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Abstract: We introduce the concept of penalized wavelets to facilitate seamless embedding
of wavelets into semiparametric regression models. In particular, we show that penalized
wavelets are analogous to penalized splines; the latter being the established approach to
function estimation in semiparametric regression. They differ only in the type of penal-
ization that is appropriate. This fact is not borne out by the existing wavelet literature,
where the regression modelling and fitting issues are overshadowed by computational
issues such as efficiency gains afforded by the Discrete Wavelet Transform and partially
obscured by a tendency to work in the wavelet coefficient space. With penalized wavelet
structure in place, we then show that fitting and inference can be achieved via the same
general approaches used for penalized splines: penalized least squares, maximum like-
lihood and best prediction within a frequentist mixed model framework, and Markov
chain Monte Carlo and mean field variational Bayes within a Bayesian framework. Pe-
nalized wavelets are also shown have a close relationship with wide data (“p > n”) re-
gression and benefit from ongoing research on that topic.

Keywords and Phrases: Bayesian inference, best prediction, generalized additive mod-
els, Gibbs sampling, maximum likelihood estimation, Markov chain Monte Carlo, mean
field variational Bayes, sparseness-inducing penalty, wide data regression.

1 Introduction

Almost two decades have passed since wavelets made their debut in the statistics liter-
ature (Kerkycharian & Picard, 1992). Articles that use wavelets in statistical problems
now number in the thousands. A high proportion of this literature is concerned with
the important statistical problem of nonparametric regression which, in turn, is a special
case of semiparametric regression (e.g. Ruppert, Wand & Carroll 2003; 2009). Neverthe-
less, a chasm exists between wavelet-based nonparametric regression and the older and
ubiquitous penalized splines-based nonparametric regression. In this article we remove
this chasm and show that wavelets can be used in semiparametric regression settings in
virtually the same way as splines. The only substantial difference is the type of penal-
ization. The standard for splines is an La-type penalty, whilst for wavelets sparseness-
inducing penalties, such as the L; penalty, are usually preferable. For mixed model and
Bayesian approaches, this translates to the coefficients of wavelet basis functions hav-
ing non-Gaussian (e.g. Laplacian) distributions, rather than the Gaussian distributions
typically used for spline basis coefficients.

Figure 1 depicts two scatterplots: one of which is better suited to penalized spline
regression, the other of which is more conducive to penalized wavelets. The data in the
left panels is generated from a smooth regression function and penalized splines with
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Figure 1: Left panels: penalized spline and penalized wavelet fits (shown in blue) to a smooth re-
gression function (shown in red). Right panels:penalized spline and penalized wavelet fits (shown
in blue) to a jagged regression function (shown in red). For each fit the penalization parameter is
chosen via generalized cross-validation, as described in Sections 2.4 and 3.4.

generalized cross-validation (GCV) choice of the penalty parameter (Section 2.4) appear
to perform adequately. Adoption of an analogous strategy for penalized wavelets results
in an overly rugged fit. The data in the right panels is generated from a jagged regression
function and the data are more amenable to penalized wavelet analysis.

As will be clear by the end of this section, penalized splines and wavelet scatterplot
smoothers are quite similar in the sense that each is simply a linear combination of basis
functions. Apart from the basis functions themselves, the only difference between penal-
ized splines and wavelets is the nature of the coefficient estimation strategy. However,
this commonality is not clearly apparent from the literatures of each, as they have evolved
largely independent of one another. The thrust of this article is putting penalized spline
and wavelets on a common ground and explaining that variants of the same principles
can be used for effective fitting and inference. One interesting payoff is semiparametric
regression models containing both penalized splines and penalized wavelets (Sections
5.2 and 5.3).

1.1 Aspects of wavelets best left aside in the context of this article

Readers who have no previous exposure to wavelets could proceed to the second last
paragraph of this section. Those who are are well-versed in wavelet theory and method-



ology are advised, in the context of the current article, to leave aside the following aspects
of the wavelet nonparametric regression literature:

e Mallat’s Pyramid Algorithm and the Discrete Wavelet Transform;

e the advantages of a predictor variable being equally-spaced and the sample size
being a power of 2;

e the coefficient space approach to wavelet nonparametric and semiparametric re-
gression;

e oracle and Besov space theory, and similar functional analysis theory.

We are not saying that these aspects of wavelets are unimportant. Indeed, some of them
play crucial roles in the computation of penalized wavelets — see Section 3.1 on wavelet
basis function construction. Rather, we are saying that these aspects have contributed to
the aforementioned chasm between wavelet- and spline-based nonparametric regression,
and thus has hindered cross-fertilization between the two areas of research. This is the
reason for our plea to leave them aside for the remainder of this article.

The only aspect of wavelets that is of fundamental importance for semiparametric
regression is that, as with splines, they can be used to construct a set of basis functions
over an arbitrary compact interval [a, b] in R, and that linear combinations of such basis
functions are able to estimate particular, usually jagged, regression functions better than
spline bases.

We believe that this viewpoint of wavelet-based semiparametric regression is superior
in terms of its accordance with regression modelling. That is: postulate models in terms
of linear combinations of basis functions, with appropriate distributional assumptions,
penalties and the like. But keep the numerical details in the background.

1.2 Relationship to existing wavelet nonparametric regression literature

The literature on wavelet approaches to nonparametric regression is now quite immense
and we will not attempt to survey it here. Books on the topic include Vidakovic (1999)
and Nason (2008). The penalized wavelets that we develop in the present article are
similar in substance to most wavelet-based nonparametric regression estimators already
developed. The reason for this article, as the title suggests, is to show, explicitly, how
wavelets can be integrated into existing semiparametric regression structures. A reader
familiar with the first author’s co-written expositions on semiparametric regression, Rup-
pert, Wand & Carroll (2003,2009), will immediately see how wavelets can be added to the
semiparametric regression armory.

Despite the absence of a literature survey, we give special mention to Antoniadis &
Fan (2001), which crystallized the penalized least squares approaches to wavelet non-
parametric regression and their connections with wide data, or “p > n”, regression. That
article, like this one, also proposed a way of handling non-equispaced predictor data.
Finally, we note that our adoption of the term penalized wavelets for our proposed new
wavelet regression paradigm is driven by the close analogues with penalized splines. This
term has made at least one appearance in the literature: Antoniadis, Bigot and Gijbels
(2007), although their penalized wavelets are more in keeping with classical wavelet non-
parametric regression.

1.3 Elements of penalized splines

Penalized splines are the building blocks of semiparametric regression models — a class
of models that includes generalized additive models, generalized additive mixed models,
varying coefficient models, geoadditive models, subject-specific curve models, among
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others (e.g. Ruppert, Wand & Carroll, 2003, 2009). Penalized splines include, as special
cases, smoothing splines (e.g. Wahba, 1990), P-splines (Eilers & Marx, 1996), and pseu-
dosplines (Hastie, 1996). A distinguishing feature of penalized splines is that the number
of basis functions does not necessarily match the sample sizes, and terminology such as
low-rank or fixed-rank smoothing has emerged to describe this aspect. The R (R Devel-
opment Core Team, 2011) function smooth.spline () uses a low-rank modification of
smoothing splines when the sample size exceeds 50. In the generalized additive (mixed)
model R package mgcv (Wood, 2010) the univariate function estimates use yet another
variant of penalized splines: low-rank thin plate splines (Wood, 2003).

In the early sections of this article we will confine discussion to the simple nonpara-
metric regression model, and return to various semiparametric extensions in later sec-
tions. So, for now, we focus on the situation where we observe predictor/response pairs
(x4,9i), 1 <i < n,and consider the model

yi = f(zi) +&i (1)

where the ¢; are a random sample from a distribution with mean zero and variance o2.

The regression function f is assumed to be “smooth” in some sense. There are numerous
functional analytic ways by which this smoothness assumption can be formalized. See,
for example, Chapter 1 of Wahba (1990). The penalized spline model for the regression
function f is

K
f@)=PBo+Pra+ ) upz(w)
k=1

where {z;(-) : 1 < k < K} is a spline basis function.

The coefficients 3y, 81 and u1, ..., ux may be estimated in a number of ways (Sec-
tion 2). The simplest is penalized least squares, which involves choosing the coefficients to
minimize

n K 2 K
Z{%ﬂoﬂlwizukzk(%)} +)\Zui )
i=1 k=1 k=1

where A > 0 is usually referred to as the smoothing parameter or penalty parameter.
The linear component 3y + (31 z is left unpenalized since the most popular spline basis
functions have orthogonality properties with respect to lines. However, there is noth-
ing special about lines, and other spline basis functions are such that other polynomial
functions of = should be unpenalized. The default basis for penalized wavelets that we
develop in Section 3.1 has only the constant component unpenalized.

Criterion (2) assumes that the z;(-) have been linearly transformed to a canonical form,
in that the penalty is simply a multiple of the sum of squares of the spline coefficients. For
many spline basis functions it is appropriate that the penalty is a more elaborate quadratic
form \ Zé{:l 25:1 Qprrugur where Qi depends on the basis functions. However, one
can always linearly transform the z(-) so that the canonical penalty X Zle uj is appro-
priate (see e.g. Wand & Ormerod, 2008, Section 4). Throughout this article we assume
that the z(+) are in canonical form.

1.3.1 Basis construction

At the heart of contemporary penalized splines are algorithms, and corresponding soft-
ware routines, for construction of design matrices for smooth function components in
semiparametric regression — but also for plotting function estimates over a fine grid,
and prediction at other locations in the predictor space. Algorithm 1 describes spline
basis construction in its most elementary form.

The most obvious and common use of Algorithm 1 is to obtain the zj(x;) values re-
quired for the fitting via the penalized least squares criterion (2). This involves setting
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Algorithm 1 Spline basis function construction in its most elementary form.

Inputs: (1) g = (g1, ..., 9m): vector of length M in the predictor space

(2) a < min(g) and b > max(g): end-points of compact interval [a, b]
over which basis functions are non-zero

(3) Knot locations k1, ..., kx

Inputs (2) and (3) are sufficient to define spline basis functions
zk(+), 1 < k < K, over the interval [a, b]

z1(g1) - zx(91)
Output: Z4 = : - :
z1(gm) -+ zx(gm)

(M x K design matrix containing the z;(-) evaluated at g)

g = (z1,...,xy,). The output matrix, usually denoted by Z, is then the n x K design ma-
trix containing the z;(z;). However, Algorithm 1 is also relevant for prediction at other
values of the x variable and for plotting estimates of f over a grid. For example, predic-
tion at ¢ = x,., would require a call to Algorithm 1 with g = z,.,, in which casea 1 x K
matrix containing the values of z;(Z...), 1 < k < K, would be returned. This matrix,
together with the estimated coefficients, could then be used to construct the prediction

f(xnew)'
Examples of Algorithm 1 include:

e the smooth.spline () function in R,

e the appendix of Eilers & Marx (1996) on a discrete penalty (P-spline) approach,
combined with the mixed model basis transformation described in Currie & Durbén
(2002),

e the d = 1 version of the algorithm described in Section 2 of Wood (2003),

e special cases of the general model for polynomial splines given in Section 4 of Wel-
ham et al. (2007),

e the O’Sullivan spline (O-spline) basis construction described in Wand & Ormerod
(2008) and Appendix A of the present article.

1.4 Proposed new penalized wavelet paradigm

The foundation stone for our proposed new paradigm for embedding penalized wavelets
into semiparametric regression is an algorithm, Algorithm 2, taking almost the same form
as Algorithm 1. A concrete version of Algorithm 2 is given in Section 3.1.

There are a few key differences between penalized wavelets and penalized splines:

1. computational considerations (see Section 3.1) dictate that once a, b and K are set,
there are no other options for basis function specification. Hence, the analogue of
knot placement is absent for penalized wavelets.

2. symmetry conditions dictate that the number of basis functions K should satisfy
K = 2L — 1 for some positive integer L, which denotes the number of levels in the
wavelet basis.



Algorithm 2 Wavelet basis function construction in its most elementary form.

Inputs: (1) g = (g1, ..., 9nm) (vector of M in the predictor space)

(2) a < min(g) and b > max(g) (end-points of compact interval [a, b]
over which basis functions are non-zero)

(3) K = 2% — 1, L positive integer

(These inputs are sufficient to define wavelet basis functions
zk(+), 1 < k < K, over the interval [a, b])

z1(g1) - zx(91)
Output: Z4 = : . :
z1(gm) -+ zx(gm)

(M x K design matrix containing the z;(-) evaluated at g)

3. the unpenalized companion of Z consists of a constant rather than linear function of
the z;s.

4. the coefficients of the basis functions in Z are subject to a sparseness-inducing penalty
such as the L; penalty.

