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SUMMARY

We devise a classification algorithm based on generalised linear mixed model (GLMM)
technology. The algorithm incorporates spline smoothing, additive model-type struc-
tures and model selection. For reasons of speed we employ the Laplace approximation,
rather than Monte Carlo methods. Tests on real and simulated data show the algorithm
to have good classification performance. Moreover, the resulting classifiers are generally
interpretable and parsimonious.

Keywords: Akaike Information Criterion; Feature selection; Generalised additive models;
Penalised splines; Supervised learning; Model selection; Rao statistics; Variance compo-
nents.

1 Introduction

Classification is a very old and common problem, where training data are used to guide
the classification of future objects into two or more classes based on observed predictors.
Examples include clinical diagnosis based on patient symptoms, handwriting recognition
based on digitised images and financial credit approval based on applicant attributes.
Classification has an enormous number of applications; arising in most areas of science,
but also in business as evidenced by the ongoing growth of industries such as data min-
ing and fraud detection. The literature on classification methodology and theory is mas-
sive and mature. Contemporary statistical perspectives include Breiman (2001), Hastie,
Tibshirani and Friedman (2001) and Hand (2006). A substantial portion of the classifica-
tion literature is within the field of Computing Science, where ‘classification’ is usually
called ‘supervised learning’ and ‘predictors’ often called ‘features’ or ‘variables’.

There is a multitude of criteria that could be considered when tuning and assess-
ing the quality of a classification algorithm. Numerical criteria include test error, Brier
score and area under the curve of the receiver operating characteristic. A non-numerical
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quality criterion which, depending on the application, can be of utmost importance is
interpretability. Hastie et al. (2001, Section 10.7) state that ‘data mining applications gen-
erally require interpretable models’ and that ‘black box’ classifiers with good numerical
performance are ‘far less useful’. Nevertheless, a good deal of classification theory and
methodology, within both Statistics and Computing Science, is oblivious to interpretabil-
ity. Some exceptions include tree-based approaches (e.g. Breiman, Friedman, Olshen &
Stone, 1984; Hastie et al., 2001) and additive model-based approaches (e.g. Hastie et al.,
2001). Related to interpretability is parsimony, where superfluous predictors are sifted
out. This corresponds to pruning of tree-type classifiers and variable selection in those
based on additive models. In Computing Science the topics of variable selection and feature
selection (e.g. Guyon & Elisseeff, 2003) have similar aims.

Another often neglected quality measure is speed. Again, depending on the appli-
cation, speed can be crucial. Speed is invariably tied to the size of the training data but
there are huge differences, some involving several orders of magnitude, between existing
classification algorithms in this respect.

In this paper we develop a classification algorithm that strives for very good perfor-
mance in terms of interpretation, parsimony and speed; while also achieving good clas-
sification performance. The algorithm, which we call KOW (after ourselves), performs
classification via a semiparametric logistic regression model after undergoing variable se-
lection on the predictors. In this respect, KOW is similar in spirit to variable selection al-
gorithms for additive models such as BRUTO (Hastie & Tibshirani, 1990), those based on
versions of the R function step.gam() (Chambers & Hastie, 1992; Hastie, 2006; Wood,
2006), and Markov Chain Monte Carlo approaches such as that developed by Yau, Kohn
& Wood (2003). The additive structure aids interpretation, but can also lead to improved
test errors; see e.g. Section 12.3.4 of Hastie et al. (2001).

The KOW algorithm performs fast fitting and variable selection by borrowing ideas
from generalised linear mixed models (GLMM). This is a relatively young, but rapidly
growing, area of research that has its roots in biostatistical topics such as longitudinal
data analysis and disease mapping; see e.g. Breslow & Clayton (1993), Verbeke & Molen-
berghs (2000) and Wakefield, Best & Waller (2000). However GLMM can handle a much
wider range of problems including generalised additive models (e.g. Zhao, Stauden-
mayer, Coull & Wand, 2006). The essence of KOW is to equate inclusion of a predictor
with the significance of parameters in a GLMM. Linear terms correspond to fixed ef-
fect parameters, while non-linear terms correspond to variance components. KOW uses
efficient score-based statistics, also known as Rao statistics, to choose among candidate
predictors. A version of the Akaike Information Criterion is used to choose between
fixed effect parameters and variance components, and also acts as a stopping rule. Un-
like step.gam() , KOW has inbuilt automatic smoothing parameter selection for smooth
function components.

