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Abstract:

Variational approximation methods have become a mainstay of contemporary Machine Learn-

ing methodology, but currently have little presence in Statistics. We devise an effective vari-

ational approximation strategy for fitting generalized linear mixed models (GLMM) appro-

priate for grouped data. It involves Gaussian approximation to the distributions of random

effects vectors, conditional on the responses. We show that Gaussian variational approximation is

a relatively simple and natural alternative to Laplace approximation for fast, non-Monte Carlo,

GLMM analysis. Numerical studies show Gaussian variational approximation to be very accu-

rate in grouped data GLMM contexts. Finally, we point to some recent theory on consistency

of Gaussian variational approximation in this context.

Key Words: Best prediction; Longitudinal data analysis; Likelihood-based inference; Machine

learning; Variance components.

1 Introduction

Statistical and probabilistic models continue to grow in complexity in response to the demands

of modern applications. Fitting and inference for such models is an ongoing issue and new

sectors of research have emerged to meet this challenge. In Statistics, the most prominent of

these is Markov chain Monte Carlo (MCMC), which is continually being tailored to handle dif-
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ficult inferential questions arising in, for example, Bayesian models (e.g. Gelman, Carlin, Stern

& Rubin, 2004; Marin & Robert, 2007, Carlin & Louis, 2008), mixed and latent variable models

(e.g. Skrondal & Rabe-Hesketh, 2004; McCulloch, Searle & Neuhaus, 2008) and missing data

models (e.g. Little & Rubin, 2002). The main difficulty addressed by MCMC is the presence of

intractable multivariate integrals in likelihood and posterior density expressions.

In parallel to these developments in Statistics, the Machine Learning community has been

developing approximate solutions to inferential problems using the notion of variational bounds.

These variational approximations sacrifice some of the accuracy of MCMC by solving perturbed

versions of the problems at hand, but offer vast improvements in terms of computational speed.

Motivating settings include probabilistic graphical models, hidden Markov models and phylo-

genetic trees. Summaries of recent variational approximation research may be found in Jordan

et al. (1999), Jordan (2004) and Bishop (2006). An introduction to variational approximation

from a statistical perspective is provided by Ormerod & Wand (2009).

In this article we help bring variational approximation into mainstream Statistics by tailor-

ing it to the most popular current setting for which integration difficulties arise: generalized

linear mixed models (GLMM). In the interest of conciseness, we focus on the commonest type

of GLMM – that arising in the analysis of grouped data with Gaussian random effects. General

design GLMMs, as described in Zhao, Coull, Staudenmayer & Wand (2006), are not treated

here. We identify a particular type of variational approximation that is well-suited to grouped

data GLMMs. It involves approximation of the distributions of random effects vectors, given

the responses, by Gaussian distributions. The resulting Gaussian variational approximation (GVA)

approach emerges as a new alternative to Laplace approximation for fast, deterministic fitting

of grouped data GLMMs. Conceptually, the approach is very simple: its derivation requires

application of Jensen’s inequality to the log-likelihood to obtain a variational lower bound.

Maximization is then carried out over the original parameters and the introduced variational pa-

rameters. GVA involves a little more algebra and calculus to implement compared with some

of the simpler versions of Laplace approximation such as penalized quasi-likelihood (PQL)

(Breslow & Clayton, 1993). However, with the aid of the formulae presented in Appendix A,

effective computation can be achieved in orderm operations, wherem is the number of groups.

For some GLMMs, such as Poisson GLMMs, the GVA completely eradicates the need for inte-
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gration. In others, such as logistic GLMMs, only univariate numerical integration is required on

well-behaved integrands.

Standard errors for fixed effect and covariance parameter estimates are a by-product of the

fitting algorithm. Approximate best predictions for the random effects, along with predic-

tion variances, also arise quite simply from the Gaussian approximation. Moreover, numerical

studies show GVA to be very accurate; often almost as good as MCMC and a significant im-

provement on PQL. Other varieties of Laplace approximation (e.g. Raudenbush, Yang & Yosef,

2000; Lee & Nelder, 1996; Rue, Martino & Chopin, 2009), also offer accuracy improvements

over PQL but, like GVA, have their own costs in terms of implementability.