Section 3.1 gives details on computation of Z.
The third and fourth of differences imply that, instead of (2), we work with a penal-
ized least squares criterion

n

K 2
Z{yi—ﬁo—zukzk(%)} + pa(lukl) 3)
k=1

=1

where p) induces a sparse solution, i.e. a solution for which many of the fitted ;s are
exactly zero. The simplest choice is p)(z) = Az, corresponding to L; penalization. How-
ever, as discussed in Section 3.2, several other possibilities exist. As alluded to in An-
toniadis & Fan (2001), there is a lot of common ground between wavelet regression and
wide data regression where the number of predictors exceeds the number of observa-
tions, and often labelled “p > n” regression. This connection is particularly strong for
the penalized wavelet approach developed in the current article since we work with de-
sign matrices containing wavelet basis functions evaluated at the predictors. This means
that the mechanics of fitting penalized wavelets is similar, and sometimes identical, to
that used in fitting wide data regression models.

1.5 Common ground between penalized splines and penalized wavelets

The establishment of a wavelet basis algorithm for penalized wavelets puts them on the
same footing as splines. For the nonparametric regression problem (1), the fitted values
are

f=XB+Zu (4)

where X = [1 «] for penalized splines and X = 1 for penalized wavelets. In both cases,
Z is an n x K matrix containing either K spline or K wavelet basis functions evaluated at



the x;. To re-affirm the fact that penalized wavelets are such close relatives of penalized
splines we will use the

{z1(),- 526 ()}

notation for the K basis functions over [a, b] for both splines and wavelets, and only call
upon distinguishing notation when there is a clash.
The only substantial difference between penalized splines and penalized wavelets is

in the determination of the coefficients 3 and . Sections 2 and 3 lay out the differences
and similarities for several fitting methods.

1.6 Outline of remainder of article

The remainder of this article is structured as follows:

2. Recap of Penalized Spline Fitting and Inference
2.1 Default basis

2.2 Fitting via penalized least squares

2.3 Effective degrees of freedom

2.4 Penalty parameter selection

2.5 Fitting via frequentist fixed model representation

2.6 Fitting via Bayesian inference and Markov chain Monte Carlo

2.7 Fitting via mean field variational Bayes
3. Penalized Wavelet Fitting and Inference

3.1 Default basis

3.2 Fitting via penalized least squares

3.3 Effective degrees of freedom

3.4 Penalty parameter selection

3.5 Fitting via frequentist mixed model representation

3.6 Fitting via Bayesian inference and Markov chain Monte Carlo

3.7 Fitting via mean field variational Bayes
4. Choice of Penalized Wavelet Basis Size
5. Semiparametric Regression Extensions

5.1 Non-Gaussian response models
5.2 Additive models
5.3 Semiparametric longitudinal data analysis

5.4 Non-standard semiparametric regression
6. R Software

7. Discussion

Note that Sections 2 and 3 have exactly the same subsection titles. These two sections
are central to achieving our overarching goal of showing that penalized wavelet analysis
can be performed in the same way as penalized spline analysis. Admittedly, most of
the content of Section 2 has been described elsewhere. However, putting the various
penalized spline analysis approaches in one place allows us to show the strong parallels
between penalized splines and penalized wavelets.

Section 4 discusses the issue of choosing the number of penalized wavelet basis func-
tions. We argue that this number should be of the form 2% — 1 where the integer L corre-
sponds to the number of levels in the wavelet basis function hierarchy, and provide some



suggestions for the choice of L. In Section 5 we discuss a number of semiparametric
regression extensions of penalized wavelets including non-Gaussian response models,
additive models and models for analysis of longitudinal data. R software relevant pe-
nalized wavelet semiparametric regression described in Section 6. Closing discussion is
given in Section 7.

2 Recap of Penalized Spline Regression Fitting and Inference

We now provide brief descriptions of the various ways by which the nonparametric re-
gression model (1) can be fitted when f is modelled using penalized splines:

K
f@)=Po+ B+ upz(z)
k=1

where {z1(-),...,2x(-)} is a set of spline basis functions appropriate for the linear com-
ponent 3y + (1 « being unpenalized. Default choice of the z(-)s is described in Section
2.1

The following notation will be used throughout this section:

Y1 u1 1 =z z1(z1) -+ zr(z1)
1
Yn UK 1 =z, Zl(xn) ZK(xn)
0O 0 O
C=[XZ] and D=|0 0 O
0 0 Ik

with Ik denoting the K x K identity matrix and 0 denoting a matrix of zeroes of appro-
priate size.

2.1 Default basis

For practice, it is prudent to have a default version of Algorithm 1. We believe that the
B-spline basis and penalty set-up of O’Sullivan (1986) is an excellent choice. It may be
thought of as a low-rank version of smoothing splines (e.g. Green & Silverman, 1994) and
is used in the R function smooth.spline () when the sample size exceeds 50. Wand
& Ormerod (2008) describe conversion of the B-splines to canonical form. Appendix A
provides details on the construction of the O’Sullivan penalized spline basis, or O-splines
for short. Figure 2 shows the canonical O-spline basis functions with 25 equally-spaced
interior knots on the unit interval.

2.2 Fitting via penalized least squares
The penalized spline criterion (2) has the matrix representation:
ly = X8 — Zu|* + Alul*. (5)

Noting that, in terms of C and D, the criterion equals

2 T
e [2]] (2] o[
u 7 u
the following solution is easily obtained:
[ o ] — (CTC +AD)"'CTy, (6)
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Figure 2: Canonical O-spline basis functions for 25 equally-spaced interior knots on the unit
interval.

The vector of fitted values is then
INED 3

B o |=ell]. 7)
f)\ (xn)

2.3 Effective degrees of freedom

The effective degrees of freedom (edf) of a nonparametric regression fit is defined to be the
following function of the penalty parameter A:

edf(\) = % S Cov(Fi (i), ). ®)
=1

SR —

It provides a meaningful and scale-free measure of the amount of fitting (Buja, Hastie &
Tibshirani, 1989). Definition (8) has its roots in Stein’s unbiased risk estimation theory
(Stein, 1981; Efron, 2004). If the vector of fitted values can be written as ? y = Syy for
some n x n matrix not depending on the y;s (known as the smoother matrix) then

edf(\) = tr(S)). )

For the penalized least squares fit (7) it follows from (6) and (7) that S, = C(CTC +
AD)~1C?, which leads to the expression

edf(\) = tr{(CTC + A\D)"'C*C}

Figure 3 shows penalized spline fits to some simulated data with four different edf(}).
Setting edf(\) too low results in underfitting of the data, whilst excessively high edf(\)
produces overfitting. For these data, edf(\) = 12 achieves a pleasing fit.
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Figure 3: Penalized spline fits to a simulated data set with four different values of the effective
degrees of freedom edf(\).

2.4 Penalty parameter selection

In the nonparametric regression literature there are numerous proposals for selection of
the penalty parameter from the data. Many of these involve trade-offs between edf(\)
and the residual sum of squares (RSS)

RSS()) = [ly — £all>.

Examples of popular penalty parameter selection criteria of this type are Generalized
Cross-Validation,

GCV(A) =RSS(A)/[{n — edf()\)}2]
(Craven & Wahba, 1979) and corrected Akaike’s Information Criterion,

2{edf()\) + 1}

AICc(N) = log{RSS(A\)} + n —edf(\) — 2

(Hurvich, Simonoff & Tsai, 1998).

Another option for selection of A is k-fold cross-validation, where k is a small number
such as 5 or 10 (e.g. Hastie, Tibshirani & Friedman, 2009, Section 7.10.1). This selection
method is defined, and computationally feasible, for general estimation methods and loss
functions.
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2.5 Fitting via frequentist mixed model representation
The frequentist mixed model representation of (5) is
ylu ~ N(XB+ Zu,0o2I), u~ N(0,021I). (10)

(e.g. Ruppert et al. 2003, Section 4.9). According to this model, the log-likelihood of the
model parameters is

UB, oy, 02) = —5 {nlog(2n) +log|V| + (y — XB)'V ! (y — XB)}

where
V =V(o2 0%) =Cov(y) =02ZZ" + oI

us Te
At the maximum we have the relationship
B=XTvIX)'XxTvly (11)
which leads to the profile log-likelihood
lp(os,02) = -1 [log|V]+y"V H{I - X(XTV'X) ' XTV 1} y] — 2 log(2n).
The modified profile log-likelihood, also known as the restricted log-likelihood, is
Cr(oy,02) = Cp(oy,02) — 3log | XTVIX|

and is usually preferred for estimation of the variance parameters o2 and 2. Such es-
timators, which we denote by 52 and o2, are known as restricted maximum likelihood
(REML) estimators. Define

V=5227" +5I.

Then, in view of (11), an appropriate estimator for 3 is

o~

B=(XTV 'x)'XTV 'y
For estimation of u we appeal to the fact that its best predictor is
E(uly) =a2Z"V ' (y - X )
and then plug in the above estimates to obtain
=522V (y - XP).

In summary:

e 02 and o? are estimated by maximum likelihood or restricted maximum likelihood,

e (is estimated by maximum likelihood,

e u is estimated via best prediction.

In practice, the second and third of these involve replacement of o2 and o2 with the
estimates 52 and 52.
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2.6 Fitting via Bayesian inference and Markov chain Monte Carlo

Bayesian approaches to penalized splines have been the subject of considerable research
in the past decade. See, for example, Sections 2.3, 2.5 and 2.7 of Ruppert et al. (2009).
Wand (2009) describes a graphical models viewpoint of penalized splines and draws upon
inference methods and software from that burgeoning area of research. We make use of
such developments in this and the next subsections.

A Bayesian penalized spline model, corresponding to least squares penalization of u,
is:

y|B,u,0. ~ N(XB+ Zu,0I), wu|o, ~ N(0,021),
(12)
B~ N(0, aﬁI ), oy~ Half-Cauchy(A4,), o, ~ Half-Cauchy(A.).

The notation o ~ Half-Cauchy(A) means that ¢ has a Half Cauchy distribution with scale
parameter A > 0. The corresponding density function is p(c) = 2/[xr A{1+(c/A)?}], 0 >
0. As explained in Gelman (2006), Half-Cauchy priors on scale parameters have the abil-
ity to achieve good non-informativity.

Approximate inference via Markov chain Monte Carlo (MCMC) is aided by the dis-
tribution theoretical result:

o ~ Half-Cauchy(A) if and only if
(13)
0% a ~ Inverse-Gamma(3,1/a) and a ~ Inverse-Gamma(s,1/A?)

(e.g. Wand et al. 2011). Here 0 ~ Inverse-Gamma(A, B) denotes that o2 has an Inverse
Gamma distribution with shape parameter A > 0 and rate parameter B > 0. The Inverse

Gamma density function is p(c?) = % (02)~A-Le=B/o* 52 5.
Employment of (13) results in the following equivalent representation of (12):

y|B,u,02 ~ N(XB + Zu,02I), wu|o2~ N(0,021),
o2 a, ~ Inverse-Gamma(3, 1/a,), 02|a. ~ Inverse-Gamma(3,1/a.), (14)

B~ N(0,031), a, ~ Inverse-Gamma(3,1/A?), a. ~ Inverse-Gamma(3, 1/A2).

Figure 4 shows the directed acyclic graph (DAG) corresponding to (14).
In this Bayesian inference context, the most common choice for the vector of fitted
values is the posterior mean

f=E(XB+ Zuly) = X E(Bly) + Z E(uly).

The posterior distributions of 3 and u, as well as the scale parameters o, and o, are
not available in closed form. However, the full conditionals can be shown to have the

following distributions:
—9 -1
N( <052CTC + [ UBO d 0__021— ]) o 2Cly,

[5]‘rest
_92 -1
o NT oz;°I 0
(e [0 0]) )

olrest ~ Inverse-Gamma (3(K + 1), 5|lul® +ay!),

2

ollrest ~ Inverse-Gamma (3(n+1),3|ly — XB — Zu|®> +al),
aylrest ~ Inverse-Gamma (1,0,2 + A,?)

and aclrest ~ Inverse-Gamma (1,072 + AZ?).
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Figure 4: Directed acyclic graph representation of the auxiliary variable Bayesian penalized spline
model (14). The shaded node corresponds to observed data.

Here ‘rest” denotes the set of other random variables in model (14). Since all full condi-
tional are standard distributions Gibbs sampling, the simplest type of MCMC sampling,
can be used to draw samples from the posterior distributions (see e.g. Robert & Casella,
2004).

The DAG in Figure 4 is useful for determination of the above full conditional distri-
butions. This is due to the fact that the full conditional distribution of any node on the
graph is the same as the distribution of the node conditional on its Markov blanket (e.g.
Pearl, 1988). The Markov blanket of a node consists of its parent nodes, co-parent nodes
and child nodes.