When fitting a GLMM, whether for classification or not, the main obstacle is the pres-
ence of intractable integrals in the likelihood. Currently available methods for fitting a
GLMM fall into three general categories: quadrature, Monte Carlo methods and ana-
lytic approximation (e.g. McCulloch & Searle, 2000). Quadrature is not viable for the
size of integrals arising GLMM with additive model structure. Monte Carlo methods
are generally ruled out by their slowness. KOW makes use of much faster Laplace ap-
proximation methods. Laplace approximation is sometimes criticised in GLMM analysis
due to the substantial biases inherent in estimates of parameters of interest (e.g. Mc-
Culloch & Searle, 2000, p. 283). Recently, Kauermann, Krivobokova & Fahrmeir (2008)
have shown that the Laplace approximation is asymptotically justifiable and hence un-
biased for penalized spline smoothing in GLMMs. This also holds when the number of
splines increases with the sample size. Hence, bias problems do not occur in our setting.
Furthermore, such issues are less crucial in the classification context where minimizing
classification error is paramount.
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We have tested KOW on several real and simulated data sets and compared it with
other additive model-based classifiers. Our implementation of KOW fits a classifier to
data sets with 5–10 possible predictors in a few seconds on a typical 2008 computer. If
the number of predictors is in the tens then computation is in the order of minutes. The
penalised spline aspect of KOW means that training sample size only has a linear effect
on computation times. KOW is generally much faster than step.gam() , although not
as fast as BRUTO. However KOW can yield much better classification performance than
BRUTO and is on par with step.gam() . Performances tend to be similar among algo-
rithms in terms of interpretability and parsimony. On balance, we believe KOW has the
potential for improved fast classification in contexts when interpretability and parsimony
are important.

In Section 2 we develop a fast algorithm for fitting a GLMM. In keeping with the
classification goals we concentrate on the logistic mixed model. Section 3 describes our
model selection strategy based on Rao statistics and AIC. We report on some comparative
numerical studies in Section 4. We conclude with some discussion in Section 5.

2 Fast Logistic Mixed Model Classifiers

Consider two-class classification with class labels denoted by y ∈ {0, 1} and let x =
(x1, . . . , xd) be the set of possible predictors. Logistic regression-type classification is
based on models of general form

logit{P (y = 1|x)} = η(x). (1)

Classification of a new observation with predictor vector xnew is performed according to

sign{η̂(xnew)}

where η̂ is an estimate of η based on training data (x1, y1), . . . , (xn, yn). Here xi is a d-
variate vector representing the ith observation on x.

A key element is appropriate modelling of η(x). Given our interpretability goals, we
work with sums of smooth low-dimensional functions of the predictors such as:

η(x) = β0 + β1x1 + η2(x2) + η3(x3)

and
η(x) = β0 + β1x1 + η23(x2, x3).

Smooth univariate functions are modelled using penalised splines with mixed model
formulation as follows:

ηj(xj) = βjxj +

Kj∑

k=1

ujkzjk(xj)

where ujk i.i.d. N(0, σ2
j ) where the variance component σ2

j controls the amount of smooth-
ing by acting as penalty parameter corresponding to a quadratic penalty on the ujks. The
zjk are spline basis functions appropriate for handling the non-linear component of ηj .
There are several options for their choice; see e.g. Durbán & Currie (2003), Wand (2003),
Welham, Cullis, Kenward & Thompson (2007) and Wand & Ormerod (2008). Bivariate
functions will be of the form

ηj`(xj , x`) = βjxj + β`x` +

Kj∑

k=1

uj`kzj`k(xj , x`)

with uj`k i.i.d. N(0, σ2
j`). Appropriate bivariate spline functions zj`k(xj , x`) are described

by Ruppert, Wand & Carroll (2003, Chapter 13) and Wood (2003). The extension to
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general multivariate functions is obvious from these references. However, due to inter-
pretability and curse of dimensionality issues, it is rare to have more than 2 or 3 variables
handled together.

One advantage of utilizing the above mixed model representation of penalized splines
is that it easily allows for the incorporation of additional complexities such as longitudi-
nal and spatial effects. A further advantage of the mixed model/penalized spline rep-
resentation is that it allows use the well established framework of maximum likelihood
and best prediction for estimation and inference (Ruppert et al., 2003; Wand, 2003).

Models for η = [η(x1), . . . , η(xn)]T can be written in the form

η = Xβ + Zu (2)

where β is a vector of fixed effects, u is a vector of random effects, X contains a column of
ones, together with a subset of of the columns of [x1 · · · xn]T , and Z are design matrices
corresponding to spline bases. The covariance matrix of u takes the form

Gσ2 ≡ blockdiag
1≤j≤r

(σ2
j I) (3)

where σ2 = (σ2
1 , . . . , σ

2
r ) is the vector of variance components.

For the model defined by (1), (2) and (3) the log-likelihood of β and σ2 is

`(β,σ2) = log
∫

Rq exp
{
yT (Xβ + Zu) − 1T log(1 + eXβ+Zu)

}

×(2π)−q/2|Gσ2 |−1/2 exp(−1
2u

TG−1
σ2u) du

(4)

where q is the dimension of u.The integral (4) cannot be calculated in analytic form. This
is usually dealt with via Monte Carlo methods or analytic approximations. In the interest
of speed we work with the Laplace approximation of (4):

`Laplace(β,σ2) = −1
2 log |I+ZT Wβββ,ûuuZGσ2 |+yT (Xβ+Zû)−1T log(1+eXβ+Zû)− 1

2 û
TG−1

σ2 û

(5)

where Wβββ,uuu ≡ diag{ eXβ+Zu

(1+eXβ+Zu)2
} and û is the maximiser of the integrand in (5) (e.g.

