
Errata for “Iwahori–Hecke algebras and Schur algebras of the symmetric group”
Please let me know if you find any other problems — Andrew Mathas

With thanks to: Meinolf Geck, Darij Grinberg, Sinéad Lyle, Eric Marberg, Liron Speyer, and many others.

CHAPTER 1

Page 3, line 2: To prove that t has a reduced expression of the form t = si1 . . . sil−1
silsil−1

. . . si1 takes sine work. On
the other hand, we we need below is that t ∈ N(t), which is immediate from the definition of N(t) since t2 = 1.

Page 6, proof of Theorem 1.13: The first displayed equation in the proof should read:

θi(ew) =

{
esiw, if ℓ(siw) > ℓ(w),

qesiw + (q − 1)ew, if ℓ(siw) < ℓ(w).

Page 8, proof of Proposition 1.16: In the first displayed equation, the exponent of q is missing a bracket and should read

q
1
2

(
ℓ(x)+ℓ(y)−ℓ(xy)

)
.

Page 9, Corollary 1.17: K should be the algebraic closure of C(q̂)

Page 10, proof of Theorem 1.18: Ha should be defined as the R-submodule with basis {Twb
| 1 ≤ b ≤ a }.

Page 11, Exercise 3: Part (i) requires that n is invertible in R. In part (ii) R should be R.

Page 11, Exercise 4: Add: where K = Q(q̂). In part (ii), V ′′
q̂ is a subspace of Vq̂ .

CHAPTER 2

Page 16, Example 2.2 (i): Ǎn = xn+1R[x] is the set of polynomials of minimal degree greater than n

Page 17, line -2: Replace “...and one can check that C∗λ ∼= HomR(C
λ, R)” with “and HomR(C

∗λ, R) is a right A–
module with A–action given by (f · a)(x) = f(ax), for f ∈ HomR(C

∗λ, R), a ∈ A and x ∈ C∗λ).

Page 18, §2.10: “maximal ideals” should be “maximal submodules”.

Page 21, proof of 2.18: Delete “that Cν ∼= HomR(C
∗ν , R) as right A–modules. Therefore” and after the displayed

equation add “Hence, dimPλ⊗AC∗ν = [HomR(C
∗ν , R) : Dλ] = dνλ since HomR(D

∗µ, R) ∼= Dµ whenever Dµ ̸= 0.”

Page 24, exercise 7(i). Delete “In addition, show that Cλ ∼= HomR(C
∗λ, R) for all λ ∈ Λ.

Page 25, line 3: change parenthetical remark to (the four Kazhdan–Lusztig bases {Cx}, {C ′
x}, {Dx} and {D′

x} of
H (Sn) are all cellular; however, this is not true for Hecke algebras of other types).

Page 28, line -12: H (Sµ) ∼= H (Sµ1
)⊗ · · · ⊗ H (Sµk

).

CHAPTER 3

Page 30, line -5: ℓ(wt1 . . . tj) ≤ ℓ(w)− j, for j = 1, 2, . . . , k.

Page 38, Warning: Sλ is the dual of the Dipper–James Specht module indexed by λ; that is, Sλ ∼= (Sλ
DJ)

⋄. One can check
that (Sλ

DJ)
⋄ ∼= Sλ′

so it is necessary to replace λ with λ′ when comparing our results with those of Dipper and James.

Page 41, line -1: The reduction to the case where k = n is a bit of a leap. Here are more details.

Suppose k < n where k is the number in the last row and the first column of tλ. As in the second paragraph of the
proof, let µ = (λ1, . . . , λr, 1). Then k = |µ| and mλ = hmµ if we set h =

∑
w Tw, where the sum is over the

elements of S({k, k + 1, . . . , n}). By the argument for the case when k = n it follows that

mλLk = hmµLk = h
(
restλ(k)mµ +

∑
ν⊢k,ν▷µ

u,v∈Std(ν)

ruvmuv

)
,

for some ruv ∈ R. If ν is a partition of k let ν̂ be the partition of n obtained by appending 1n−k to ν and if
u ∈ Std(ν) let û be the unique ν̂-tableau such that û ↓ k = u. Under the natural embedding H (Sk) ↪→ H (Sn),
it is easy to see that if ν ▷ µ and u, v ∈ Std(ν) then muv = mûv̂. Notice that if ν ▷ µ then ν̂ > λ. Therefore,
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returning to the last displayed equation,

mλ

(
Lk − restλ(k)

)
= h

∑
ν▷µ

u,v∈Std(ν)

ruvmuv ∈ H λ ∩
⋂
ν>λ

H ν ⊆ Ȟ λ.