2.7 Fitting via mean field variational Bayes

Mean field variational Bayes (MFVB) (e.g. Attias, 1999, Wainwright & Jordan, 2008) is a
deterministic alternative to Markov chain Monte Carlo which allows faster fitting and
inference. In certain circumstances MFVB can be quite accurate and there is prima facie
evidence that such is the case for the Bayesian penalized spline model (14). Moreover,
MFVB algorithms are often very simple to implement. Each of the MFVB algorithms in
the present article involve straightforward algebraic calculations. In Ormerod & Wand
(2010) we explained MFVB using statistical examples similar to those presented here.
For (14) we start by restricting the full posterior density function

p(/B7u70'12uO-527a’M7a6‘y> (15)

to have the product form
a(8,w, 07, 02) = a(B,u) a(77, 02) g(au, ac) (16)

where ¢ denotes a density function over the appropriate parameter space. Let ¢* denote
the optimal ¢ densities in terms minimum Kullback-Leibler distance between (15) and
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(16). Then, as shown in Appendix C,

¢*(B, u) is a Multivariate Normal density function,

q*(c2), ¢*(0?), q¢*(ay) and ¢*(a.) are each Inverse Gamma density functions.

(17)

Let py(3.4) and X3 denote the mean vector and covariance matrix for ¢*(3,u) and
Ag(o2) 4(02) denote the shape and rate parameters for ¢*(o7.). Apply similar defi-
nitions for the parameters in ¢*(02), ¢*(a,) and ¢*(a:). Then the optimal values of these
parameters are determined from Algorithm 3.

Algorithm 3 Mean field variational Bayes algorithm for the determination of the optimal param-
eters in ¢*(B,w), ¢*(02), and q* (o) for the Bayesian penalized wavelet model (14)

Initialize: y1q(1/62)s Hq(1/03)s Ha(1/ac): Ha(1/an) > 0-
Cycle:

—92 -1
I, 0
I 2 CTC + | 78 D
a(Bu) (Mqu/ 2) 0 e Ix

Ha(Bu) < Ha(1/02) Za)C" Y

Hg(1/as) — 1/ bqu/o2) + A2} 5 Hg(jan) — 1V Algay02) + 402}
Byo2) — 5 {1k I* + tr(Sq(u)} + Hq(1/an)

Byo2) — 31y = Chrypu|” +tr(CTCZq(g.u)} + Hg(1/a.)
Ha/o2) < 3K +1)/Byozy 5 Hea/o2) < 3(n+1)/Byioz)

until the increase in p(y; q) is negligible.

The lower bound on the marginal log-likelihood is
log p(y;q) = %(K +2)— %nlog(27r) — 2log(m) + log F(%(K +1)+ logf(%(n +1))
—log(03) — log(Ay) — log(A.) — ﬁ{!\uq(mlp +tr(Zq0)}
+3 108 [Bq(g)| — 5 (K + 1) log{Byoz)} — 3(n +1)log{By(u2)}
—108(Hq(1/02) + Ay ") = logq(1/02) + AT?) + Ho(1/02) (1 /a)
THq(1/02)Hq(1/ac)

Figure 5 illustrates Bayesian penalized spline regression using both the MCMC and
MEFVB approaches described in this and the preceding subsections. The data were gener-
ated according to

y; = 3sin(2mx?) + &

with the z;s uniformly distributed on (0,1) and ¢; "¢ N(0,1). Here and elsehwere *

stands for “independently distributed as”. For the MCMC approach, samples of size
10000 were generated. The first 5000 values were discarded and the second 5000 values
were thinned by a factor of 5. For the MFVB approach the iterations were terminated
when the relative change in log p(y; ¢) fell below 10~1°. For this example the MCMC and
MFVB fits and pointwise 95% credible sets are almost indistinguishable, suggesting that
MFVB achieves high accuracy for Gaussian response Bayesian penalized spline regres-
sion.

Finally, we mention that the Bayesian penalized spline model treated here can be
titted via MFVB using the InferNET computing environment (Minka, Winn, Guiver &
Knowles, 2010). Wang & Wand (2011) provide illustration of such implementation.

14



MCMC output for log(a;) lower bound on marginal log-likelihood
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Figure 5: Left panels: MCMC output for fitting Bayesian penalized spline model to simulated
data. The upper left panel is for log(o.). The lower left panel is for the estimated function at the
median of the x;s. Upper right panel: successive values of log p(y; q) to monitor convergence of
the MFVB algorithm. Lower right panel: Fitted function estimates and pointwise 95% credible
sets for both MCMC and MFVB approaches.

3 Penalized Wavelet Regression Fitting and Inference

This section parallels the previous with wavelets replacing splines. As we shall see, the
approaches to fitting and inference are similar in many respects. The only substantial
difference is the type of of penalization.

Consider, again, the nonparametric regression model (1) but with with the smooth-
ness assumption on f relaxed somewhat to allow for jumpier and spikier regression func-
tions. Donoho (1995), for example, discusses quantification of such relaxed smoothness
assumptions via functional analytic structures such as Besov spaces. For the remainder
of the present article we will simply say that f is a jagged function and refer the reader
to articles such as Donoho (1995) for mathematical formalization. For such jagged f we
consider penalized wavelets models of the form:

K
F@) =P+ upzi()
=1

where {z;(-) : 1 < k < K} is an appropriate set of wavelet basis functions. Default choice
of the zx(+)s is described in Section 3.1.
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The following notation will be used throughout this section:

Y1 ug 1 z1(w1) -0 zg(x1)
Yn UK 1 21 (xn) tee ZK(-Tn)

and C = [X Z]. The B vector and X matrix correspond to constants being unpenal-
ized. We continue to use such notation to allow easier comparison and contrast between
penalized wavelets and splines.

3.1 Default basis

In this section we begin to fill in the missing details of Algorithm 2.

The assembly of a default basis for penalized wavelets relies on classical wavelet con-
struction over equally-spaced grids on [0, 1) of length R, where R is a power of 2. Let the
functions {z/(-) : 1 < k < R — 1}, each defined on [0, 1), be such that

W =R?[1 21 () hi<i<r (18)
1<k<R-1
where W is an R x R orthogonal matrix known as a wavelet basis matrix. We also insist
that, for any fixed k, the z;/(-) do not depend on the value of R. Hence, if R is increased
from 4 to 8 then the functions z{ (-), 2§ (-) and 2§ () remain unchanged. The “U” super-
script denotes the fact the 2} are only defined over the unit interval.

If y is an R x 1 vector of responses then it may be represented in terms of W as

y=W~o
where, using the orthogonality of W,
0=WTw)" "Wy =wTy. (19)

A fast O(R) algorithm, known as the Discrete Wavelet Transform, exists for determina-
tion of 6. If y corresponds to a signal contaminated by noise then a common denoising
strategy involves annihilation or shrinkage of certain entries of 6. This is not the gen-
eral approach to wavelet-based regression being studied in the present article and is only
mentioned here to relate the W matrix to the established wavelet literature. Later in this
section we will use (18) for computation of default penalized spline basis functions.

Until the mid-1980s the only known choice of z;/(-) having compact support over ar-
bitrarily small intervals was the piecewise constant Haar basis. Starting with Debauchies
(1988), many continuous and arbitrarily smooth z;/(-) have been discovered and allowed
efficient approximation of jagged functions. Each of the z/(-), 1 < k < R — 1, are shifts
and dilations of a single (“mother”) wavelet function. Figure 6 shows four wavelet
functions from the basic Daubechies family. The numbers correspond to the amount
of smoothness. In the R package wavethresh (Nason, 2010) this is referenced using
family="DaubExPhase" and the smoothness number is denoted by filter.number.
Note, however, that the Daubechies wavelet functions do not admit explicit algebraic ex-
pressions and can only be constructed via recursion over equally-spaced grids of size
equal to a power of 2.

The z//(-) basis functions with the same amount of dilation, but differing shift, are
said to be on the same level. The number of basis functions at level ¢ is 2! for each of
¢ =1,...,logy(R). Our default basis definition requires that we impose the following
ordering on the z/(:),1 <k < R —1:

e 21 () is the single function on level 1
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Figure 6: Daubechies “mother” wavelets with smoothness values 2,3,4 and 5.

e 2(-) and z3(-) are on level 2, with ordering from left to right in terms of the support
of the functions.

e Continue in this fashion for levels 3, . . ., logy(R).

Figure 7 shows the z;/ functions generated by the Daubechies 5 wavelet with resolution
R =16.

Let a and b be the end-point parameters defined in Algorithm 2 and K = 2 — 1 be
the required number of basis functions. We propose that default penalized wavelet basis
functions take the form:

() = 2V (i_;) 1<k<K.

where the z/s are as in (18). We see no compelling reason to choose z; from outside the
basic Daubechies family. A reasonable default for the smoothness number is 5.

It remains to discuss computation of 2!/ (z) for arbitrary = € [0,1). This simply in-
volves choosing R to be a very large number such as R = 2! = 16384 and then approxi-

mating via zg(a:) linear interpolation over the grid 0, %, cee %. Specifically,

F (@) ~ {1 = @R — [oR)}f ([oR) /R) + (oR — [R))2f ([2R) + 1)/ F)

where 27 (1) = 2{(£1). All required calculations can be performed rapidly using the
Discrete Wavelet Transform and without explicit construction of the W matrix. An R
function that performs efficient default basis function computation is given in Appendix
A.

Figure 8 illustrates approximation of the z;” functions for K = 15. The top-left panel
shows values of z; over a coarse grid with resolution R = 16. As R increases to 32, 64
and 128 the number of z; functions increases to R — 1 and there is successive doubling of
the resolution of the first 15 z/(-) that are needed for the penalized wavelet basis.

Figure 9 shows the default basis functions for varying values of K = 2 — 1. A signif-
icant aspect of the basis functions, apparent from Figure 9, is their hierarchical nature. To
move from L = I to L = L’ + 1 one simply adds 2/ new basis functions corresponding
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Figure 7: Debauchies 5 z;(-) functions for R = 16, with ordering as prescribed in the text. The
constant function, corresponding to the first column of the W matrix, is also shown.

to dilations of the highest level basis functions at level L. This means that, for example,
the basis functions for L = 7 are also present for L = 4,5, 6.

The use of penalized wavelet bases with the hierarchical structure is predicated on the
belief that, for many signals of interest, higher-frequency basis functions can be ignored
and that L can be set at a number considerably lower than log,(n). In the penalized
spline literature Hastie (1996) and Ruppert, Wand & Carroll (2003, Section 3.12) justify
the omission of higher-frequency basis functions using the eigen-decomposition of the
smoother matrix and the term low-rank, corresponding to the rank of the smoother matrix,
is often used to describe this aspect of penalized splines.

We have constructed an example which suggest that the low-rank argument also ap-
plies to penalized wavelets. Consider the case of noiseless regression data generated
according to

Yi = fwo(wi), 1<i<n,

where z; = (i — 1)/n, n = 2'2 = 4096 and the function fyo, introduced in this article and
named after the initials of the authors’ surnames, is given by

fuolz) = 18[ 2(1 — 2)sin(1.67/(z + 0.2)) + 0.4 I(z > 0.13)
C0.71(0.32 < = < 0.38) + 0.43{(1 — |(z — 0.65)/0.03)).}*  (20)
10.42{(1 — |(z — 0.91)/0.015])+}4], 0<z< 1.

Here, and elsewhere, I(P) = 1 if P is true and zero otherwise. Let C; = [1 Z] be
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Figure 8: Illustration of accurate approximation of z; for K = 15. In each panel the z; for
1 < k < 15 are coloured, whilst z;| for k4+1 < k < R — 1 are grey. As R increases the accuracy
with which the coloured functions can be approximated also increases.

the design matrix consisting of a column of ones for the constant term and our default
wavelet basis functions evaluated at the z;s. Figure 10 shows the least squares regression
fits

y=Cr(CiCL) 'Cly

and corresponding R? values. Notice the diminished returns as measured by R? when L
is increased. An R? of 99.0% is achieved with only 27 — 1 = 127 wavelet basis functions.
It appears that that L = 8 (K = 255) is adequate for recovery for this particular signal,
regardless of the sample size.

3.2 Fitting via penalized least squares
A generalization of the penalized spline criterion (5) is

K

ly — X8 = Zul> + Y px (|uxl) 21)
k=1

where p(-) is a non-decreasing function on [0,00). For penalized splines, the choice
pa(z) = A2? is usually adequate, and has the advantage of admitting the closed form
solution (6). For wavelets, a more appropriate choice is py () = Az since the corre-
sponding L; penalty invokes a sparse solution. The L; penalty corresponds to the least
absolute shrinkage selection operator (LASSO) (Tibshirani, 1996) applied to the basis func-
tions. Algorithms for solving (21) when py(z) = Az are given in Osborne, Presnell &
Turlach (2000) and Efron et al. (2004). The algorithm in Efron et al. (2004) efficiently
computes the solutions over a grid of X values.
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Figure 9: Default penalized wavelet bases with varying values of K = 2& — 1.