Breslow & Clayton, 1993).
If exact calculation of the likelihood was possible then predictions for new data would

be made by replacing β and u in η with the maximum likelihood estimate of β and the
best predictor of u, i.e. E(u|y). Since we do not have a closed form for the likelihood we

instead use the β̂ obtained by maximizing `Laplace with respect to β and σ2 and the mode
û to approximate E(u|y).

Maximising (5) is difficult due to non-linear expressions involving both β and σ2

in the first and last terms of (5). We therefore pursue a backfitting idea by iteratively
maximising (5) with respect to β and σ2, respectively. Note that û depends on β and
σ2, so that the Laplace approximation has to be updated in each estimation iteration
as well. We do this by updating the estimates of β and u simultaneously. Let B ≡
blockdiag(0,G−1

σ2 ), ν ≡ [βT ,uT ]T , C ≡ [X Z] and

dfj(σ
2
j ) ≡ tr{Ej(Z

TW
β̂ββ,ûuu

Z + G−1
σ2 )−1ZTW

β̂ββ,ûuu
Z}

where Ej is the diagonal matrix with ones in the diagonal positions corresponding to the
spline basis functions for σ2

j and zeroes elsewhere. Note that dfj(σ
2
j ) has an ‘effective de-

grees of freedom’ (e.g. Buja, Hastie & Tibshirani, 1989) interpretation for the contribution
from the spline terms attached to σ2

j . We propose fitting logistic mixed model classifiers
using Algorithm 1.

Algorithm 1 is similar to the algorithm developed by Breslow and Clayton (1993),
commonly referred to as PQL (an acronym for Penalized Quasi-Likelihood) but differs
in two respects. PQL uses Fisher scoring as the updating step for ν̂ while Algorithm
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Algorithm 1 Fast Fitting of a Logistic Mixed Model Classifier

1. Initialise: ν̂(0) and σ̂2(0). Set L to be a small integer.

2. Cycle:

for ` = 1, 2, . . . do

if ` mod L = 1 then

K = CTW
ν̂(`)C

end if

ν̂(`+1) = ν̂(`) + (K + B)−1

{
CT

(
y − eCν̂(`)

1+eCν̂(`)

)
− Bν̂(`)

}

for `′ = 1, 2, . . . do

for I ∈ I do

σ̂
2(`′+1)
j = ‖û

(`′)T

j ‖2/dfj(σ̂
2(`′)
j )

end for

end for

end for

until: max

{
‖ν̂(`+1)−ν̂(`)‖

‖ν̂(`)‖
, ‖σ̂2(`′+1)−σ̂2(`′)‖

‖σ̂2(`′)‖

}
is below some small tolerance value.

1 for uses a repeated Hessian Newton’s method (Ormerod, 2008, Appendix C). Here the
Hessian is updated every second iteration and can be viewed as a slight modification of
Fisher scoring. However, unlike PQL, the updating step for σ̂2 uses a fixed point iteration
in order to avoid calculating to Hessian matrix of derivatives with respect to σ2. The
fixed point updating formula arises from differentiation of `Laplace(β,σ2) with respect to
σj . The PQL approach to updating σ̂2 is trickier to implement since more care is required
to calculate the Hessian and ensuring positive definiteness in calculating Newton search
directions for σ2.

Algorithm 1 is also quite fast compared to PQL. Solving for ν̂(`+1) for a fixed σ̂2 is a
concave programming problem. Assuming that the function to be maximized is strictly
concave and has a Lipschitz continuous Hessian and the current iterate is sufficiently
close to the solution it is possible to show that the rate of convergence over two-steps of
the algorithm is at up to cubic (Ormerod, 2008, Appendix C). Every odd iteration takes
O(nP 2 + P 3) while every even step only takes O(nP + P 2) where P is the length of the ν̂

vector. Solving for σ̂2 is can be comprehended as a fixed-point iteration. Each σ2 update
can be computed in O(nP 2 + P 3) operations.

3 Model Selection

We now address the problem of choosing between the various models for the classifier
η(x). Even for moderate d the number of such models can be very large. Our approach
is driven by our previously stated goals of speed, parsimony and interpretability.

According to the spline models described in Section 2, the fullest model has fixed
effects component

β0 + β1x1 + . . . + βdxd.