Recently, Hall, Ormerod & Wand (2009) investigated the theoretical properties of GVA for a

simple special case of the grouped data GLMMs considered here. They established root-m con-

sistency of Gaussian variational approximate maximum likelihood estimators under relatively

mild assumptions.

A significant portion of variational approximation methodology is based on the notion of

factorized density approximations to key conditional densities with respect to Kullback-Liebler

distance (e.g. Bishop, 2006, Section 10.1). This general strategy is sometimes called mean field

approximation, and has its roots in 1980s Statistical Physics research (Parisi, 1988). However,

mean field approximation is not well-suited to GLMMs since they lack the conjugacy that nor-

mally give rise to explicit updating formulae. In addition, mean field approximation has a

tendency to markedly underestimate the variability of parameter estimates (Wang & Tittering-

ton, 2005; Rue et al., 2009).

Another variant of variational approximations is the tangent transform approach of Jaakkola

& Jordan (2000). It may be applied to logistic GLMMs (Ormerod, 2008) but does not ex-

tend to other situations such as Poisson response models. We have also encountered variance

under-estimation problems with the Jaakkola and Jordan variational approximation (Ormerod

& Wand, 2008).

The use of Gaussian densities in variational approximation has a small and recent litera-

ture in Machine Learning. Gaussian variational approximations have been considered in the

context of neural networks (Barber & Bishop, 1998; Honkela & Valpola, 2004), Support Vec-

tor Machines (Seeger, 2000), stochastic differential equations (Archambeah, Cornford, Opper &
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Shawe-Taylor, 2007) and robust regression (Opper & Archambeau, 2009). None of this research

is directly connected with GLMMs.

Section 2 describes the type of data and the types GLMMs that we consider. In Section 3

we explain the use of Gaussian variational approximation for avoiding multivariate intractable

integrals when making inference about model parameters. Connections with Kullback-Liebler

divergence theory are described in Section 4. Section 5 deals with the problem of prediction

of random effects and explains how Gaussian variational approximation provides an attrac-

tive solution. Theoretical properties of Gaussian variational approximations for grouped data

GLMMs are the subject of Section 6. Examples are given in Section 7 and concluding remarks

are made in Section 8.

2 Data and Model

We consider regression-type data collected repeatedly within m groups. Examples of groups

in applications are humans in a medical study, counties in a sample survey and animals in a

breeding experiment. The jth predictor/response pair for the ith group is denoted by

(xij, yij), 1 ≤ j ≤ ni, 1 ≤ i ≤ m.

Here the entries of the predictor vectors xij are unrestricted, while the yij are subject to restric-

tions such as being binary or non-negative integers. A specific example is provided by Figure

1. The response data are disease indicators from a clinical trial involving longitudinal checks

on the participants.

For each 1 ≤ i ≤ m define the ni × 1 vectors:

yi ≡


yi1
...

yini

 and 1i ≡


1
...

1

 .
The first of these is the vector of responses for the ith group. It is reasonable to assume that the

vectors y1, . . . ,ym are independent of each other. However, within-group measurements may

be dependent and we use random effects to model this dependence. Specifically, we consider

one-parameter exponential family models of the form

yi|ui
ind.∼ exp{yTi (X iβ +Ziui)− 1Ti b(X iβ +Ziui) + 1Ti c(yi)}, ui

ind.∼ N(0,Σ) (1)
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Figure 1: Example of binary response grouped regression data. Each panel corresponds to longitudinal

measurements on a child with a history of otitis media who participated in a clinical trial in Northern

Territory, Australia. The horizontal axis (x) is week number since the start of the trial. The vertical axis

(y) is presence (y = 1) or absence (y = 0) of H. influenzae (source: Leach, 2000).

where ui, 1 ≤ i ≤ m, are K × 1 random effects vectors and Σ (K × K) is their common

covariance matrix. The functions b and c are specific to members of the family. The most

common examples are Bernoulli for which b(x) = log(1 + ex) and c(x) = 0 and Poisson for

which b(x) = ex and c(x) = − log(x!). Note that operations of b and c on a vector are applied

5



element-wise. For example,

b

 3

8

 =

 b (3)

b (8)

 .
The matricesX i andZi are design matrices dependent on the xij , and are assumed to be fixed.