There are several other possible contenders for p,(-). These include

Azl g <1, bridge penalty
) A= (=N I(x < N, hard thresholding penalty
) = SCAD(z; A\ a), a>2, smoothly clipped absolute deviation (SCAD) penalty
A fy(A—t/a)pdt, a>0, minimax concave penalty
(22)
where

22— 2a\x + \?
2(a—1)

SCAD(z; M\, a) = Az l(z < \) — IN <z <a))+3(a+ DI\ I(z > a)).
In each case p)(z) is non-convex in . Primary references for each of the penalties in (22)
are, in order, Frank & Friedman (1993), Donoho & Johnstone (1994), Fan & Li (2001) and
Zhang (2010).

Antoniadis & Fan (2001) study the properties of wavelet nonparametric regression
estimators for several such penalties. In particular, they provide a theorem that links the
shape of p) to the properties of the penalized least squares solution. The essence of this
result is that non-convex penalties are sparseness-inducing. This sparseness property al-
lows penalized wavelets to better handle jumps and jagged features. Figure 12 in Section
3.4 displays penalized least squares fits for three choices of p,.
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Figure 10: Illustration of the ability of penalized wavelet basis functions with number of levels
L < logy(n) to estimate the fyo function. In this case n = 2'2 = 4096 and the data are observed
without noise. Ordinary least squares is used for the fitting and the resultant R? value is shown.

3.3 Effective degrees of freedom

Penalized least squares with non-quadratic penalties does not lead to an explicit expres-
sion for the fitted values f,\(xl) which means that the effective degrees of freedom edf(\),
given by (8), is generally not tractable. In particular, Fr(z;) is not a linear in the y;s and
(9) no longer applies. However Zou, Hastie & Tibshirani (2007) derived an unbiased es-
timator for edf(\) in the case of the L, or LASSO, penalty. For penalized wavelets their
results lead to the following estimated effective degrees of freedom:

e/cIf()\) = 1 + (number of non-zero u;s when the penalty parameteris \).  (23)

Zou et al. (2007) also point out that e/ch()\) is not unbiased for other penalties such as
SCAD. Hence, effective degrees of freedom estimation is an open problem for penalized
wavelet with non-L; penalization.

Figure 11 shows four Li-penalized wavelet fits to data simulated according to

Yi = fwolxi) + €i, 1 <4 < 2000,

ind.

where the z;s are uniformly distributed on the unit interval and ¢; ~ N(0, 1). For this

example it is seen that e/af(/\) = 100 is the most visually pleasing among the four fits.
This is much larger than the best edf(\) value of 12 for the example in Figure 3, and is to
be expected given the complexity of the signal.
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Figure 11: Penalized wavelet fits to a simulated data set with four different values of the estimate
effective degrees of freedom edf(\).

Figures 1 and 11 each include at least one visually pleasing penalized wavelet fit to
simulated data sets. However, in each case, the error variance is relatively small and the
sample size is quite large. If the error variance is increased by even a modest amount,
whilst keeping the sample size fixed, then the quality of the penalized wavelet fit tends
to deteriorate quite quickly in comparison with penalized splines. This phenomenon
has been observed in the wavelet nonparametric regression literature. See, for example,
Figure 6 of Marron et al. (1998).

3.4 Penalty parameter selection

As discussed in Section 2.3, many popular smoothing parameter selection methods trade
off residual sum of squares against effective degrees of freedom. The same principle
can be translated to penalized wavelets using the estimated effective degrees of freedom
described in Section 3.3. For example, (23) suggests the estimated generalized cross-
validation criterion: o e

GCV()\) = RSS(\)/[{n — edf(N)}?],

for selection of A. In the case of L; penalization, the use of e/ch()\) in GCV (A) is justified

by the theory of Zou et al. (2007). For other types of penalization, use of GCV (M) is
somewhat tenuous. As mentioned in Section 3.4, k-fold cross-validation is always an
option for selection of A.
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In Figure 12 we display three automatic penalized wavelet estimates for regression
data of size n = 500 simulated from (20) with N (0, 1) noise added. The estimates were
obtained using (1) L; penalization with A chosen to minimize GCV (A), (2) SCAD penal-
ization with A chosen via 10-fold cross-validation (CV) and (3) minimax concave penal-
ization with A chosen the same way. For these data, the estimates are seen to be quite
similar. The R software used to produce Figure 12 is discussed in Section 6.

SCAD penalty with A minimax concave penalty with
A chosen via 10-fold CV

L, penalty with A chosen via GCV chosen via 10—fold CV

—— estimate
—— truth

Figure 12: Automatic penalized wavelet fits to the fio mean function with L, penalization and

GCV penalty parameter selection (left panel), SCAD penalization with 10-fold cross-validation
penalty parameter selection (middle panel) and minimax concave penalization with 10-fold cross-
validation penalty parameter selection (right panel). In each panel, the estimate is shown in blue
and the true regression function is shown in red.

3.5 Fitting via frequentist mixed model representation

Penalized wavelet analogues of (10) take the general form
ylu ~ N(XB+ Zu,o2I), uk|0u,0%‘p(uk;au,0). (24)

where p(-; 0y, 0) is a symmetric density function with scale parameter o,, and shape pa-
rameter . There are numerous options for the choice of this density function. Some of
them are:

p(u;l) = gexp(-|ul) (Laplace)
pu;Lw) = w{fexp(—|ul)} + (1 — w) do(u) (Laplace-Zero mixture)
p(u;1) = (27%)"Y2exp(u?/2)(~1)Ei(—u2/2) (Horseshoe) (25)
A 1
pu;1,A) = W exp(u?/4) D_oy_1(Ju])  (Normal-Exponential
-Gamma)

The Laplace density is an obvious candidate because of its connection with L; penaliza-
tion. Johnstone and Silverman (2005) make a strong case for the use of penalty densi-
ties such as the Laplace-Zero mixture family. The Horseshoe and Normal-Exponential-
Gamma density functions correspond to non-convex penalization and have been pro-
posed in the wide data regression literature by, respectively, Carvalho, Polson & Scott
(2010) and Griffin & Brown (2011). The definitions involve the special functions Ei, the
exponential integral function, and D,, the parabolic cylinder function of order v. For
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Figure 13: Plots of the density functions listed in (25).

these special functions, we follow the definitions used by Gradshteyn & Ryzhik (1994).
Figure 13 plots the density functions listed at (25).

We now focus attention on the first and simplest of these penalty density function,
the Laplace. Note the penalized least squares estimator of u with L; penalty A Zle |ug|
corresponds to the conditional mode of u given y. The best (mean squared error) predictor
of u is the conditional mean:

Jire wexpl— gt ([ Zul]? — 2u” 2" (y — XB)} — 117 |ul du
Jire o[ {1 Zul? —2uTZ7(y — XB)} — A 17 ufl du |

i = B(uly) =

For general Z this expression for u cannot be reduced any further. However, if
ZTZ = a®I for some constant a > 0 (26)

then a closed form expression for u materializes. Appendix B contains the details. Whilst
(26) does not hold for general regression data sets, it holds approximately when the z;s
are close to being equally spaced or uniformly distributed. It holds exactly when n is
a power of 2 and the z;s are equally spaced with ¢ = min(z;) and b = {nmax(z;) —
min(x;)}/(n — 1). Hence, the formulae in Appendix B could be used to perform approxi-
mate best prediction of u and maximum likelihood estimation of 3, 0. and o,.

The quality of penalized wavelet regression according to frequentist mixed model
approaches, such as that using the formulae in Appendix B, is yet to be studied in any
depth. Apart from the fact that viability relies on conditions such as (26) approximately
holding, there is the concern that the non-sparseness of the wavelet coefficient estimates
may result in overly wiggly fits. In Sections 3.6 and 3.7 it is seen that Bayesian computing
methods, MCMC and MFVB, with the random effects density containing a point mass at
zero, such as the Laplace-Zero density, overcome this problem.
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3.6 Fitting via Bayesian inference and Markov Chain Monte Carlo

Penalized wavelet analogues of (12) take the generic form:

y|B,u,0c ~ N(XB+ Zu,02I), up|ou, 0 ™ plu|ou, 0r),
(27)
B~ N(0,03I), o0, ~ Half-Cauchy(A,), o. ~ Half-Cauchy(A.),

where, p( |0y, 8) could be any of the random effects density functions contemplated in
Section 3.5 such of those listed in (25) and displayed in Figure 13. (Note the use of the
vertical line (|) rather than a semi-colon (;) since o, and 8 and now random.) In (27) we
have not specified the form of the prior distribution on the shape parameter ;. This may
be a fixed distribution, or involve further hierarchical modelling.

We have experimented with the choice of p(- |0y, 0y). The choice corresponding to
Ly, or LASSO-type, penalization is the Laplace density function

plur|ow) = (200) ™" exp(—|ux|/on) (28)

but the Bayes estimator of u is not sparse and, as a consequence, the resulting fits tend
to be overly wiggly. However, sparse solutions are produced by a Laplace-Zero mixture
density function

p(ur| ou, pi) = pr (200) " exp(—|ug|/ow) + (1 — pr) do(ur) (29)

where the pj, are random variables over [0, 1]. Such priors are advocated by Johnstone &
Silverman (2005). These authors also provide theoretical justification for use of (29). The
fact that E(u|y) is often exactly zero translates to better handling of jumps and sharp
features in the underlying signal. Hence, for the remainder of this article we work with
(29) for Bayesian penalized wavelets. Concurrent doctoral thesis research by Sarah E.
Neville, supervised by the first author, is investigating the performance of the Horseshoe
and Normal-Exponential-Gamma priors in this wavelet context.

MCMC handling of (29) is aided by introducing specially tailored auxiliary variables
v, Vi and by. Suppose that u;, = vy, v, where

Yelpr ™ Bernoulli(pg), wklbx '~ N(0,02/b;) and by, ~ Inverse-Gamma(1, 3).

Then, courtesy of elementary distribution theory manipulations, uy|p; has density func-
tion (29). Because v}, is conditionally Gaussian, it is advantageous to work with the pairs
(vg, k) rather than (ug, vk ) in the MCMC sampling strategy. As in Section 2.6 we use (13)
to allow easier handling of the Half-Cauchy priors on ¢, and o.. Let a © b denote the ele-
mentwise product of equi-sized vectors a and b and diag(b) be the diagonal matrix with
diagonal entries corresponding to those of b. The full model, with appropriate auxiliary
variables, is then

ylB, v, 02 ~ N(XB+ Z(y O v),02I), wv|og, b~ N(0,07 diag(b)™"),

02| a, ~ Inverse-Gamma(3,1/a,), 02| a. ~ Inverse-Gamma(3,1/a.),

(30)
B~ N(0,031), a, ~ Inverse-Gamma(3,1/A?), a. ~ Inverse-Gamma(3,1/A42),

by, N Inverse-Gamma(1, %), Y| Pk £ Bernoulli(py), pk £ Beta(Ay, Bp).

The last of these distributional specifications corresponds to conjugate Beta priors being
placed on Bernoulli probability parameters. The hyperparameters A, and B, are positive
numbers corresponding to the usual parametrization of the Beta distribution. Figure 14
shows the DAG corresponding to (30).
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Figure 14: Directed acyclic graph representation of the auxiliary variable Bayesian penalized
wavelet model (30). The shaded node corresponds to observed data.

As with penalized splines, the vector of fitted values is the posterior mean

f=E(XB+ Zuly) = X E(Bly) + Z E(uly) = X E(Bly) + Z E(y © v|y).

The full conditionals for Markov chain Monte Carlo can be shown to be:

—1
B 2T o5° 0 2T
[v } ‘reSt - N<<UE GCy | o 0,2 diag(b) 7 Gy

o2 0 !
—2 T 5
(72504 [ 5 it dig )) )’

ollrest ~ Inverse-Gamma (3 (K + 1), 1vTdiag(b)v + a;!),
olrest ~ Inverse-Gamma (3(n+1),3|y — XB— Z v|?+aZl),
aylrest ~ Inverse-Gamma (1,0,2 + A;?) ,

ac|rest ~ Inverse-Gamma (1,0.% + A7?),

bi|rest ~ Inverse-Gaussian (oy/|vg|,1),

prlrest ~  Beta(Ap, + v, By + 1 — k)

and yj|rest % Bernoulli (exp(nk))
1 + exp(nx)

where
Cs = [X Zdiag(~)]
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and
e = —ﬁ [||Z;€H2’U]% — 2yT Zk Vg + 2XT Zk B v + 2 Z%Z_k{’)’,k ® (Uk'v—k)}] + IOgit(pk).
Here, and elsewhere,

Y-k = [717' c oy V=1, Vk+15- - - 77K]T'

The vector v_j, is defined analogously.
As for the Bayesian penalized spline model (14) all full conditional distributions are
standard and MCMC reduces to ordinary Gibbs sampling.