However, smooth function terms will not be appropriate for all predictors. For example,
some of the xi’s may be binary. Let S be the subset of {1, . . . , d} such that xi is to be
modelled as smooth function for each i ∈ S. Then let I be a partition of S that spec-
ifies the type of non-linear modelling in the fullest model. For example if d = 4 then
I = {1, 3, 4} corresponds to the fullest model being the additive model η(x1, x2, x3, x4) =
β0 + η1(x1) + β2x2 + η3(x3) + η4(x4), while I = {{1, 3}, {4}} corresponds to the model
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η(x1, x2, x3, x4) = β0 + η13(x1, x3) + β2x2 + η4(x4). We will assume, for now, that S and I
are specified in advance. A recommended default choice is

I = all singleton sets of elements of S

corresponding to an additive model. Note that subscripting on the σ2
j corresponds to the

elements of I rather than those of x.
Description of our model selection strategy for the general set-up becomes notation-

ally unwieldy. Therefore we will describe the algorithm via an example. Suppose that
the set of possible predictors {x1, x2, x3} where x1 is binary and x2 and x3 continuous,
and that only additive models are to be considered. Then S = {2, 3} and I = {{2}, {3}}.
The fullest model is

η(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 +

K2∑

k=1

u2kzk2(x2) +

K3∑

k=1

u3kzk3(x3)

where u2k i.i.d. N(0, σ2
1) and uk3 i.i.d. N(0, σ2

2). There are 25 = 32 possible sub-models
that include the intercept term. We propose the following forward selection approach to
choosing among them:

1. Start with η(x1, x2, x3) = β0.

2. (a) Determine the ‘best’ linear component to add to the model from
{β1x1, β2x2, β3x3}. Let β∗ denote the βk corresponding to this
choice.

(b) Determine the ‘best’ non-linear (spline) component to add to the

model from
{∑K2

k=1 uk2zk2(x2),
∑K3

k=1 uk3zk3(x3)
}

. Let σ2
∗ denote

the σ2
k corresponding to this choice.

3. Add the component corresponding to β∗ or σ2
∗ that leads to the bigger

decrease in the marginal Akaike Information Criterion (mAIC). If there
is no decrease then stop and use the current model for classification.
Otherwise, add the new component to the model and return to Step 2;
modified to have one less component. Continue while there are still
unselected components.

We propose to choose the ‘best’ linear and non-linear components using approximate
score-type test statistics that do not require fitting of the candidate models. This has
an obvious speed advantage. The details are given in Sections 3.1 and 3.2. The mAIC
criterion is described in Sections 3.3.

Before that we briefly give some required notation. For a general d × 1 parameter
vector θ = (θ1, . . . , θd) with log-likelihood `(θ) the derivative vector of `, Dθθθ`(θ), is the
1 × d with ith entry ∂`(θ)/∂θi. The corresponding Hessian matrix is given by Hθθθ`(θθθ) =

Dθθθ{Dθ`(θ)T }. The information matrix of the maximum likelihood estimator θ̂ is then
−E{Hθθθ`(θ)}.

3.1 Choosing the ‘best’ linear component to add

Let (β,u,σ2) define the current model, with fitted values (β̂, û, σ̂2) as obtained via Algo-
rithm 1, and let βkxk represent a generic linear component not already in the model. The
log-likelihood corresponding to the new model with βkxk added is a modification of (4)
with Xβ replaced by Xβ + βkxk and is denoted by `(β,σ2, βk).

We propose to choose the ‘best’ βkxk among all candidates according to maximum
absolute Rao statistic (also known as the score statistic) (e.g. Rao, 1973, Chapter 6). Exact
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Rao statistics in GLMM are computationally expensive, so we make a number of conve-
nient approximations. The first of these is to assume orthogonality between (β, βk) and
σ2 in the information matrix of the joint parameters. Strictly speaking, these parame-
ters are not orthogonal (Wand, 2007), but such orthogonality arises in the approximate
log-likelihoods with which we work. Under orthogonality, the Rao statistic for the hy-
potheses H0 : βk = 0 versus H1 : βk 6= 0 is

Rβk
= [D(β,βk)`(β̂, σ̂2, 0)]p+1

/√
1
/(

[Ey{−H(β,βk)`(β̂, σ̂2, 0)}]−1
)

p+1,p+1

where p is the length of β. A practical approximation involves dropping the determinant
term in (5) to obtain

`(β,σ2, βk) ' yT (Xβ + xkβk + Zû) − 1T log(1 + eXβ+βkxk+Zû) − 1
2 û

TG−1
σ2 û. (6)

As shown in the Appendix, this leads to

Rβk
' xT

k

(
y −

eXβ̂+Zû

1 + eXβ̂+Zû

)/√
xT

k W
β̂ββ,ûuu

{I − X(XT W
β̂ββ,ûuu

X)−1XTW
β̂ββ,ûuu

}xk. (7)

An advantage of this Rao statistic approach is that the candidate models corresponding
to addition of the βkxk do not need to be fitted. This means that the Rβk

can be computed
quickly even when there is a large number of candidate linear components. This strategy
has been used successfully in fitting regression spline models; see e.g. Stone, Hanson,
Kooperberg & Truong (1997).

