
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Example 10f:         The ( ΜPV, ΜEP) point in the left figure is very close to the “open” boundary of the light-grey region. On this boundary, no 
tessellations exist and this is fact is consistent with the rather small pink domains in the other figures.
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Example 10g:   The comment in 10f applies even more so in this example. 

ΜVE = 8.12
ΜEP = 5.37

ΜPV = 3.62
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Example 10h:        Still more so, here. In this example Ξ = 1
171

. The permitted (Κ, Ξ) domain hasn’t quite disappeared.
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Example 11a: 

ΜVE = 11
ΜEP = 4.72

ΜPV = 3.05
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Example 11b: 

ΜVE = 12
ΜEP = 4.66

ΜPV = 3.11
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Example 11c: 

ΜVE = 14
ΜEP = 4.95

ΜPV = 3.05
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Example 11:    ...... another case, with k=n=10 (the case k=n=100 as mentioned in the construction of Examples 13 is not suitable to plot). Note that  
ΜVE is very large. Our theory (see [2]) proves that ΜVE is unbounded above.

ΜVE = 291 ΜEP = 5.59
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Example 12: 

ΜVE = 4.47
ΜEP = 3.32

ΜPV = 4.88
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Example 14:                 (with n=6, not n=8 as the former has ΜPV too high to appear on the left hand plot, without programme changes)

ΜVE = 4
ΜEP = 5.54

ΜPV = 8.93
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Example 15: 

ΜVE = 10
ΜEP = 4

ΜPV = 3.33
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Example 16:        Note that the middle permitted zone has collapsed to (0,0).

ΜVE = 14
ΜEP = 3.85

ΜPV = 3
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Example 17: 

ΜVE = 7.33
ΜEP = 3.81

ΜPV = 3.5
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Example 18a:    .............. based on a facet-to-facet tiling with congruent copies of the rhombic dodecahedron.        
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Example 18b:    .............. a non facet-to-facet tiling with the rhombic dodecahedron fragmented.        

ΜVE = 8
ΜEP = 3

ΜPV = 3.27
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Example 18c:    .............. further fragmentation of the rhombic dodecahedron.        

ΜVE = 10
ΜEP = 3

ΜPV = 3
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