Therefore, mλLk ≡ restλ(k)mλ (mod Ȟ λ) as we needed to show.

Page 44, line -6: missing bracket

Page 46, line 11: Replace lλe with le throughout.

Page 46, Lemma 3.40: The proof of this lemma is not particularly clear. Here is a better argument:

Let L0,L1, . . . ,Lk be the ladders which meet [λ] and let ra be the row index of the highest node in La ∩ [λ], for
0 ≤ a ≤ k. By definition, if b ≥ 1 then λb − λb+1 < e because λ is e-restricted. Therefore, if (i, j) and (i′, j′) are
two nodes in the ladder Lk, for k = le(i, j), then (i′, j′) ∈ [λ] whenever (i, j) ∈ [λ] and i ≤ i′. That is, the ladder
L0, . . . ,Lk are ‘unbroken’ in the sense that all of the nodes which belong to the same ladder as (i, j) and appear in
a later row also belong to [λ]. Hence, we see that r0 ≥ r1 ≥ · · · ≥ rk.

Now suppose that t is a standard tableau, not necessarily of shape λ, such that res(t) = res(lλe ). To prove the
Lemma we have to show that t ▷ lλe . We argue by induction on n.

When n = 1 then t = lλe = tλ and there is nothing to prove, so suppose that n > 1. Let i = reslλe (n) and let m
be maximal such that reslλe (m) ̸= i. Thus, recalling that L0,L1, . . . ,Lk are the ladders which meet [λ], n appears
at the top of the ladder Lk in lλe and m appears at the top of Lk−1. Let µ = Shape(lλe ↓m).

As noted above, the ladders L0, . . . ,Lk are unbroken. Therefore, µ is an e-restricted partition and lµe = lλe ↓m.
Moreover, t↓m is a standard tableau with residue sequence res(lµe ). Therefore, by induction on n,

(†) Shape(t↓r) ⊵ Shape(lµe ↓r) = Shape(lλe ↓r),
for r = 1, 2, . . . ,m, with equality throughout if and only if t ↓m = lµe . Consequently, if t ̸⊵ lλe then there must

exist an integer p such that Shape(t ↓ p) ̸⊵ Shape(lλe ↓ p) and m < p ≤ n. Let p be minimal with this property
and set ν = Shape(t ↓ p). For convenience, set λ = (λ1, λ2, . . . ), µ = (µ1, µ2, . . . ) and ν = (ν1, ν2, . . . ). By
construction, p appears in row rk + n− p of lλe . Therefore, by the minimality of p,

ν1 + · · ·+ νrk+n−p < λ1 + · · ·+ λrk+n−p = µ1 + · · ·+ µrk+n−p + 1.

Since t↓m ⊵ lµe this forces ν1 + · · ·+ νrk+n−p = µ1 + · · ·+µrk+n−p and hence that t↓m = lµe . As m+1, . . . , n
occupy the lowest addable i-nodes in lλe this easily implies that t ⊵ lλe , giving a contradiction and completing the
proof.

Page 47, line 4: λi is a composition of λi.

Page 47, line 5: gi is the greatest common divisor of { [γ]!q ∈ Z | γ ⊵ λ
i }. That is, we must define gi to be an element of

the ring Z = Z[q, q−1].

Page 47, Lemma 3.42: Suppose that R = Z , that λ = (λ1, . . . , λk) is a partition of n,. . .

Page 47, line -7: On the other hand, if λ ⊵ ν then (λ1, λ2, . . . , λk) ⊵ (λ1, λ1 − µ1, . . . , λk − µk); . . .

Page 49, Exercise 2: Let λ and µ be partitions of n.

Page 50, exercise 18(ii): As pointed out to me by Eric Marberg, it is not true that Sµ is a subgroup of the column stabiliser
of tλd; for example, take λ = µ = (2, 2, 1) and d = (2, 3, 4, 5). Instead one should prove that i and j are in different rows
of tλd whenever they are in the same row of tµ. This implies that µ′ ⊵ λ.

Page 53, line -7: hi = hλ
i1.