3.2 Choosing the ‘best’ non-linear component to add

As in Section 3.1, let (β,u,σ2) define the current model and let Zkuk, uk ∼ N(0, σ2
kI),

represent a generic non-linear component not already in the model. The log-likelihood
corresponding to the new model with σ2

k added is a modification of (4) with Zu replaced
by Zu + Zkuk and is denoted by `(β,σ2, σ2

k).
The Rao statistic for H0 : σ2

k = 0 versus H1 : σ2
k > 0 is

Rσ2
k

= [D(σ2,σ2
k
)`(β̂, σ̂2, 0)]r+1

/√
1
/

[Ey{−H(σ2,σ2
k
)`(β̂, σ̂2, 0)}]−1

r+1,r+1 ≡ Rnum

σ2
k

/Rden

σ2
k

(8)

where Rnum

σ2
k

and Rden

σ2
k

respectively denote the numerator and denominator in Rσ2
k

and r

is the length of σ2. Test statistics of this type were studied by Cox & Koh (1989), Gray
(1994), Lin (1997) and Zhang & Lin (2003), for example. We use the largest approximate
Rσ2

k
to choose the ‘best’ non-linear component not already in the model.

For practical reasons, we work with the Laplace approximation to `(β,σ2, σ2
k):

`Laplace(β,σ2, σ2
k) = −1

2 log |I + [Z Zk]
TWβββ,ûuu,ûuuk

[Z Zk]blockdiag(Gσ2 , σ2
kI)|

+yT (Xβ + Zû + Zkûk) − 1T log(1 + eXβ+Zû+Zkûk) − 1
2 û

T G−1
σ2 û− 1

2σ−2
k ûT

k ûk

where (û, ûk) maximises

yT (Zu + Zkuk) − 1T log(1 + eXβ+Zu+Zuk) − 1
2u

TG−1
σ2u− 1

2u
T
k uk/σ

2
k. (9)

The dependence of W
β̂ββ,ûuu

on (σ2, σ2
k) is ignored in the differentiation. We show in the

Appendix that

Rnum

σ2
k

' −1
2 tr[ZT

k W
β̂ββ,ûuu

{I − ZGσ2(I + ZTW
β̂ββ,ûuu

ZGσ2)−1ZTW
β̂ββ,ûuu

}Zk]

+1
2

∥∥∥ZT
k

(
y − eXβ̂+Zû

1+eXβ̂+Zû

)∥∥∥
2
.

(10)
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Expression (10) has the computational advantage that the matrix inversion pertains to
the current model and only needs to be performed once for selecting the ‘best’ non-linear
component.

The denominator of Rσ2
k

can be approximated using the arguments in Section 2.4 of

Breslow & Clayton (1993). These lead to

Rden

σ2
k

'
√

1/[K(σ2, 0)−1]r+1,r+1

where K(σ2, σ2
k) is the (r + 1) × (r + 1) matrix with (i, j) entry given by

Kij(σ
2, σ2

k) ≡ 1
2 tr{Ei(I + Z̃TW

β̂ββ,ûuu
Z̃G̃σ2,σ2

k
)−1Z̃TW

β̂ββ,ûuu
Z̃

×Ej(I + Z̃TW
β̂ββ,ûuu

Z̃G̃σ2,σ2
k
)−1Z̃TW

β̂ββ,ûuu
Z̃},

Z̃ ≡ [Z Zk], G̃σ2,σ2
k
≡ blockdiag(Gσ2 , σ2

kI) and E1, . . . ,Er+1 are the diagonal matrices,

with zeroes and ones on the diagonal, defined by G̃σ2,σ2
k

=
∑r

i=1(σ
2)jEj + σ2

kEr+1. A

more explicit formula for Rden

σ2
k

, that aids efficient computation of the Rσ2
k
, is given in the

Appendix.

3.3 The mAIC criterion

For the model defined by (β,u,σ2) the marginal Akaike Information Criterion (mAIC) is

mAIC(β,u,σ2) = −2`(β̂, σ̂2) + 2{dim(β) + dim(σ2)}

where dim(v) denotes the dimension, or length, of the vector v. In practice we replace
` by `Laplace. The word ‘marginal’ is used to distinguish the criterion from conditional
AIC (cAIC) introduced to mixed model analysis by Vaida & Blanchard (2005). In smooth
function contexts, cAIC differs from mAIC in that the former used an ‘effective degrees
of freedom’ measure (e.g. Buja et al., 1989) in the second term rather than the number of
fixed effects and variance components. Recently, Wager, Vaida & Kauermann (2007) com-
pared mAIC and cAIC for model selection in Gaussian response models and concluded
comparable performance in that context. While similar comparisons are yet to be made
in the logistic context it is unlikely that one will significantly dominate the other. Our
decision to use mAIC in the default KOW algorithm is driven by the high premium we
are placing on computational speed.

3.4 Variants and extensions

The algorithm described near the start of this section, with details as laid out in Sections
3.1–3.3, is the ‘default’ version of the KOW algorithm for building a parsimonious classi-
fier; optimised for speed and implementation simplicity. There are a number of variants
and extensions that could be considered — albeit at the expense of speed and simplicity.
Some of these are:

• Replace the mAIC-based model selection strategy with one that uses hypothesis
testing and p-values. This involves approximate distribution theory for the Rao
statistics. We have done some experimentation with this p-value approach and the
results look promising. Appendix B provides details.