3.7 Fitting via mean field variational Bayes

As in the penalized spline case, we now seek fast deterministic approximate inference for
(30) based on MFVB. A tractable solution arises if we impose the product restriction

Q(/Bavabvﬁyvp70—570—527au7a€)_ (67 ) auvasap H q 57'7/6 (31)

Note that induced factorizations (e.g., Bishop, 2006, Section 10.2.5) lead to solution having
the additional product structure

K
9(8,v) q(02) a(02) q(au) q(ac) T[{ albr) a(ve) alpr)}-
j=1

Then, as shown in Appendix D,

¢*(B,v) is a Multivariate Normal density function,
q*(02), ¢*(02), ¢*(ay) and ¢*(a.) are each Inverse Gamma density functions,
¢*(b) is a product of Inverse Gaussian density functions, (32)
¢*(7%), 1 <k < K, are Bernoulli probability mass functions,

¢*(pr),1 < k < K, are Beta density functions.

Similarly to the penalized spline case, let py g .,y and X3 ) denote the mean vector and
covariance matrix for ¢*(3,v) and A,(,2) and By(,2) denote the shape and rate param-
eters for ¢*(02) with similar definitions for the parameters in ¢*(c2), ¢*(a,) and ¢*(ac).
Then the optimal values of these parameters are determined from Algorithm 4, which is
justified in Appendix D. Note that ¢(z) = -L log{T'(z)} denotes the digamma function.

Convergence of Algorithm 4 can be monitored using the following expression for the
lower bound on the marginal log-likelihood:

log p(y;q) = %(K +1)+ %(K —n)log(2m) — K log(2) — 2log(m) + log I‘(%(K +1))
+ log F(%(n +1)) — %log(af;) —log(A,) — log(A:)
—ﬁ{lluq(g)!l2 +tr(By8)} + 3108 [Zq(g,0)| — 5 (K + 1) log{By(,2)}

%(TL + 1) log{‘Bq(O'2 % Z{l/:uq bk IOg(Mq(l/aﬁ) + Azjz)

—log(1g(1/02) + AZ?) + Ho(1/02) Ha(1/aw) + Ha(1/o?)Hg(1/az)

K

- Z[Nq(%) log{pgiy} + (1 = tg(y)) log{1 = pg(y,)}]
k=1
K

+ 3 {logT(Ap + p1g(y,) +108T(By + 1 = p1g4,))}
k=1

—K{logI'(4,) + logI'(B,,) — log(A, + Bp)}.
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Algorithm 4 Mean field variational Bayes algorithm for the determination of the optimal param-
eters in ¢*(B,v), ¢* (), ¢* (02) and q*(02) for the Bayesian penalized wavelet model (30).

Initialize: 114(1/02), Hq(1/02)s Ha(1/ac)r Ha(1/au)> Bg(b)> Bg(wy) AN Qg(a,)-
Cycle:

) -1
0
S50 — (CTC)® Uy + | 72 ) ]
q(B,v) (“q(l/ 2)( ) a(wy) 0 fig(1/02)diag(pey(p))

Ha(B.0) — Ha(1/o2) Da(80) a8 { Ky, }CTY
Fork=1,..., K:

Pt — {Ha1/02) (Oouy + M)} 2

T
Talw) < —3 Ma(1/o2) [HZkHZ{U?(vk) + Mot} = 2ZEY Ha)
+2Z; X {(Zy(p.0))1.1+k T Lg(@)Ha(ur) }

+277z7 {(uq(»,))_k © {(Bg(w)) =kt + Mq(vw(“q(v))—k}H
+(Ap + tg(yy) — V(Bp + 1 = Lg(y))

_oPUlyn)
Ha(ve) = 3 + exp(Ng(yy))
. )
- [ L ] ; Qq(wv) - d1ag{,uq(wa,) ®1- ﬂq(w—y))} + Hg(w.) “;F(w—y)

Ha1/as) < LAkg/02) + A2 5 Bgan) — Y ARgay02) + AL

Byo2y  tat1/an) + 3 1WI% = 47C (o) © oo w))
T
3t (CTC [ Rypan) © { By + Hopilipn )
K
Bao2) < Ha(1/aw) + 5 2obet Ha(b) 10wy T Haor) )
Ha(1/02) < 3K +1)/Byoz) i Ha(1/o2) < 5(n+1)/Byoe)

until the increase in p(y; q) is negligible.
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Ilustration of Bayesian penalized wavelet regression, using both the MCMC and
MEFVB, is provided by Figure 15. The data were generated according to

Yi = fwo(xi) + €

with z; = (i —1)/nand &; & N(0,1). MCMC samples of size 10000 were generated. The
first 5000 values were discarded and the second 5000 values were thinned by a factor of

5. The MFVB iterations were terminated when the relative change in log p(y; ¢) fell below
1010
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Figure 15: Left panels: MCMC output for fitting Bayesian penalized wavelet model to simulated
data. The upper left panel is for log(o.). The lower left panel is for the estimated function at the
median of the x;s. Upper right panel: successive values of log p(y; q) to monitor convergence of
the MFVB algorithm. Lower right panel: Fitted function estimates and pointwise 95% credible
sets for both MCMC and MFVB approaches.

The left panels of Figure 15 show that the MCMC converges quite well. The upper
right panel shows that MFVB converges after 69 iterations. R language implementation
of the MCMC fit took about 45 minutes on the first author’s laptop (Mac OS X; 2.33
GHz processor, 3 GBytes of random access memory) whereas the MFVB one took only
17 seconds with the same programming language. The lower right panel of Figure 15
indicates that the two fits are quite close.

In Figure 15 we zoom in on the fits for 0.6 < x < 0.7. It is seen that both the MFVB
and MCMC fits are quite close in terms of both point estimation and interval estimation.
This suggests that MFVB is quite accurate for penalized wavelet model (30), although
further simulation checks are warranted.
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Figure 16: Zoomed display of fits shown in lower right panel of Figure 15. The solid curves are
the function estimates based on the pointwise posterior means and the dashed curves are pointwise
95% credible sets.

4 Choice of Penalized Wavelet Basis Size

A remaining problem attached to our proposed new wavelet nonparametric paradigm is
the choice of L = logy(K + 1). As demonstrated by Figure 10, it is often quite reasonable
to have L < logy(n). In the case of penalized spline regression is it usually enough
to work with simple rules such as K = max(35,n/4). But this rule sometimes needs
modification if it is believed that the underlying function is particularly wiggly. The same
dilemma applies to penalized wavelets. Indeed, casual experimentation suggests that
more care needs to be taken with choice of penalized wavelet basis size compared with
the penalized splines counterpart. Further research is required to formalize the extent
of the problem and to devise high-quality solutions. In the present article we flag it as
an issue and make some brief remarks on possible approaches to choosing the penalized
wavelet basis size.

In the low-noise situation, simple graphical checks could be used to guide the choice
of L. If a more automatic method is required then each of the approaches to penalized
wavelet fitting described in Sections 3.4 to 3.7 lend themselves to data-based rules choos-
ing L. For example, an attractive by-product of the MFVB approach is an approximation
to the marginal log-likelihood, which can be used to guide the choice of L.

Another possible approach to choice of L involves adaptation of classical wavelet
thresholding methodology. If n is a power of 2 and the z;s are equally-spaced then the
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Discrete Wavelet Transform can be used to quickly obtain the n coefficients of the full set
of wavelet basis functions, as elucidated by (19). Simple thresholds such as 5./21og,(n)
(Donoho & Johnstone, 1994) can be used select L. Specifically, the L could correspond
to the largest level having coefficients exceeding the threshold. Further development is
required for general ;.

5 Semiparametric Regression Extensions

The preceding sections put wavelets on the same footing as splines and, hence, facil-
itate straightforward embedding of penalized wavelets into semiparametric regression
models (e.g. Ruppert, Wand & Carroll, 2003, 2009). Any existing semiparametric regres-
sion model containing penalized splines can be modified to instead contain penalized
wavelets if there is reason to believe that the underlying functional effect is jagged. It is
also conceivable that some components in the model are better handled using penalized
splines, whilst penalized wavelets are more appropriate for other components. Illustra-
tions of such a composite model are given in Sections 5.2 and 5.3.

Bayesian approaches to semiparametric regression, with MCMC or MFVB fitting, are
particularly amenable to such adaptation since replacement of splines by wavelets simply
means modification of the corresponding DAG. Since the MCMC and MFVB algorithm
updates are localized on the DAG (e.g. Wand et al. 2011, Section 3) the spline to wavelet
replacement can be made by replacement of penalized spline node structure (as in Figure
4) by penalized wavelet node structure (as in Figure 14).

The remainder of this section provides some concrete illustrations of such spline to
wavelet adaptations. Given the ease with which these adaptations can be made using
MCMC or MFVB, we will confine description to these approaches. The non-Bayesian
approaches of Sections 2 and 3 can, at least in theory, be treated analogously. However,
some of the implementational details may require further research.

5.1 Non-Gaussian response models

Non-Gaussian response models involving penalized wavelets can be treated analogously
to those involving penalized splines. The only differences are the design matrices X and
Z and the type of penalization applied to entries of the u vector. The non-Gaussian
aspect means that penalized least squares is no longer appropriate and penalized log-
likelihood should be used instead. Fan & Song (2010) describe some of the properties
of penalized log-likelihood estimators for penalties such as L; and SCAD. The extension
of penalized wavelets to non-Gaussian response models via penalized log-likelihood ap-
plies quite generally. However, we will restrict further discussion to the important binary
response case. See Antondiadis & Leblanc (2000) for a classical wavelet treatment of bi-
nary response regression.

Figure 17 shows penalized wavelet estimates for binary response data simulated ac-
cording to

logit{ P(y; = 1)} = 0.15 fuo(zi) — 3, 1<i<n. (33)

where z; = (i — 1)/n and n is set at 1000, 10000 and 100000. The estimates were obtained
using the SCAD-penalized negative logistic log-likelihood

K
—y"(XB+ Zu) + 17 log{1 + exp(XB + Zu)} + A Y SCAD(|ugl, 3) (34)
k=1

and X chosen via 10-fold cross-validation. The R functions ncvreg () and cv.ncvreg ()
within the package ncvreg (Breheny, 2011) were used to obtain the fits in Figure 17. The
design matrices in X and Z (34) have exactly the same form as those used in Section 3
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for Gaussian response penalized wavelet regression. A striking feature of Figure 17 is
that quite large sample sizes are required to obtain visually pleasing estimates. This is a
consequence of the low signal-to-noise ratio that is an inherent part of binary response
regression and the difficulty that wavelets have in high-noise situations, as mentioned in
Section 3.3.

sample size = 1000 sample size = 10000 sample size = 100000
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Figure 17: Illustration of difficulty of binary response penalized wavelet regression. In each case,
the penalized wavelet estimates of the mean, or probability, function are obtained using SCAD-
penalized logistic log-likelihood with the penalty parameter chosen via 10-fold cross-validation
and shown in blue. The true probability function is shown in red. In the leftmost panel (n = 1000
the data are shown as rugs. The rugs in the other two panels (n = 10000, 100000) correspond to
sub-samples of size 1000.

Bayesian binary response penalized spline regression, with a probit rather than logit
link function, has a Gibbsian MCMC solution courtesy of the auxiliary variable construc-
tion of Albert & Chib (1993) (e.g. Ruppert et al. 2003, Section 16.5.1). The same is true for
penalized wavelets using, for example, a Laplace-Zero mixture prior (29) on the wavelet
coefficients. Specifically, consider the model

il B, u ' Bernoulli{®((X 8 + Zu),)},

p(u | ow, ) = Ty {wk (200) 7 exp(—|ugl/ow) + (1= %) So(wk) }
(35)
B~ N(0,03I), o, ~ Half-Cauchy(4,), 0.~ Half-Cauchy(A.),
vel o % Bernoulli(py), pr < Beta(A,, Bp).

Here ®(z) = [*__ ¢(t)dt is the standard normal cumulative distribution function, with

o(z) = (2m)"1/2 exp(—2?/2) denoting the corresponding density function. Introduce the
vector of auxiliary variables a = (ay, ..., a,) such that y; = 1 if and only if a; > 0 and

al|B,u~N(XB+ Zu,I).
Then, with the auxiliary variables v, b and a,, as in Section 3.6, we can write (35) as
yila; % Bernoulli(I(a; > 0)), alB,v ~N(XB+ Z(y6wv),I),
v|o2,b~ N(0,02diag(b)~!), o2|a, ~ Inverse-Gamma(3},1/ay,),
(36)
B~ N(0, U%I), ay ~ Inverse-Gamma(3,1/A42), a. ~ Inverse-Gamma(3,1/A42),

b, < Inverse-Gamma(1, %)7 Vi| Pk ~ Bernoulli(py), px ~ Beta(4y, By).
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Figure 18 is the DAG corresponding to (36).