Digestion of the design structure is aided by the following two examples:

EXAMPLE 1. Suppose (X iβ + Ziui)j = β0 + ui + β1 xij where ui ∼ N(0, σ2
u). In this case

β = [β0, β1]
T , ui = ui, K = 1 and Σ = σ2, The design matrices are

X i = [1 xij]1≤j≤ni and Zi = [1]1≤j≤ni for 1 ≤ i ≤ m.

�

EXAMPLE 2. Suppose (X iβ +Ziui)j = β0 + u0i + (β1 + u1i)x1ij + β2 x2ij where u0i

u1i

 ∼ N

 0

0

 ,
 σ2

0 ρσ0σ1

ρσ0σ1 σ2
1


In this case β = [β0, β1, β2]

T , ui = [u0i, u1i]
T , K = 2 and

Σ =

 σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

 .
The design matrices are

X i = [1, x1ij, x2ij]1≤j≤ni and Zi = [1, x1ij]1≤j≤ni for 1 ≤ i ≤ m.

�

Model (1) is a generalized linear mixed model (GLMM) suited to grouped data. In many

applications of interest, the data are collected longitudinally in which case (1) might be called

a longitudinal data GLMM. But to cater for other areas of application, such as complex sample

surveys, we will simply call (1) a grouped data GLMM.

The class of GLMMs is much more general than (1), as explained in Zhao et al. (2006).

Staying within the one-parameter exponential family, a more general class of models is

y|u ∼ exp{yT (Xβ +Zu)− 1T b(Xβ +Zu) + 1T c(y)}, u ∼ N(0,G), (2)
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where the design matrices X and Z and covariance matrix G are quite general. In the special

case of (1) we have

y =


y1

...

ym

 , X =


X1

...

Xm

 , u =


u1

...

um

 , Z = blockdiag
1≤i≤m

(Zi) andG = Im ⊗Σ.

We return to general design GLMMs in Section 4 since connections with variational approxi-

mation theory are better elucidated at that level of generality.

3 Gaussian Variational Approximate Inference

The parameters in model (1) are the fixed effects vector β and the random effects covariance

matrix Σ. Their log-likelihood is

`(β,Σ) =
m∑
i=1

{yTi X iβ + 1Ti c(yi)} −
m

2
log |Σ| − mK

2
log(2π)

+
m∑
i=1

log

∫
RK

exp

{
yTi Ziu− 1Ti b(X iβ +Ziu)− 1

2
uTΣ−1u

}
du

and the maximum likelihood estimators of β and Σ are

(β̂, Σ̂) = argmax
β,Σ

`(β,Σ). (3)

Evaluation of (3) and associated standard error calculations are hindered by the fact that the

K-dimensional integral in `(β,Σ) cannot be solved analytically. We can get around this by

introducing a pair of variational parameters (µi,Λi) for each 1 ≤ i ≤ m, where the µi are K × 1

vectors and the Λi are K ×K positive definite matrices. By Jensen’s inequality and concavity
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of the logarithm function:

`(β,Σ) =
m∑
i=1

{yTi X iβ + 1Ti c(yi)} −
m

2
log |Σ| − mK

2
log(2π)

+
m∑
i=1

log

∫
RK

exp

{
yTi Ziu− 1Ti b(X iβ +Ziu)− 1

2
uTΣ−1u

}
×

(2π)−m/2|Λi|−1/2 exp{−1
2
(u− µi)TΛ−1

i (u− µi)}
(2π)−m/2|Λi|−1/2 exp{−1

2
(u− µi)TΛ−1

i (u− µi)}
du

=
m∑
i=1

{yTi X iβ + 1Ti c(yi)} −
m

2
log |Σ| − mK

2
log(2π)

+
m∑
i=1

logEu∼N(µi,Λi)

[
exp

{
yTi Ziu− 1Ti b(X iβ +Ziu)− 1

2
uTΣ−1u

}
(2π)−m/2|Λi|−1/2 exp{−1

2
(u− µi)TΛ−1

i (u− µi)}

]

≥
m∑
i=1

{yTi X iβ + 1Ti c(yi)} −
m

2
log |Σ| − mK

2
log(2π)

+
m∑
i=1

Eu∼N(µi,Λi)

(
log

[
exp

{
yTi Ziu− 1Ti b(X iβ +Ziu)− 1

2
uTΣ−1u

}
(2π)−m/2|Λi|−1/2 exp{−1

2
(u− µi)TΛ−1

i (u− µi)}

])
≡ `(β,Σ,µ,Λ)

where

(µ,Λ) ≡ (µ1,Λ1, . . . ,µm,Λm).