• Replace the simple forward selection algorithm with a more elaborate scheme. One
option is to have forward selection up to the fullest model, followed by a backward
selection phase, using Wald statistics, back to the smallest model. Such a strategy is
used by Stone et al. (1997), for example.
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• Automate the choice between univariate and multivariate functions of the continu-
ous predictors corresponding to the set I . The default version requires the user to
either specify I or use only univariate functions.

• Decide whether a component should be added to the model based on criteria other
than largest decrease in mAIC. Options include cAIC and versions of generalised
cross-validation (e.g. Kooperberg, Bose & Stone, 1997).

• Insist that all non-linear components have a corresponding linear term. So if the
non-linear component for xk is selected for addition to the model then also add
βkxk if it is not already present.

4 Comparative Performance

We now compare KOW with algorithms similar in their aims including: BRUTO (Hastie
and Tibshirani, 1990) and the functions step.gam() from the R libraries gam version
0.98 and mgcv version 1.3-27 (Chambers & Hastie, 1992; Hastie, 2006; Wood, 2006). The
comparisons are made with respect to test error, parsimony and speed.

The mgcv package performs smoothing and model selection via optimization of the
generalized cross-validation (GCV) criteria. However mgcv does not perform variable se-
lection as such but uses the related concept of shrinkage (see Hastie et al., 2001, Chapter
3 for instance). For the purposes of testing we treat variables with an estimated effective
degrees of freedom smaller than 0.01 as not included in the model. The step.gam()
function in the gampackage requires the use to specify the number of degrees of freedom
for each component. In our comparison studies we have set the number of degrees of
freedom for each component to 3. Model selection is then performed by greedily select-
ing the component that gives the smallest AIC value. The BRUTO procedure uses least
squares loss with smoothing splines where back-fitting model selection is based on an
approximate GCV criteria.

Our comparison study involved both real and simulated datasets. All datasets were
obtained from the following Internet locations in 2008:

Name Location
banana users.rsise.anu.edu.au/ ˜ raetsch/data/index.html
PID/spam cran.au.r-project.org/src/contrib/mlbench_1.1-0.tar .gz
orange www-stat.stanford.edu/ ˜ tibs/ElemStatLearn/datasets/orange

Two simulated datasets were also used for comparison, Orange and Banana. In Orange
ten predictors X1, . . . ,X10 are simulated from a univariate standard normal distribution
with one class having the first four predictors conditioned on 9 ≤

∑4
i=1 X2

i ≤ 16. Thus
Orange has 4 real predictors and 6 noise predictors. Banana is a 2 class 2-dimensional
dataset simulated such that the points from four overlapping clusters two of which are
banana shaped. A sub-sample of these points are displayed in Figure 1. For the Banana
dataset we added 6 standard normal noise predictors to make a total of 8 predictors for
the dataset used for testing. Note that the data from the Banana dataset is not simulated
from an additive model structure.

For the Orange dataset each algorithm was run using 50 observations for each class
(making a total of 100 observations), and the test error was attained by taking the average
error from 50 simulations containing 500 observations for each class. For the Banana
dataset each algorithm was run using 400 observations and the test error was attained by
taking the average error from 100 simulations containing 4900 observations altogether.

The two real datasets used were the Spam dataset, containing 4601 observations and
57 predictors, and the Pima Indians Diabetes (PID) dataset, containing 768 observations
and 8 predictors.
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Testing on the real datasets was conducted using 10-fold cross-validation. This in-
volves splitting the dataset into 10 different parts. For the ith part we fit the model using
the other 9 parts of the data, and calculate the prediction error of the model when pre-
dicting the ith part of the data. We did this for all 10 parts and averaged the 10 estimates
to obtain the test error.

For each variable we used a univariate O-Sullivan spline basis as described in Wand
and Ormerod (2008). Twenty interior knots, equally spaced with respect to the quantiles,
were used for each variable.

Without With
Dataset Method Noise Noise Real Noise Mean

Test Error (%) Test Error (%) Time (seconds)
Banana mgcv 28.12 (0.15) 29.06 (0.16) 2.00 3.41 22.74 (1.25)

gam 32.63 (0.28) 33.10 (0.24) 2.00 0.85 2.24 (0.07)
BRUTO 28.13 (0.12) 28.29 (0.13) 1.85 0.35 0.81 (0.001)
KOW 28.11 (0.15) 28.76 (0.15) 1.87 1.07 1.08 (0.05)

Orange mgcv 13.18 (0.86) 12.00 (0.85) 4.00 1.10 57.46 (2.69)
gam 9.16 (0.74) 9.64 (0.78) 4.00 0.32 17.62 (0.26)
BRUTO 8.58 (0.65) 9.10 (0.71) 4.00 0.30 0.14 (0.001)
KOW 9.45 (0.39) 11.92 (0.87) 3.92 0.78 1.82 (0.06)

Table 1: Averages (standard deviation) results for the Banana and Orange study described in
Section 4.