Figure 18: Directed acyclic graph representation of the probit Bayesian penalized spline model
(36). The shaded node corresponds to observed data.

The full conditionals for Markov chain Monte Carlo can be shown to be:
1
B T og ? 0 T
[ v ‘rest N| (CLCy + 0 o2diag(b) Cy a,

072 0 -
T 3
(G305 |G oscingter |) )

alrest N{XB+ Z(v ®v)}i,1) truncated on (—o0,0), y; =0
! N{XB+ Z(y ®v)}i, 1) truncated on (0,00), y; =1
oZlrest ~ Inverse-Gamma (% (K + 1), v diag(b)v +a;'),

aylrest ~ Inverse-Gamma (3,0,2 + A;?),

bplrest ™ Inverse-Gaussian (o /|vg|, 1),
pr|rest S Beta(Ap + vk, Bp + 1 — i)
and yy|rest % Bernoulli (exp(nk)>
1 + exp(nk)

where C has the same definition as before and
Nk = —% [HZkHQU]% — 2aT Zk Vg + 2XT Zk ,ka + 2 Z%Z_k{’)’,k ®© (vkv_k)}] + logit(pk).

The corresponding MFVB approach, summarised in Algorithm 5, requires only closed
form updates. The optimal ¢* density functions for all variables except a take the same
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Algorithm 5 Mean field variational Bayes algorithm for the determination of the optimal param-
eters in ¢*(B3,v), ¢* () and q*(c2) for the probit Bayesian penalized wavelet model (36).

Initialize: 114(1/02), Hq(1/a.)s Ba(b)s Bg(w.) A0 Qg(aw,)-
Cycle:

—9 -1
0
BB — | (CTC) © Q) + | 78 i ]
a(B,v) << ) © Qg(an) 0 pg1/02)diag(tes))

Ha(Bv) — Zq(B.0) Mag{Hg(w,) }C by

2y — 1) © ¢( X pg(p) + Z(By(y) © By(v)))
((2y — 1) O { X pg(p) + Z(Hg(v) © Hg(w))})

Pa(a) < X tq(B)+Z (Hg(y) © By(w)) +

Fork=1,... K:

g (by,) H{Mql/a)( a(v )+N( ))}_1/2

Mo = =5 (12014020 + 1200} = 221 ey Hatun)
+2Z5 X {(Zy(8.0) 1,14k T Lg(@) Ho(ur) }
+2ZZ -y, {(uq(q))—k O {(Zq(w)) =k + Ha(ug) (Bg(e)) - k}H
+U(Ap + fg(y)) — V(Bp + 1 = fig(+,))

Ha(ye) < 1+ exp(g(yp))
1 )
Hatwy) = [ Fq(~) ] P Q) < dag{tty(,) © (1= Hogu))} + Botwy) Potuw,)

K
Byo3) < H(1/a) T 3 ket Nq(bk){"'g(vk) + Ng(vk)}
tg(1/o2) — 5 (K +1)/Byo2) 5 Hq(i/an) < 3/{Hq(1/02) T Ax?}

until the increase in p(y; q) is negligible.
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forms as those given for the Gaussian response case in Section 3.7. Appendix E contains
underpinning for Algorithm 5.

Figure 19 illustrates these MCMC and MFVB approaches to estimating the under-
lying probability function from data generated according to (33) with the sample size
set at n = 50000. (Note, however, that the ¢ linear predictor (X8 + Zwu); estimates
! (logit ' (0.15 fwo(z;) — 1)) since (35) is a probit regression model). Both approaches
are seen to give similar fits.
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Figure 19: Bayesian posterior mean estimates of the probability function (green curve) from data
generated according to (33) with n = 50000. The Bayesian estimates were obtained via MCMC
(blue curve) and MFVB (red curve). The rugs show a 10% random sub-sample of the data.

5.2 Additive models and varying coefficient models

Additive models and varying coefficient models are a popular extensions of nonparametric
regression when several continuous predictor variables are available. If the response is
non-Gaussian then the term generalized additive model (Hastie & Tibshirani, 1990; Wood,
2006) is commonly used for the former type.

With simplicity in mind, we will restrict discussion to the case of two predictor vari-
ables z1 and z». The treatment of the general case is similar, but at the expense of addi-
tional notation. Generalized additive models take the generic form

HEW)} = filx1) + fax2) (37)
whilst a varying coefficient model for such data is
9iEW)} = [i(@1) + f2(21) © 2. (38)

Here g is a link function and f; and f> are arbitrary “well-behaved” functions. See, for
example, Ruppert, Wand & Carroll (2003), for details on penalized spline fitting of (37)
and (38)

Given the preceding sections, the replacement of penalized splines by penalized wave-
lets is relatively straightforward and would be appropriate if there is good reason to
believe that either f; or fs is jagged. Models containing both penalized splines and pe-
nalized wavelets are also worthy of consideration.
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To amplify this last point and to illustrate the embedding of penalized wavelets into
additive models consider data simulated according to

yi =2 @6z, —3) + 5 I(x2; >0.6) +5;, 1<i<n, (39)

where the x;; and x9; are generated as completely independent samples from the uniform
distribution on (0,1) and &; * N(0, 62) for some o, > 0. Since, as known by the simula-
tion set-up, the mean responses are a smooth function of the x1;s and a step function of

x92;s an appropriate model in this example is

Kspl K wav
yi = Bo+ B+ > ud 2 (wn) + > w5 () + €
k=1 k=1

where the 2} (+) are spline basis functions and the z}*(-) are wavelet basis functions. Let

X = [1 a1 wailicicn, 27 = 27 (21)]i<icn and  Z* = [z} (22;) J1<i<n
1<k<KsP! 1<k<Kwav

be the design matrices containing the linear functions, spline basis functions and wavelet
basis functions of the data. Note that Z*' and Z"™ can be obtained, respectively, by
application of Algorithm 1 to the x;s and Algorithm 2 to the x2;s. Given regularization
parameters \’*' > 0 and A" > 0, an appropriate estimation strategy is one that minimizes
the penalized least squares criterion

KWaV

|2 + A" Z lup]. (40)

k=1

Hy _ X ,@ _ Zspluspl _ Zwavuwav 2 + )\spl uspl

This takes a form similar to the elastic net penalty introduced by Zou & Hastie (2005), and
it is anticipated that the efficient computational algorithm that these authors developed
is extendible to (40).

Alternatively a mixed model approach can be used by placing suitable distributions
on the spline and wavelet coefficients. We will confine discussion to the Bayesian version
of mixed model fitting, in which an appropriate hierarchical Bayesian model is

y‘ B, uspl, uwav7 Op ~ N(Xﬁ + ZSP]uspl + Zwav,u,wav, O'? I)7
B~ N(0,03I), w~N(0, (o)1),

p(w™ |3, ) = Thicy { 205) 71 exp(—|up™|/o™) + (1 =) do(w™)},  (41)
oy ~ Half-Cauchy (A7), or* ~ Half-Cauchy(A%™), o. ~ Half-Cauchy(A.),

Y&l o % Bernoulli(py), pg < Beta(A,, B).
MCMC and MFVB algorithms for fitting (41) involve relatively straightforward marriage
of those given in Sections 2.6, 2.7, 3.6 and 3.7 for Bayesian penalized spline and Bayesian
penalized wavelet nonparametric regression.
Figure 20 shows a MFVB fit for (41), where the data is simulated from (39) with n =
5000 and 0. = 1. For this example, the combination of penalized splines and penalized
wavelets is seen to capture the true functions quite well.

5.3 Semiparametric longitudinal data analysis

During the last fifteen years there has been much research on the use of splines to han-
dle non-linear effects in the analysis of longitudinal data. See, for example, the Non-
Parametric and Semi-Parametric Methods for Longitudinal Data Analysis section of Fitzmau-
rice, Davidian, Verbeke & Molenberghs (2008) and the references therein. There is also
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Figure 20: [llustrative MFVB-based fit for the spline/wavelet additive model (41). The data were
simulated from (39) with n = 5000 and o. = 1. The true functions are shown in red. The blue
solid curves are function estimates based on the pointwise posterior means. The blue dashed curves
correspond to pointwise approximate 95% credible sets. All curves in the left panel correspond to
the functions of xo evaluated at the sample mean of the x2;. The reverse situation applies to the
right panel. The rugs at the base of each panel show, respectively, 10% random sub-samples of the
T1;S and T9;S.

a smaller literature on the incorporation of wavelets into longitudinal models, with con-
tributions such as Aykroyd & Mardia (2003), Morris, Vannucci, Brown & Carroll (2003),
Morris & Carroll (2006) and Zhao & Wu (2008). A feature of the wavelet-based longitu-
dinal data analysis literature is a tendency to work in the coefficient space (e.g. Morris
et al. 2003). In this section we demonstrate that sound analyses can be conducted using
direct approaches, analogous to those in the penalized spline longitudinal data analysis
literature.

The penalized wavelet approach laid out in Section 3 facilitates straightforward mod-
ification of spline-based longitudinal models to handle data possessing jagged signals.
One simply replaces spline basis functions by wavelet basis functions and modifies the
penalties on the basis function coefficients. We will provide illustration via a modifica-
tion of the subject-specific curve penalized spline model developed by Durban, Harezlak,
Wand & Carroll (2005). Earlier variants of this model, based on smoothing splines rather
than penalized splines, were developed by Brumback & Rice (1998), Wang (1998) and
Zhang et al. (1998). The model considered by Durban et al. (2005) takes the basic form

vij = f(@ij) + giwig) + €55, €5~ N(0,02)
where, for 1 <i < mand 1 < j < n;, (25, y;;) denotes the jth predictor/response pair
for the ith subject. A Bayesian penalized spline model for f is

K 8bl
F@) =60+ Bra+ Y w2 2),  uot *N(0, (05)?).
k=1

We could use penalized wavelets for f, but splines will often be adequate for the smoother
global mean function. However, the subject-specific deviation functions could be quite
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jagged, in which case a penalized wavelet model such as

ind.

9:(2) = Ui+ Si5) ufl 20(@), Uiloy % N(0,03)
(42)

(Ui | o, yik) = ik (200)) 4 exp(—[uff] /o) + (1 = k) do(usy)

is appropriate for the subject specific deviations. Analogous to (41), we complete the
model specification with

Bo, B1 & N(0, ogI), o' ~Half-Cauchy(AY"), oy’ ~ Half-Cauchy(Ay),
(43)
o. ~ Half-Cauchy(A.), vik| pix N Bernoulli(p;x), pik £ Beta(A,, Bp).

Figure 21 shows data where such modelling is beneficial. The data are from a respi-
ratory pneumonitis study (source: Hart ef al., 2008) and the panels display the logarithm
of normalized fluorodeoxyglucose uptake against radiation dose for each of 21 lung can-
cer patients. The red points in Figure 21 show the data. The blue curves correspond to
the posterior mean fit of (42) and (43). The light blue shading conveys pointwise 95%
credible sets for each fitted curve. These fits were obtained using BUGS (Spiegelhalter et
al. 2003), accessed from within R via the BRugs package (Ligges et al. 2009). The BUGS
code is listed in Appendix F. A burnin of size 15000 was used, followed by 5000 itera-
tions which were then thinned by a factor 5. The predictor and response data were each
linearly transformed to the unit interval and the hyperparameters were set to the values
o5 =108, Ay = A) = A. = 25, A, = B, = 1, corresponding to non-informativity. The
inverse linear transformation was applied before displaying the fits.
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Figure 21: Logarithm of normalised fluorodeoxyglucose uptake versus radiation dose (J/kg)for
each of 21 lung cancer patients (source: Hart et al., 2008), shown as red points. The blue curves
are posterior mean fits of the model given by (42) and (43). The light blue shading corresponds to
pointwise 95% credible sets.

Figure 22 highlights aspects of the fit shown in Figure 21. The top left panel is the
penalized spline-based estimate of the global mean function f. The bottom left panel dis-
plays the penalized wavelet-based subject specific deviations. These are quite irregular
and appear to benefit from the use of wavelets rather than splines. The top right panel is
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a zoomed version of one of the panels from Figure 21 and the bottom right panels shows
the residuals against the fitted values. The residual plot shows no pronounced patterns,
indicating that the model fits the data well.
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Figure 22: Additional plots corresponding to the model fit shown in Figure 21. Top left: fitted
penalized spline-based global mean curve. Bottom left: fitted penalized wavelet-based subject-
specific deviation curves. Top right: Zoomed version of the for fit for the 13th subject. Bottom
right: residuals versus fitted values.

In this article we do not delve into the scientific questions associated with these data
and only use it to illustrate penalized wavelet-based semiparametric longitudinal data
analysis. Further work is planned on the scientific ramifications of such analyses.

As of this writing our only implementation of model (42) and (43) is in BUGS, which
has the disadvantage of taking 1-2 days to run on contemporary computing platforms.
Ongoing work by Sarah E. Neville and the first author is aimed at developing faster
MCMC and MFVB implementations for this and related models.