CHAPTER 4

Page 58, line 4: last(T) = 1 2 6 8
3 4 5 7

.

CHAPTER 5

Page 70, line 5: if and only if d(first(S)) ⊵ d(first(T)).

Page 72, line 2: then a < c
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Page 72, before Lemma 5.12: Insert the lines “Define maps φTµTω :Mµ−→Mω and φTωTµ :Mω−→Mµ by φTµTω (mµh) =
mµh and φ(h) = mµh for all h ∈ H . Note that Mω = H . Both φTµTω and φTωTµ are elements of the Schur algebra.

Page 73, line 18: Note that if x = (i, j) and y = (k, l) then j − i+ k − l + 1.

Page 74, line 5: Replace Sn with Sµ.

Page 74, proof of Lemma 5.15(ii): The argument should be replaced with:

Now suppose that T = µ(t) is not semistandard. By definition, T is row semistandard so there must exist integers
i < j such that i and j are in the same row of tµ and in the same column of t. Consequently, the tableau last(T) is
row standard but not standard. As in the last paragraph, mtmµ = [ν]!qmV, where mV =

∑
v mv and the sum is over

the row standard λ-tableau v such that µ(v) = T. Now if v is row standard and µ(v) = T then v ⊵ last(T), so if

mtmµ =
∑

s∈Std(λ)

csms, for cs ∈ R,

then cs ̸= 0 only if s ▷ last(T) by Lemma 3.15. Note that if cs ̸= 0 then s strictly dominates last(T) because
last(T) is not standard. On the other hand, by Proposition 4.14, mtmµ belongs to the span of {mS | S ∈ T0(λ, µ) },
so cs ̸= 0 only if µ(s) = S ∈ T0(λ, µ). It follows that mtmµ =

∑
S cSmS, where cS ̸= 0 only if S ▷ T. Hence, (ii)

follows.

Page 75, line 1: Suppose that t = first(T). Then πµ
t φT = φtφTωTµ . . .

Page 78, line -2: B4 should be G4.

Page 78, line -2: . . . columns c1 < c2 < · · · < cz

Page 81, line 19: smallest should be largest

Page 81, line -15: MF(k) = M(k)⊗R F should be MF(k) = (M(k) + pM(k))/pM(k).

Page 83, line 8: Wλ
F φTµTµ should be Wλ

F φTµTµ(i)

Page 85, line 10: is well–defined

Page 86, Proof of Theorem 5.37: The last paragraph of the proof contains a gap. The proof breaks down in the case
where Wλ is irreducible. The following argument corrects this.

To prove the theorem it is enough to show that Wµ
F and W γ

F are in the same block. If νp([h
µ
ab]q̂) ̸= νp([h

µ
ac]q̂), for

some nodes (a, b), (a, c) ∈ [µ], then we may assume that b = 1 and let ν be the partition obtained by removing
the (a, c)-hook from µ and wrapping it back on at the bottom of the first column of µ\Rµ

ac. Then µ ▷ ν and W ν
F

appears with non–zero multiplicity in
∑

i>0 W
µ
F (i) by Theorem 5.32. Therefore, W ν

F and Wµ
F are in the same block

by Lemma 5.36 (and Corollary 2.22). By induction on dominance, W ν
F and W γ

F are in the same block, so Wµ
F and

W γ
F are in the same block as we wanted to show.

Finally, suppose that νp([h
µ
ab]q̂) = νp([h

µ
ac]q̂), whenever (a, b), (a, c) ∈ [µ]. That is, the νp-valuation of the

hook lengths in µ are constant along rows. Since µ is not an e-core it has at least one removable e-hook. Let R
be the lowest removable e-hook in µ. That is, no other removable e-hook in µ has nodes in a lower row. Since
the νp-valuations of the hook lengths are constant on rows, R is contained in a single column of µ. Let σ be the
partition obtained by wrapping an e-hook onto the end of the first row of µ\R and let ν be the partition obtained by
wrapping R onto the bottom of the first column of µ\R. Then σ ▷ µ ▷ ν. Moreover, Wµ

F and W ν
F both appear

with non-zero coefficient in
∑

i>0 W
σ
F (i) by Theorem 5.32. Therefore, the three Weyl modules Wσ

F , Wµ
F and W ν

F
all belong to the same block by Lemma 5.36. By induction W ν

F and W γ
F are in the same block since µ ▷ ν. Hence,

Wµ
F and W γ

F are in the same block, completing the proof.