The variational lower bound on the log-likelihood simplifies to:

`(β,Σ,µ,Λ) = mK
2

+
∑m

i=1 1Ti c(yi)− m
2

log |Σ|

+
∑m

i=1[y
T
i (X iβ +Ziµi)− 1Ti B(X iβ +Ziµi,diagonal(ZiΛiZ

T
i ))

+1
2
{log |Λi| − µTi Σ−1µi − tr(Σ−1Λi)}]

(4)

where

B(µ, σ2) ≡
∫ ∞
−∞

b(σx+ µ)φ(x) dx,

φ is the N(0, 1) density function and, for a square matrix A, diagonal(A) is the column vector

containing the diagonal entries of A. As with b and c, evaluations of B for vector arguments

are applied in an element-wise fashion. An explicit example is:

B




3

5

1

 ,


6

7

4


 =


B(3, 6)

B(5, 7)

B(1, 4)

 .
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The advantage of `(β,Σ,µ,Λ) over `(β,Σ) is that the former no longer involvesK-dimensional

integration. For Poisson mixed models all integrals in the lower bound expression disappear

since B(µ, σ2) = exp(µ+ 1
2
σ2). In the Bernoulli case

B(µ, σ2) =

∫ ∞
−∞

log{1 + exp(σx+ µ)}φ(x) dx,

which does not have an analytic solution. However, adaptive Gauss-Hermite quadrature (Liu

& Pearce, 1994) is well-suited to efficient and very accurate evaluation of B(µ, σ2) in this case.

The details are given in Appendix A.2.

Given the lower-bound result,

`(β,Σ) ≥ `(β,Σ,µ,Λ) for all (µ,Λ)

it is clear that maximizing over the variational parameters (µ,Λ) narrows the gap between

`(β,Σ,µ,Λ) and `(β,Σ). This leads to the Gaussian variational approximate maximum likelihood

estimators:

(β̂, Σ̂) = (β,Σ) component of argmax
β,Σ,µ,Λ

`(β,Σ,µ,Λ). (5)

Appendix A provides efficient computational formulas for solving this maximization problem.

3.1 Approximate Standard Errors

Define

θ ≡

 β

vech(Σ)

 and ξ ≡



µ1

vech(Λ1)
...

µm

vech(Λm)


(6)

to be the vectors containing the unique model and variational parameters, respectively. If

`(β,Σ,µ,Λ) is treated as a log-likelihood function and ξ is treated as a set of nuisance pa-

rameters then, according to standard likelihood theory, the asymptotic covariance matrix of θ̂

is
̂Asy. Cov(θ̂) ≡ θ block of I(β,Σ,µ,Λ)−1 (7)
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where

I(β,Σ,µ,Λ) ≡ E{−H`(β,Σ,µ,Λ)}

is the variational approximate Fisher information matrix and H is the Hessian matrix operator with

respect to (β, ξ). Approximate standard errors are given by the square-roots of the diagonal

entries of ̂Asy. Cov(θ̂), with all parameters set to their converged values.

Efficient calculation of ̂Asy. Cov(θ̂) is described in Appendix A.6.

4 Relationship with Kullback-Liebler Divergence

The lower bound expression can also be derived using the ideas of Kullback-Leibler diver-

gence, which underpins much of variational approximation methodology (e.g. Titterington,

2004; Bishop, 2006, Chapter 10). In this section, we first work with the general form of the

GLMM given by (2). We also use p to denote density or probability mass functions of random

vectors according to the model. For example, p(u|y) is the conditional density function of u

given y. The log-likelihood can be written in terms of the joint density of y:

`(β,Σ) = log p(y;β,Σ) = log p(y).