5.4 Non-standard semiparametric regression

As laid out in Section 2 penalized spline fitting and inference is now handled in a number
of different ways. In particular, frequentist and Bayesian mixed model representations
play an important role in accommodating various non-standard situations. Examples
include measurement error (e.g. Berry, Carroll & Ruppert, 2002), missing data (e.g. Faes,
Ormerod & Wand, 2011) and robustness (e.g. Staudenmayer, Lake & Wand, 2009). In
Marley & Wand (2010) we should how MCMC, with the help of BUGS, can handle a
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wide range of non-standard semiparametric regression problems.

As Section 3 shows, penalized wavelets can be handled using the same general ap-
proaches as penalized splines. It follows that modification to non-standard cases has
similar parallels.

6 R Software

Penalized wavelets benefit from particular software packages in the R language. We
briefly describe some of them here.

The R package wavethresh (Nason, 2010) plays a particularly important role in our
proposed penalized wavelet paradigm since it supports efficient computation of the Z
and Z 4 design matrices, containing wavelet basis functions evaluated at predictor values
or plotting grids. The function zDaub (), described in Appendix A, contains the relevant
code.

For the penalized least squares approach with L; penalization the function lars ()
within the package l1ars (Hastie & Efron, 2011) efficiently computes a suite over a fine

grid of X values. The function also returns values of e/af(/\) which assists penalty param-

eter selection via criteria such as GCV (N).

The R package ncvreg (Breheny, 2010) is similar to lars in that it efficiently com-
putes penalized least squares fits over penalty parameter grids. However, it offers pe-
nalization using either the SCAD or minimax concave penalties. It also supports logistic
regression loss and has k-fold cross-validation functionality for choice of the penalty pa-
rameter. Similar functionality is provided by the R package glmnet (Friedman, Hastie
& Tibshirani, 2009,2010), but with the elastic net family of penalties. This family includes
the L, penalty as a special case.

A shortcoming of lars, ncvreg and glmnet in the context of the current article
is that they support models only with a single penalty parameter. Hence, the multiple
penalty parameter models described in Sections 5.2 and 5.3 require alternative routes for
R implementation. As mentioned in Section 5.3, the BRugs package was used for the
semiparametric longitudinal analysis done there and, of course, it can be used to handle
the simpler Bayesian penalized models discussed earlier.

Finally, we mention that the matrix algebra features of the R language allow efficient
implementation of the MFVB algorithms given in Sections 3 and 5.

7 Concluding Remarks

The overarching theme of this article, that wavelets can be embedded in semiparametric
regression in a way that is analogous to splines, is apparent from details provided in
Sections 2 to 5. Two areas which have seen a great deal of recent activity in Statistics, wide
data regression and mean field variational Bayes, are particularly relevant to penalized
wavelets and can aid more widespread adoption. R packages for MCMC-based analyses,
such as BRugs, also have an important role to play as demonstrated by the example in
Section 5.3.

This new paradigm promises to be important for future analyses and developments
in semiparametric regression since the benefits offered by wavelets can be enjoyed with
relatively straightforward adaptation of existing penalized spline methodology.
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Appendix A: R Code for Default Basis Computation

Algorithms 1 and 2, together with details given in Sections 2.1 and 3.1, describe construc-
tion of good default Z matrices for penalized splines and penalized wavelets, respec-
tively. A web-supplement to this article is a ZIP archive titled ZOSullandzZDaub.zip
that includes two files ZOSull.r and ZDaub. r. These, respectively, contain the R func-
tions, ZOSull () and ZDaub (), for computing these Z matrices. The first function uses
O’Sullivan splines, or O-splines for short. The second uses Dauchechies wavelets with
the smoothness number an input parameter but defaulted to 5. Note that zZDaub ()
avoids computation and storage of large matrices, despite the description given in Sec-
tion 3.1. Also included in ZOSullandZDaub. zip is an R script named
Z0OSullandZDaubDemo.Rs

which demonstrates how ZOSull () and ZDaub () can be used for design matrix con-
struction, prediction and plotting. The README file in the ZIP archive provides full de-
tails.

Authors’ note: Until publication of this article, the abovementioned web-supplement
can be obtained from the web-site www.uow.edu.au~mwand/papers.html, or by e-
mailing the first author (matt .wand@uts.edu.au).

Appendix B: Details on Frequentist Mixed Model-based Penal-
ized Wavelet Regression with Laplacian Random Effects

Consider the wavelet nonparametric regression model with frequentist mixed model rep-
resentation:
ylu ~ N(XB+ Zu,c’I)

where the u, are independent with density function
Plugs; ow) = (200) " exp(—|ug| /ow).

THEOREM. Suppose that Z* Z = o>I. Then the log-likelihood of (B, 02, 02) admits the explicit
expression

<B7 u7 5)
L(K —n)log(2702) — K log(20,) — gz ly — X2

T (4 — _a
(y—XpB)— ‘?1H2+1T10g<1><z v - X6) U“)

2a2 Qo

ooy, oe oo,

+1TH<2ZT<y -Xp) logq)<—ZT< - Xp) - ) - 1qu)<ZT<y - XB) -
(6%

where H(x) = log(e® + 1). In addition, the best predictor of w admits the explicit expression

0'2 0'2
w(y,B,02,0{Z" (y — XB) + E1} + {1 —w(y,B,02,00)H{Z" (y — XB) — &1}
E(uly) = -
where
I I
o fe ) eXp(ZT(yQ;Xﬁ) <I>( z (yaiﬁ) gu)
Y 87 u = 2 2 *
T -zT X 7T (o ZT (y—XB)—2E
exp (Z EnyUj(ﬁ)> ( (yozag o ) +exp ( Z ongauXB))(p( v aaf) Uu)
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REMARK 1. The expression for ¢(3,02,02) is given in terms of H(z) = log(e® + 1) for

urve
reasons of numerical stability. Note that H(z) ~ x, with this approximation being very

accurate for x > 20. This approximation of H (z) for large positive = should be used to
avoid overflow in computation of £(3, 02, o2).

u’r e

REMARK 2. The expression for E(uly) is similar to (6) of Pericchi & Smith (1992) for the
Bayes estimator of a normal location parameter with Laplacian prior.

PROOF OF THEOREM
Define

C(k,s1,s2,83) = szkl/ z* exp{—(2? — 2512)/(253) — |z|/s3} da.

The proof uses the following two lemmas, each of which can be derived via elementary
calculations:
Lemma 1. For general s; € R and s3,s3 > 0

C0.51,5250) = (/) (2 = 2 ) o (o) (22 - 2)

and

_ (5L _3%2 s1_5%2)_(_5_ 9% B
Cltisrsmsn) = (2= 2 ) @fo) (2 2) - (=2 - 2 ) oy (-2 - 2)
where (®/¢)(x) = ®(x)/P(x) is the ratio of the standard normal cumulative distribution and
density functions.

Lemma 2. For any a,b € R

log {(®/¢)(—a —b) + (®/d)(a — b)}

where H(x) = log(e® + 1).
The log-likelihood is

UB,o2,02) = logp(y;B,o2,02)
— log / p(ylu: B, 0%)p(ulo?) du
RK

1

K
= log /RK(2M§)_”/26XP{—QUgIIy—XB—ZUIIQ}(20u)‘KeXp{—Z|gk|

k=1

The assumption that Z7 Z = oI leads to separation of the multivariate integral into K
univariate integrals, resulting in

(B,02%02) = —Lnlog(2ro?) + K{log(0.) — log(20,) — log(a)} — gy — X B

K
+> 10gC(0,{Z" (y — XB)}r/ v, 00, 0 0).
k=1

The stated result for £(3, 02, 02) follows from the first part of Lemma 1 and Lemma 2.
Next note that
. fRK up(y\u; B, O's)p('u'§ Uu) du
E(uly) = : : :
fRK p(ylu; B, o2 )p(u; 0y) du

42

u

= 2log(2m) + 1(a — b)* + H(2ab+ log ®(—a — b) — log ®(a — b)) + log ®(a — b).
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The denominator is the likelihood exp{¢(3, o2, o2)} whilst the numerator is

K
2\—n/2 1 2 -K |k
/RK w(2r0?) ™% exp {—203 ly— X8 — Zul||*; (20,) " expq — ; o du. (44)

u

As with the log-likelihood derivation, the assumption Z7 Z = oI leads to separation of
the multivariate integral into the following univariate integral expression for (44):
C(1,a ' ZT(y — XB),0.,a0,)
C(0,a1ZT(y — XB),0.,004)

exp{{(B, 07, 02)}.

Application of Lemma 1 then leads to the explicit result for E(uly).

Appendix C: Derivation of (17) and Algorithm 3

We now derive result (17) and Algorithm 3 concerning MFVB fitting of the Bayesian pe-
nalized spline model (14). Throughout this appendix and the next two, additive constants
with respect to the function argument are denoted by ‘const.”. The MFVB calculations
heavily rely on the following results for the full conditional density functions:

T -2
_ 1 B —2 T 93 I, 0 B
log p(3, u|rest) = 2[[u} (ae C C+[ 0 a;QIK})[u
T
-2 { B ] CTy| + const,
u
log p(oZjrest) = {—%(K +1)—1}log(o2) — (L|jul®+a,') /o2 + const,
log p(o

= —2log(ay,) — (0,2 + A,?%)/a, + const
= —2log(a.) — (022 +az?)/a. + const.

)
2lrest) = {—i(n+1)—1}log(c?) — (3ly — XB — Zu|®> +a."') /o? + const,
log p(ay|rest)

)

and log p(a.|rest

Expressions for ¢* (3, u), Hg(B,u) and 38w

7 (B,u) ~ N(pys.u) ZqBw)

where .
_92 -
I, 0
= (1 CTC 4 { % D
a(B.u) <Mq(1/ ) 0 gy Ix
and
T
Pq(Bw) = Ha(1/02)2q(8u)C" Y-
Derivation:
log ¢"(B,u) = E4{log p(B,ulrest)} + const

T -2
B 2{ |: u :| <Mq(l/U§)C ©r |: 0 :U’q(l/o'%)IK :|> |: u

T
-2 [ B ] CTy} + const.

u

The stated result then follows from standard ‘completion of the square” manipulations.
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Expressions for ¢*(02), By(o2y and g1 /52)
q*(c2) ~ Inverse-Gamma(3 (K + 1), By(s2))

where
Bq(ffg) = %{Huq(u)HQ + tr(zq(u)>} + Hg(1/ay)-
In addition,
1
Hq1/o2) = 3 (K +1)/By(o2).

Derivation:

log ¢*(¢2) = E,{log p(c2|rest)} + const
= {—3(K +1) = 1}log(03) — (3 Ballull* + pg(1/a,)) /s + const.

The form of ¢*(02) and By (52 follows from this and the fact that
Ey|lull® = [ Eq(w)|* + tr{Cov,(u)}.
The expression for ji,(1/,2) follows from elementary manipulations involving Inverse
Gamma density functions.
Expressions for ¢*(c2), By o2y and py1 /52

q*(c?) ~ Inverse-Gamma(3(n + 1), By(s2))
where
By(02) = 3{lly — Cirgpul* + tr(CTC Zygu))} + 1101 /a0)-
In addition,
Ha(1/o2) = 3(n+ 1)/ Byo2)-

Derivation:
This derivation is similar to that for ¢*(o2).
Expressions for ¢*(ac), By(a.) and pig(1/4.)
q"(ac) ~ Inverse-Gamma(1, By(,.))
where

Bya.) = Ha(1/o2) + A2 and  pg/a) = 1{nga 02 + A2}

Derivation:

logg*(a:) = —2log(a:) — Ey(o-? + AZ?)/a. + const
= (—=1—1)log(ac) — (kqg(1/02) + AZ?)/a. + const.

Therefore ¢*(ac) ~ Inverse-Gamma(l, g1 /02y + AZ?). The expressions for By(a.) and
Hq(1/a.) follow immediately.
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Expressions for ¢*(ay), By(a,) and pig(1/a,)
q"(ay) ~ Inverse-Gamma(1, By(,,))
where

Bya,) = He(1/o2) + Au®and  pig1/a,) = 1/{1ga/02) + Ad%)-

Derivation:
The derivation is analogous to that for ¢*(a.) and related quantities.