Page 94, Conjecture 4.7(iii): This should read: νe,p(hλ
ab) = −1 for 1 ≤ a ≤ k and 1 ≤ b ≤ l.

CHAPTER 6

Page 98, Proposition 6.1: It is not immediate that the map defined in the proof of the proposition is an Hn−1-module
homomorphism. The following expanded argument establishes this.

By Proposition 3.22, {mt | t ∈ Std(λ) } is a basis of Sλ. Furthermore, by Corollary 3.4 and Corollary 3.21, if
t ∈ Std(λ) and h ∈ Hn−1 then mth is a linear combination of terms mv where v is a standard λ–tableau and n
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appears in either the same row or a later row of v than it does in t; that is, Shape(v↓(n− 1)) ⊵ Shape(t↓(n− 1)).
Furthermore, by definition, Shape(t↓(n− 1)) −→ λ.

For i = 1, 2, . . . , z let Stdi(λ) = { t ∈ Std(λ) | Shape(t↓(n− 1)) = νi }. Then these sets partition Std(λ)
and the map t 7−→ t↓(n− 1) defines a bijection

Std(λ) =

z∐
i=1

Stdi(λ)
≃−→

z∐
i=1

Std(νi).

For 1 ≤ i ≤ z, define S(i) = S
(i)
R to be the R–module of ResSλ with basis {mt | t ∈ Stdj(λ) for i ≤ j ≤ z } .

By the first paragraph, each S(i) is an Hn−1–submodule of Sλ. To complete the proof it is enough to show that
Sνi ∼= S(i)/S(i+1), for 1 ≤ i ≤ z. Define θi :S

(i)/S(i+1)−→Sνi to be the R-linear map determined by

θi(mt + S(i+1)) = mt↓(n−1), for t ∈ Stdi(λ).

By definition, θi is an isomorphism of R-modules. We will show that θi is an isomorphism of Hn−1-modules.

Recall that Z = Z[q̂, q̂−1] and that Sµ
R

∼= Sµ
Z ⊗Z R for any partition µ. By definition, the submodules S

(i)
R

of Sλ
R are R-free and S

(i)
R

∼= S
(i)
Z ⊗Z R. Therefore, in order to show that θi is an Hn−1-module homomorphism it

is enough to consider the case when R = Z . Let K = Q(q̂) be the field of fractions of Z . Then Sλ
K
∼= Sλ

Z ⊗Z K,
so by considering Sλ

Z as a Z-submodule of Sλ
K it follows that θi is an HZ,q̂(Sn−1)-module homomorphism if and

only if θi ⊗ 1K is a HK,q̂(Sn−1)-module homomorphism. Hence, we are reduced to the case when R = K.

Let { ft | t ∈ Std(λ) } be the seminormal basis of Sλ
K as defined in Theorem 3.36. By definition, ft = mtFt

for t ∈ Std(λ). Similarly, the Specht modules Sν have seminormal bases whenever ν −→ λ. Define a new
homomorphism θ :Sλ −→

⊕z
j=1 S

νj by θ(ft) = ft↓(n−1), for t ∈ Std(λ). By definition, θ is a vector space
isomorphism and, in view of Theorem 3.36, it is an Hn−1-module homomorphism. Now, by Proposition 3.35,
ft = mt +

∑
u▷t aumu, for some au ∈ K. Therefore, S(i)

K has basis { ft | t ∈ Stdj(λ) for i ≤ j ≤ z } and,
moreover, θ(S(i)

K ) = S
(i)
K . Consequently, θ induces a well-defined map from S

(i)
K /S

(i+1)
K to Sνi

K , for 1 ≤ i ≤ z. To
complete the proof we claim that θi(a+ S(i+1)) = θ(a), for all a ∈ S(i) and 1 ≤ i ≤ z.

Let t be the unique standard λ-tableau such that t ↓ (n − 1) = tνi . Then t dominates all of the tableaux in
Stdi(λ) so ft ≡ mt (mod S

(i+1)
K ). Hence,

θ
(
mt + S

(i+1)
K

)
= θ

(
ft + S

(i+1)
K

)
= ftνi = mtνi = θi

(
mt + S

(i+1)
K

)
.