Let M be the dimension of the u vector. For an arbitrary density functions q on RM

`(β,Σ) = log p(y)

∫
RM

q(u) du =

∫
RM

log p(y)q(u) du

=

∫
RM

log

{
p(y,u)/q(u)

p(u|y)/q(u)

}
q(u) du

=

∫
RM

q(u) log

{
p(y,u)

q(u)

}
du+

∫
RM

q(u) log

{
q(u)

p(u|y)

}
du.

The second term is the Kullback-Leibler distance between q(u) and p(u|y). Since this is always

non-negative (Kullback & Leibler, 1951) we get

`(β,Σ) ≥
∫

RM
q(u) log

{
p(y,u)

q(u)

}
du. (8)

Substitution of q(u) ∼ N(µ,Λ) into this expression gives a closed form lower bound on the

log-likelihood.

10



THEOREM 1. Consider the family of lower bounds on `(β,Σ) obtained by taking q in (8) to be

a N(µ,Λ) density. For the special case of (2) corresponding to (1) the optimal Λ is of the form

blockdiag1≤i≤m(Λi), where each Λi is a K × K positive definite matrix, and the lower bound

reduces to (4).

A proof of Theorem 1 is given in Appendix B. It tells us that, in the case of grouped data

GLMMs (Section 2), there is nothing to be gained from taking Λ to be a general (mK)× (mK)

positive definite matrix. Rather, one can work with the smaller class of block-diagonal matrices,

where the blocks are of dimension K × K. Such a result is in keeping with the fact that, for

grouped data GLMMs, the log-likelihood reduces to a set of K ×K integrals.

5 Approximate Best Prediction of Random Effects

Prediction of the random effects vectorsu1, . . . ,um is often of interest. For example, it is needed

for residual-based model diagnostics. As before, let

u =


u1

...

um


be the full vector of random effects. The best predictor of u is

BP(u) = E(u|y) =

∫
RmK

u p(u|y) du.

This integral is also intractable for the class of GLMMs being considered in this article. How-

ever, maximizing over the variational parameters coincides with minimizing the Kullback-

Leibler distance between q(u) and p(u|y). For Gaussian variational approximation q = q(·;µ,Λ)

is the N(µ,Λ) density function, so an appropriate approximation to BP(u) is

BP(u) =

∫
RmK

u q(u; µ̂, Λ̂) du = µ̂

where

(µ̂, Λ̂) = (µ,Λ) component of argmax
β,Σ,µ,Λ

`(β,Σ,µ,Λ).
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Next we address the question of variability of BP(u). From best prediction theory (e.g.

Chapter 13 of McCulloch et al. 2008) we have the result

Cov{BP(u)− u} = Ey{Cov(u|y)}.

Replacement of p(u|y) by q(u; µ̂, Λ̂) then leads to the estimated asymptotic covariance matrix:

̂Asy. Cov{BP(u)− u} = Λ̂.

So, in summary, the maximizing variational parameters, µ̂ and Λ̂, can be used for prediction of

the random effects and measuring their variability.

6 Theoretical Properties

Hall, Ormerod & Wand (2009) studied the theoretical properties of GVA in the Poisson case

with (X iβ+Ziui)j = β0 +ui+β1 xij (the design structure of Example 1 in Section 2) and ni = n

for all 1 ≤ i ≤ m. For this special case only, they proved that, as m,n→∞ and under relatively

mild regularity assumptions,

β̂ = β0 +Op(m
−1/2 + n−1) and Σ̂ = Σ0 +Op(m

−1/2 + n−1)

where β0 and Σ0 are the true parameters. This suggests that GVA is root-m consistent for the

general grouped data GLMM setting of Section 2 (provided number of repeated measurements

to be at least as large as the square root of m). We have performed some heuristic arguments

that support such a result although we do not yet have a rigorous proof.

7 Examples

We will examine the effectiveness of GVA based on the well-examined Epilepsy dataset first pre-

sented by Thall & Vail (1990), the Bacteria dataset (Leach, 2000), the Toenail dataset (De Backer,

De Vroey, Lesaffre, Scheys & De Keyser, 1998; Lesaffre & Spiessens, 2001) and a simulation

study similar to one used by Zeger & Karim (1991) and Breslow & Clayton (1993).