Appendix D: Derivation of (32) and Algorithm 4

In this appendix we derive (32) and Algorithm 4 concerning MFVB fitting of the Bayesian

penalized wavelet model (30).
The full conditionals satisfy

{ K r (s2ctens | S g ) ||

3 T
T
-9 [ v ] CA/y} + const

N[ =

log p(B,v[rest) = —

log p(oijrest) = {—1(K +1)—1}log(o2) — {3v”diag(b)v +a,'} /o2 + const,
log ploZlrest) = {—4(n+1) - 1}log( a> (Sly — XB — Zoyu|? + az') /o? + const,
log p(ay|rest) = —2log(ay) — (0,2 + A;%)/ay + const,
log p(ac|rest) = —210g(a5) — (02?4 aZ?)/a. + const,
log p(blrest) = Z{ 3 log(bg) — (b, — 0w/ vk|)?/ (20 02 /v2)} + const,
"
log p(alrest) = > {3y~ XB—Z 4(v_c © v k) = Ziwvell* + . logit(pr) |
k=1
+const
K
and log p(p|rest) = Z{(Ap + v, — 1) log(pk) + (Bp — &) log(1 — pi) } + const.
k=1

Expressions for ¢*(3,v), g and Xy(a.)
7 (B,v) ~ N(By(p): Zq(Bv))

where
-2 0 -1
(B = (CTC) @ Qo + | 7P . ] ,
2(B) (Mq(l/ 2)(C7C) © Qy(a,) 0 igtyor)diag(igs)
Ho(Bw) = Hq(1/02) Zq(Bv)diag {ttyw,) }CTy
and
_ q: T
Q) = diag{ttg(w,) © (1 = Bo(w,))} + Hgwn) Ho(uw,):
Derivation:
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T —2
et - A2 s[5 D]
og ¢*(8,v) 2{ [ v | M Bl CCIF] g e ding (i) h

T
—2 [ f } Eq(Cw)Ty} + const.

The stated result then follows from standard ‘completion of the square” manipulations
and explicit expressions for F,(C~) and Eq(CgC’.Y) which we derive next.
Firstly,
E4(C,) = C Ey{diag(wy)} = C diag{py(sp. )}
Secondly,

CzC.y = diag(w~) CT Cdiag(w~) = (CTC) ® ('w.yw,j;).

Hence,
E,(CLCy) = (CTC) © {Covy(ws) + Hytuy) Bl ) }-

Since the entries of w. are binary and independent with respect to ¢(+v) we have

COV(](UJ’)‘) = diag{/]’q(w.y) © (1 - :u’q('w.y))}'

The stated results from these results via standard arguments.

Expressions for ¢*(02), By(o2) and fig(1 /o2)
q* (o) ~ Inverse-Gamma(3 (K + 1), By(s2))

where
K

2 2
By(o3) = Ha(1/au) T 3 Z L) 1Tq() T Faup) d-
k=1

In addition,
Ho(1/02) = 5(B +1)/By(o2).

Derivation:

log q*(o—i) = {f%(K +1)— 1}10g(03) — [% Eq{'deiag(b)v} + pq(l/au)] /03 -+ const.

It is apparent from this that ¢*(02) is an Inverse Gamma density function with shape pa-
rameter %(K +1) and rate parameter, B,(,2), equal to the term inside the square brackets.
The remaining non-explicit term is

K

E,{v" diag(b)v} = tr{diag(uy(b)) E,(v0")} = Y tt400 {050, + Ho(u) -
k=1

Expressions for ¢*(c2), By(s2) and g1 /52
q*(02) ~ Inverse-Gamma((n + 1), B(s2))
where
L2 _ 2T
Byoz) = Mq/a) +3llyl"—y C (qu) © Mq(a,m)

+%tr <CTC’ [Qq(w.,) O] {Eq(ﬁ,v) + “q(ﬁvv)“qT(le“)H)
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and €2,(,,.) is as given by (45). In addition,
Ha(1/o2) = 3(n+ 1)/ Byo2)-

Derivation:

log ¢*(62) = FE,{log p(cZ|rest)} + const
2
= {-3(n+1)—1}log(c?) - {% EqHy -C (w.y ©) [ f ]) H + Mq(1/a5)} /G? + const.
It is apparent from this that ¢*(0?) is an Inverse Gamma density function with shape

parameter 3(n+ 1) and rate parameter, By (42), equal to the term inside the curly brackets.
The remaining non-explicit term is

EqHy—C <w7® [ f ]) H2 = Hy—C’ (uq(ww) @Mq(ﬁ,v)) Hz—i—tr{CTC Cov, (w7® [ f ])}

Lemma 3 below implies that

B
Cov, <'w—y © [ o | ) = COVa(ws) O {Zq(p.0) + Bq(Bo)Hg(0)} T (“q(ww)“qT(wv)) O Xg(B,v)-
The stated result for B,2) then follows quickly from this expression and the fact that

Covq(w‘)‘) = diag[u’q(w.\,) © {1 - ,U’q(w.y)}]'

Lemma 3. If 1 and x> are independent random vectors of the same length then
Cov(z; ®z3) = Cov(x) ® Cov(xs) + {E(x1)E(x)"} © Cov(xs)
+{E(x2)E(x2)T} ® Cov(x)
Proof: First note that for any constant vector a having the same length as  we have
Cov(a ® ) = (aa’) ® Cov(z). Then

Cov(x; ©®x2) = E{Cov(xi ® x2|x1)} + Cov{E(x1 © x2| x1)}
= {E(z12])} © Cov(ay) + Cov{E(x2) ® =1}
= {Cov(xy) + E(x1)E(x)T} © Cov(xs) + {E(xs) E(x2)T} ©® Cov(xy).

The lemma follows immediately.

Expressions for ¢ (b;) and 114, )

¢'(6) =[] ")

where
q*(bg) ~ Inverse—Gaussian({Mq(l/oﬁ)(gg(vk) + /‘g(vk))}_lﬂa 1).

In addition,
2 2 —1/2
Ha(v) = {g(1/02) (T T o)} 2

Derivation:
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We have
log p(b|rest) = Z{—flog (bg) — (b, — 0w/ |vk])?/(2bx 02 /v7)} + const

from which it follows that

K
logq*(b) = Y [~5log(b) — Eg{(bx — ou/|ve])?/(2br 02/v})}] + const
k=1
K
= [—% lOg(bk) — %Mq(l/a%)Eq(vlz) bk — %(1/bk)] -+ const.
k=1

Straightforward manipulations then lead to the stated result.

Expressions for ¢*(p)

K
=[] ¢ ()
k=1
where
" (pr) ~ Beta(Ap + fg(y,), Bp + 1 = fig(yy))-
Derivation:

First note that

K
log p(plrest) = > {(Ap + v — 1) log(px) + (B, — ) log(1 — pi)} + const.
k=1

Then

log ¢*(p Z{ Ap + pig(yy) — 1) 1og(pr) + (Bp = fig(y)) log(1 — pr) }-

Expressions for ¢* () and f14(+,)

g ()
q ~ Bernoulli (
('Yk) 1+ eXP(nq(“/k))

where
T
Tyew) = —3 Hq(1/02) [”Z’f”z{"?(vk) + tg)} — 2Z 1Y Houy)
F2ZL X A{(By(B.0)) 111k + Ha(B)Ha(vy) }
+2Z{Z_k{( o) =k © {(Zq(w)) kb + Ha(op) (Bg(o)) - k}H
+¢( + Hg( Vk)) d}(Bp +1-— Uq(vk))'
Derivation:

The full conditional density function for -, satisfies
log p(ykrest) = —ﬁﬂy —XB—Z k(v ©v_p) — Zpye vl|* + i logit(py) + const
= Wk:(—ﬁ[“zknzvz—QZITZkUk+2XTZk,3Uk

+2ZFZ 4 {v_, ® (vgv_g)} ] + logit(pk)> + const.
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Hence
logq™(vk) = ’Yk:( — 3 lao2) Eq |1 2P0 — 29" Zy v, + 2X T Zy, By,
+2ZFZ 1 {v_}, ® (vgv_g)} ] + Eq{logit(pk)}> + const.

We thus require four expectations with respect to the ¢-functions corresponding to the
square brackets in this last expression. The first is

Eq(vp) = Ug(uk) + uim = (Zg())kk + (uq@))i
whilst the second is Eq(vk) = (fq(v))k- The third is

Ey(Buk) = (By(Bw))1,1+k T 1g(8) (Bg(w) )k
Next note that

Edv_1©rv-1)} = (Bg(y) -k © Eq(vkv—k) = (Bg(y)) —k O {(Bg(w)) —k.k T Hg(oy,) (Bg(w)) —k }

where (X)) —k,k is the kth column of X (,,) with the kth row omitted.
The remaining expectation is

E{logit(p)} = Eq{log(pk)} — Eq{log(l — pk)}
Lpettaon =1 (1 — p)Pr=Hacn) Jog(p)
o B(Ap+ tg(y), Bp = () +1)
B /1 p o (1 — p) P log(1 — p)
0 B(Ap + tg(y)s Bp = tg(y) +1)

where B(-, -) is the Beta function. Using the integral result

1 xafl(l _ x)bfl
/0 W log(x) dz = ¥ (a) — (a + b)

(Result 4.253 1. of Gradshteyn & Ryzhik, 1994) where ¢(x) = % log{I'(z)} is the digamma
function we eventually get

Eq{logit(pk)} = ¢(AP + :uq('yk)) - w(BP +1- Mq(wk))'

On combining we see that

log ¢* (k) = Yk Mg(y,) +const, v, =0, 1.

The stated result follows immediately.

Expressions for q" (a’E)I Bq(ag)l Kg(1/ac)r q*(au)l Bq(au) and Hq(1/ay)

Each of these expressions, and their derivations, are identical to the penalized spline case.

Appendix E: Derivation of Algorithm 5
In Algorithm 5, the MFVB calculations for UZ, ay, b and p are unaffected by the change

from Gaussian y to binary y. For 8, v and + the algebra is very similar to the Gaussian
case. The only modifications are

Hq(1/02) Teplaced by 1
and y replaced by p(q)-
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It remains to determine the form of ¢*(a) and (). Firstly, if y; = 1 then

¢*(ai) o exp{Ey(—3[ai—(XB)i —{Z(vov)}]*)}, a;>0

ox exp(—l[ — (X1gm))i —{Z (g~ G/J'q('u))}l}2>7 a; >0

Hence, ify; = 1,

¢ai — (Xng(p))i = {Z(14(v) © Hg(w))}i)

a; >0
(I)((X:u’q(,@ )Z + {Z(N‘q('y) © l‘l’q(’v))}l)

il i

q*(a;) =

which is a truncated normal density function on (0, co). Similarly, if y; = 0, then

<b( — (Xpg(g))i = {Z(1g(5) © Hyg(w))}i)

(X 15 >+{Z<uq(7>@uq(v)>}>’ <0

q*(a;) =

Using moment results such as [;° 2¢(x — p)/®(x) de = p+ ¢(p)/P(n) we eventually
obtain the expression

2y — 1) © ¢( X ptg(p) + Z(By() © By(w)))
— Z
Hata) = Xta() + Z(Bay) © Paw) + G0y =1 0 (X 1a(B) + Z By © tg(w)})

Appendix F: BUGS Code for Section 5.3 Analysis

This last appendix lists the BUGS code used to fit the subject-specific curve model given
by (42) and (43). The notation in the code matches that used in Section 5.3. For example
Zgbl corresponds to Z#', and this design matrix is constructed outside of BUGS and
inputted as data.

model
{
for (i in 1:numObs)
{
mul[i] <- (betal0 + betalxx[i] + inprod(uGbl([],Zgbl[i,])
+ Ulidnum[i]] + inprod(uSbjlidnum(il,]1,Zsbjli, 1))
y[i] 7 dnorm(muli],tauEps)
}
for (iSbj in 1:numSbj)
{
U[iSbj] ~ dnorm (0, taul)
}
for (kGbl in l:ncZgbl)

uGbl [kGbl] ~ dnorm (0, tauGbl)
for (iSbj in 1:numSb7j)

for (kSbj in 1l:ncZsbij)
{
uSbj[iSbj, kSbj] <- gamma[iSbj,kSbjl*vSbj[iSb]j,kSb7]
vSbj[iSbj,kSbj] ~ ddexp (0,tauSbj)
gamma [1Sbj,kSbj] = dbern(p[iSbj, kSbijl)
pliSbij,kSbj] = dbeta (Ap, Bp)
}

}
betal0 ~ dnorm(0,tauBeta) ; betal 7 dnorm(0,tauBeta)
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tauEps ~ dgamma (0.5, recipAeps) ; AepsRecSg <- pow (Aeps,—2)
recipAeps ~ dgamma (0.5, AepsRecSq)

tauGbl ~ dgamma (0.5, recipAgbl) ; AgblRecSg <- pow (Agbl,-2)
recipAgbl ~ dgamma (0.5, AgblRecSq)

tauU 7 dgamma (0.5, recipAlin) ; AlinRecSg <- pow(Alin,-2)
recipAlin ~ dgamma (0.5,AlinRecSq)

tauSbj ~ dgamma (0.5, recipAsbij) ; AsbjRecSg <- pow(Asbij,-2)
recipAsbj ~ dgamma (0.5,AsbjRecSq)
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