Now let s be an arbitrary tableau in Stdi(λ). Set d = d(s ↓ (n − 1)) ∈ Sn−1. Then d is the unique permutation
in Sn−1 such that s ↓ (n − 1) = tνid, with the lengths adding. Moreover, s = td and ms = mtTd. Therefore,
since θ is an Hn−1-module homomorphism,

θ
(
ms + S

(i+1)
K

)
= θ

(
mtTd + S

(i+1)
K

)
= θ

(
mt + S

(i+1)
K

)
Td

= mtνi
Td = ms↓(n−1) = θi

(
ms + S

(i+1)
K

)
.

Therefore, θi
(
ms+S

(i+1)
K

)
= θ(ms+S

(i+1)
K

)
for all s ∈ Stdi(λ). So, θi is an Hn−1-module homomorphism and

the proof is complete.

Page 105, line -5: “good” should be “removable”.

Page 119, line 20: delete not.

Page 123, line 14: The definition of the Littlewood-Richardson coefficients aτλµ is incomplete. The integer aτλµ is equal
to the number of semistandard τ -tableau of type (λ1, λ2, . . . , µ1, µ2, . . . ) such that there are λi entries in row i and the
reverse reading word of the entries in τ\λ is a lattice permutation. A more concise definition is that aτλµ is the number
of semistandard τ\λ-tableau of type µ the reverse reading word of the entries in τ\λ is a lattice permutation

Page 124, Rule 3: Cn+1B
t
n+1Dn should be Cn+1B

t
nDn

Page 128, paragraph -1: The paper of Martin and Russel contained a serious gap and even missed some cases. Fortunately,
Matthew Fayers has now proved that the decomposition numbers of the blocks of weight 3 are at most 1 when p > 3; see
“Decomposition numbers for weight three blocks of symmetric groups and Iwahori-Hecke algebras”, Trans. Amer. Math.
Soc., 360 (2008), 1341–1376. In a sequel to this paper, Fayer’s proved James’ conjecture for blocks of the Iwahori-Hecke
algebra of weight 4. See Fayers’s paper “James’s conjecture holds for weight four blocks of Iwahori-Hecke algebras”, J.
Algebra, 317 (207), 593–633.

Page 135, Note added in proof: Grojnowski and Vazirani [C,E] prove Conjecture 6.54 only up to a permutation of the
multipartitions which index the simple modules of the Ariki–Koike algebras. Ariki has now proved that this permutation
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is trivial, thus establishing Conjecture 6.54. See Ariki’s paper “Proof of the modular branching rule for cyclotomic Hecke
algebras”, J. Algebra, 306 (2006), 290–300.

Grojnowksi’s [B] proof of the classification of the blocks of the Ariki–Koike algebras (conjecture 6.53) was incomplete.
The conjecture has now been proved by Lyle and Mathas; see “Blocks of cyclotomic Hecke algebras”, Adv. Math., 216
(2007), 854–878.

Page 135: line 11: A should be B.

Page 135: line -11: E should be D.

APPENDIX A

Page 142, line -11: πG :M−→N .

Page 142, line 2: The ideals RadPi ⊕
⊕

j ̸=i Pj are only some of the maximal ideals of A. The argument should be
replaced with the following.

Write A = P1⊕· · ·⊕Pk as a direct sum of principal indecomposable modules. Then the modules RadPi⊕
⊕

j ̸=i Pj ,
for i = 1, 2, . . . , k, are maximal ideals of A. The intersection of these ideals is RadP1 ⊕ · · · ⊕ RadPk = RadA;
hence, the Jacobson radical of A is contained in RadA.

Conversely, suppose that M is a maximal ideal of A. Then A/M is simple so (RadA)(A/M) is either 0 or
A/M . However, RadA is nilpotent so (RadA)n = 0 for some n; therefore, (RadA)(A/M) = 0 since otherwise
A/M = 0. In particular, this shows that RadA ⊆ (RadA)A ⊆ M . Therefore, RadA is contained in every
maximal ideal of A; consequently, RadA is contained in the Jacobson radical of A. This completes the proof.

Page 151, line -1:

ei =
µi(1)

|G|
∑
g∈G

µi(g)g
−1.

APPENDIX B

Page 156: The adjustment matrix entry when n = 10 and e = p = 2 in the 5 × 5 matrix in row (6, 2, 12) and column
(42, 12) should be 1. In fact, this entry can be omitted because it is contained in the following 16× 16 matrix.