We compared the fits obtained using GVA with several alternative approximations imple-

mented in R (R Core Development Team, 2009). These approximations include PQL as im-

plemented in the VR bundle (Venables & Ripley, 2009) via the function glmmPQL(), Adaptive
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Gauss-Hermite Quadrature (AGHQ) (Liu & Pierce, 1994; see also Pinheiro & Bates, 1995) in

the package lme4 (Bates & Maechler, 2009) via the function glmer(). AGHQ can be made

arbitrarily accurate by increasing the number of quadrature points. We adopted the strategy of

doubling the number of quadrature points until there was negligible difference in the values

of the estimators. This means that the AGHQ results are exact, and hence AGHQ is the “gold

standard” against which GVA and PQL may be compared. Note that the lme4 package does

not report standard errors for variance components.

7.1 Simulated Data

We conducted a simulation study similar to that described in Zeger & Karim (1991). We gener-

ated data according to:

logit {P (yij = 1)} = βTxij + ui and ui ∼ N(0, σ2) (9)

with β = [−2.5, 1,−1, 0.5]T , σ = 1, xij = [1, ti, xj, tixj]
T for 1 ≤ i ≤ 100, 1 ≤ j ≤ 7. The tis

take the value 0 for 1 ≤ i ≤ 50 and 1 otherwise and the xjs take the values −3,−2, . . . , 2, 3.

We simulated 200 datasets based on (9). The results are summarized in Figure 2 where we see

that the estimates for β are almost identical for each method, but that PQL underestimates σ.

In addition, with the exception of β0, the approximate 95% confidence intervals for the βj are

overly narrow for PQL, but close to exact for GVA.

7.2 Epilepsy Dataset

The Epilepsy dataset represents data collected from a clinical trial of 59 epileptics. Each patient

was randomly selected to either be administered a new drug (trti = 1) or a placebo (trti = 0).

The number of seizures in the 8 weeks before the trial period was recorded as basei as well

as the age of the patient, recorded as agei. Counts for the number of seizures were recorded

during the two weeks before each clinical visit. Visits are recorded as visit1 = −3, visit2 =

−1, visit3 = 1 and visit4 = 3. Finally, previous analyses (Thall & Vail, 1990) have shown that

the mean number of seizure counts was substantially lower for the fourth visit.

Using the Epilepsy dataset we first considered the Poisson random intercept model (9) with

log(basei/4), trti, trti × log(basei/4), log(agei) and I(j = 4) as covariates for 1 ≤ i ≤ 59,
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Figure 2: Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA and

PQL for the simulated logistic dataset. The vertical dotted lines correspond to the AGHQ values. Note

that confidence intervals for σ are not available for AGHQ in R, so are not compared for this parameter.

1 ≤ j ≤ 4; where I(P) is an indicator of P being true. This corresponds to Model II of Breslow

& Clayton (1993). The parameter estimates and approximate standard errors for this model are

summarized in Figure 3.

We also considered the Poisson random intercept and slope models of the form

yij|u0i, u1i ∼ Poisson[exp{(β0 + u0i) + (βvisit + u1i) visitj + βbase log(basei/4)

+βtrt trti + βbaseXtrt log(basei/4)× trti + βage log(agei)}]

where  u0i

u1i

 i.i.d. N

 0

0

 ,
 σ2

0 ρσ0σ1

ρσ0σ1 σ2
1

 .

This corresponds to Model IV of Breslow & Clayton (1993). The parameter estimates and ap-

proximate standard errors for this model are summarized in Figure 4.

From Figures 3 and 4 we see that all of the approximation methods compare favourably

with AGHQ, although the estimate of the variance component for PQL is slightly too small

and the estimated correlation parameter ρ is too large.

7.3 Bacteria Dataset

The bacteria datasets records tests of the presence of the bacteria H. influenzae in children with

a history of otitis media in Northern Territory, Australia (Leach, 2000). The children were

14
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Figure 3: Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA and

PQL for the Epilepsy data random intercept model. The vertical dotted lines correspond to the AGHQ

values. Note that confidence intervals for σ0 are not available for AGHQ in R, so are not compared for

this parameter.

randomized into three groups: placebo, drug, and drug with active encouragement to comply.