Examining Table 1 we see that all methods are fairly robust classifiers when noise
variables are added. Furthermore all methods appear to be fairly good at discerning the
real predictors from the noise predictors. KOW appears to select more noise predictors
than all of the other methods accept mgcv. BRUTO appears to give slightly better classi-
fication rates on the Orange dataset.

Mean No.
Dataset Method Test Predictors Mean

Error (%) Included Time (seconds)
Pima mgcv 23.43 (1.90) 6.9 14.27 (1.08)
Indians gam 23.69 (2.16) 4.6 4.13 (0.16)
Diabetes BRUTO 50.64 (1.80) 5.3 0.12 (0.004)

KOW 22.92 (1.62) 6.0 2.51 (0.11)
Spam mgcv 5.89 (0.34) 50.7 21278.00 (4466.75)

gam failed N/A N/A
BRUTO failed N/A N/A
KOW 5.38 (0.20) 37.6 1033.05 (98.93)

Reduced Spam mgcv 6.15 (0.37) 28.4 4076.51 (694.35)
gam 6.42 (0.22) 28.2 7521.10 (1467.74)
BRUTO 16.86 (0.73) 25.7 1.01 (0.01)
KOW 5.57 (0.25) 27.3 590.06 (62.13)

Table 2: Averages (standard deviation) results for the Pima Indians Diabetes and Spam study
described in Section 4.

The gamand BRUTO procedures failed on the full Spam dataset. The gamprocedure
failed because it creates an object indicating whether each of the possible 2d candidate
models had been fitted. For high d the size of this object becomes too large. We could not
ascertain why the BRUTO procedure failed. To allow comparison of all 4 methods we
also worked with a reduced version of the Spam dataset based on the 29 variables most
often selected by KOW.

Examining Table 2 we see that KOW seems to gives similar (possibly slightly better)
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Figure 1: Test sample 1 of 4900 data points from the Banana dataset.

classification error compared to other methods on the real datasets. For the aforemen-
tioned reasons, the gamprocedure becomes infeasible when a large number of predictors
are used. Also when many predictors are used the computational time for mgcv may rule
out its use on large data mining problems. BRUTO was faster than KOW, however the
classification performance enjoyed by BRUTO on the simulated datasets did not seem to
carry on to the PID and Spam datasets for which it fails miserably.

Figure 2 illustrates cross-sections from the fitted additive function η̂(x) for the Spam
dataset. The cross-section for each predictor corresponds to all other predictors set to
their medians. When the curve moves above the zero line e-mails are more likely to be
spam and when the curve moves below the zero line e-mails are less likely to be spam
e-mails. For example when the proportion of number of times business is used to the total
number of words is less than 2 there is nearly no effect but after the proportion is above 2
the probability that the e-mail is spam appears to increase (roughly) linearly. Curves that
hover around the zero curve, for example the variable our, do not have a large effect on
the predicted value.

5 Discussion

The KOW classification algorithm represents an appealing application of statistical infer-
ential techniques to data mining and related problems. Parsimony and interpretability
are delivered using likelihood-based inference ideas. Speed is obtained via Laplace ap-
proximation. Generalised linear mixed models, which have mainly been the providence
of regression-type analyses of data from biostatistical studies, can be seen to have wider
applicability.

While, in this article, we have concentrated on classification and logistic mixed mod-
els the methods presented are directly extendible to more general mixed models; e.g.
those appropriate for count data, and non-classification problems such as variable selec-
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Figure 2: A plot of fitted model for the Spam dataset using the predictors as chosen by the KOW
algorithm.

tion in generalised additive model analyses. We envisage several useful by-products of
the KOW algorithm for semiparametric analysis of multi-predictor data.
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Appendix A: Rao Statistic Derivations

Derivation of the Rβk
expression

Vector calculus methods (e.g. Wand, 2002) applied to the right hand side of (6) lead to

D(β,βk)`(β,σ2, βk) '

(
y −

eXβ̂+xkβk+Zû

1 + eXβ̂+xkβk+Zû

)T

[X xk].

Therefore the approximate numerator of Rβk
is the last entry of this vector with βk set to

zero:

[D(β,βk)`(β̂, σ̂2, 0)]p+1 ' xT
k

(
y −

eXβ̂+Zû

1 + eXβ̂+Zû

)
.

The negative Hessian is approximately

−H(β,βk)`(β,σ2, βk) ' [X xk]
T diag

(
eXβ+xkβk+Zû

(1 + eXβ+xkβk+Zû)2

)
[X xk].

12



The approximate denominator of Rβk
is the square root of the bottom right entry of this

matrix with βk set to zero and β set to its estimate at the current model. Standard results
on the inverse of partitioned matrices lead to (7).

Derivation of the Rσ2
k

expression

Let Z̃, G̃σ2,σ2
k

and E1, . . . ,Er+1 be as defined in Section 3.2. Then vector calculus methods

(e.g. Wand, 2002) applied to the right hand side of (6) lead to

[D(σ2,σ2
k
)`Laplace(β,σ2, σ2

k)]j = −1
2 tr{Ej(I+Z̃TW

β̂ββ,ûuu,ûuuk
Z̃G̃σ2,σ2

k
)−1Z̃TW

β̂ββ,ûuu,ûuuk
Z̃}+1

2‖ûj/σ
2
j ‖

2.

(11)
Noting that (û, ûk) maximise (9) we get the relationships

Gσ2Z

(
y −

eXβ̂+Zû+Zkûk

1 + eXβ̂+Zû+Zkûk

)
= û and σ2

kZk

(
y −

eXβ̂+Zû+Zkûk

1 + eXβ̂+Zû+Zkûk

)
= ûk.

The second of these gives ‖ûk/σ
2
k‖

2 = ‖ZT
k

(
y − eXβ̂+Zû

1+eXβ̂+Zû

)
‖2. Substitution of this equa-

tion into (11) and setting (β,σ2) = (β̂, σ̂2), σ2
k = 0, uk = 0 and j = r + 1 then leads

to

[D(σ2,σ2
k
)`Laplace(β̂, σ̂2, 0)]r+1 = −1

2 tr{Er+1{I + Z̃TW
β̂ββ,ûuu

Z̃ blockdiag(Gσ2 ,0)}−1Z̃TW
β̂ββ,ûuu

Z̃}

+1
2

∥∥∥ZT
k

(
y − eXβ̂+Zû

1+eXβ̂+Zû

)∥∥∥
2
.

Note that {I + Z̃TW
β̂ββ,ûuu

Z̃ blockdiag(Gσ2 ,0)}−1Z̃TW
β̂ββ,ûuu

Z̃ has the explicit expression

[
I + ZTW

β̂ββ,ûuu
ZGσ2 0

ZT
k W

β̂ββ,ûuu
ZGσ2 I

]−1 [
ZTW

β̂ββ,ûuu
Z ZTW

β̂ββ,ûuu
Zk

ZT
k W

β̂ββ,ûuu
Z ZT

k W
β̂ββ,ûuu

Zk

]
.

The expression for Rnum

σ2
k

then follows from standard results on the inverse of a partitioned

matrix and some straightforward matrix algebra.
We now provide a computationally efficient expression for Rden

σ2
k

. First, partition K(σ2, σ2
k)

as

K(σ2, σ2
k) =

[
K11(σ

2, σ2
k) K12(σ

2, σ2
k)

K12(σ
2, σ2

k)
T K22(σ

2, σ2
k)

]

where K11(σ
2, σ2

k) is the r × r upper left-hand block corresponding to the current model.
Then

Rden

σ2
k
' {K22(σ̂

2, 0) −K12(σ̂
2, 0)TK11(σ̂

2, 0)−1K12(σ̂
2, 0)}1/2.

Note that the matrix inversion K11(σ̂
2, 0)−1 needs only be done once for the current

model.

Appendix B: Variable Selection Via p-values

Let ε ≡ y−µ(η) where µ(η) ≡ exp(η)/{1 + exp(η)} and set ε̂ ≡ y−µ(η̂). The stochastic
component of R2

βk
is Qk ≡ ε̂TxT

k xkε̂. Note that ν̂ − ν ' (K + B)−1(CT ε − Bν), where
the notation of Section 2 is being used. First order expansion then yields

ε̂ ' ε − W
β̂,û

C(ν̂ − ν)

'
{
I − W

β̂,û
C(K + B)−1CT

}
ε + W

β̂,û
C(K + B)−1Bν = Mε + Ru
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where M ≡
{
I − W

β̂,û
C(K + B)−1CT

}
ε, R ≡ W

β̂,û
C

[ {
(K + B)−1

}
12{

(K + B)−1
}

22

]
G−1

σ2 and

(K + B)−1 =

[ {
(K + B)−1

}
11

{
(K + B)−1

}
12{

(K + B)−1
}

21

{
(K + B)−1

}
22

]
,

with partitions corresponding to the components β and u respectively. We then obtain
the approximation

Qk '
[
εT ,uT

] [ MT

RT

]
xkx

T
k [M,R]

[
ε

u

]
.

Making use of the simplifying assumption ε ∼ N(0,Wβ,u) and noting that u ∼ N(0,Gσ2)
Qk is approximately distributed as ρχ2

1 where ρ ≡ xT
k

(
MWβ,uM

T + RGσ2RT
)
xk and

χ2
1 denotes the chi-squared distribution with one degree of freedom (e.g. Imhof, 1961).

This approximative distribution can be employed to calculate a p-value for R2
βk

based
on the assumption that if xk is not in the model then E(ε) = 0. Similiarly, Rσ2

k
contains

the quadratic form ε̂T ZT
k Zkε̂ which can be decomposed in the same way leading to a

mixture of chi-squared distributions as derived in Zhang & Lin (2003).
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