The presence of H. influenzae was checked at weeks 0, 2, 4, 6 and 11 to 30 and recorded as

weekij . If a particular check was missed no data was recorded for that week. High or low

compliance of the patient in taking the treatment are indicated by the variables drugHiij and

drugLoij respectively. The data are shown in Figure 1.

Using the Bacteria dataset we first considered the model

logit {P (yij = 1)} = β0 + βdrugLodrugLoij + βdrugHidrugHiij + βweekweekij + ui

where ui ∼ N(0, σ2
0) for 1 ≤ i ≤ 50 and ni takes values from 2 to 5. The parameter estimates

and approximate standard errors for these models are summarized in Figure 5. Here we see

that the estimates for β are quite similar for each method, although PQL underestimates σ0. In

addition, the approximate 95% confidence intervals for the βs are overly narrow for PQL, but

close to exact for GVA.
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Figure 4: Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA and

PQL for the Epilepsy data random intercept and slope model. The vertical dotted lines correspond to the

AGHQ values. Note that confidence intervals for σ0, σ1 and ρ are not available for AGHQ in R, so are

not compared for these parameters.

7.4 Toenail Dataset

This data set considers information gathered from a longitudinal dermatological clinical trial.

The aim of the trials was to compare the effectiveness of two oral treatments for a particular

type of toenail infection (De Backer et al., 1998). In total, 1908 measurements from 294 patients

are recorded in the dataset. Each participant in the trail was randomly either administered a

treatment trtij = 1 or a placebo trtij = 0 and was evaluated at seven visits (approximately on

weeks timeij = 0, 4, 8, 12, 24, 36 and 48). The degree of separation of the nail plate from the nail-

bed (0, absent; 1, mild; 2, moderate; 3, severe) at each visit was recorded. In this dataset, only a

dichotomized response of onycholysis (0, absent or mild; 1, moderate or severe) is available.

We considered the logistic random intercept model (9) with trtij , timeij and trtij × timeij

as covariates for 1 ≤ i ≤ 294 and ni taking values from 1 to 7. The results for each GLMM

approximation is summarized in Figure 6. From this figure we see that the GVA estimates of
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Figure 5: Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA

and PQL for the model fitted to the Bacteria dataset. The vertical dotted lines correspond to the AGHQ

values. Note that confidence intervals for σ0 are not available for AGHQ in R, so are not compared for

this parameter.

all parameters are better than those based on PQL. For this example we see severe bias of PQL

for the parameters β0, βtime and σ0. The GVA method shows some bias for estimation of β0 and

σ0 but is less severe than that of PQL.

7.5 Approximating p(u|y)

The analysis of Lesaffre & Spiessens (2001) on the Toenail dataset found that parameter esti-

mates could vary significantly even amongst several Gauss-Hermite quadrature approxima-

tions. Hence it is not surprising that there are large discrepancies between AGHQ, GVA and

PQL approximations for this dataset. On the other hand PQL and GVA approximations for

the bacteria data are, in comparison, reasonable. Both PQL and GVA methods are based on

Gaussian approximations of p(u|y). In particular for fixed β and σ0 PQL is equivalent to the

Laplace approximation where E(u|y) is approximated by the mode of p(y,u) and the covari-

ance is approximated by the inverse negative Hessian of log p(y,u) with respect to u. We will

now illustrate that when p(u|y) is not Gaussian, as occurs for the Toenail dataset, then both

PQL and GVA methods have reduced accuracy.

The standard definition of skewness for the univariate conditional density function p(ui|y)
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Figure 6: Point estimates and approximate 95% confidence intervals based on each of AGHQ, GVA

and PQL for the model fitted to the Toenail dataset. The vertical dotted lines correspond to the AGHQ

values. Note that confidence intervals for σ0 are not available for AGHQ in R, so are not compared for

this parameter.

is

Skew(ui|y) =

∫∞
−∞{ui − E(ui|y)}3p(ui|y)dui[∫∞
−∞{ui − E(ui|y)}2p(ui|y)dui

]3/2
where E(ui|y) =

∫∞
−∞ uip(ui|y)dui. Each of the integrals is analytically intractable and so we

approximate them using numerical quadrature.

Figure 7 illustrates the kernel density estimates of the approximate Skew(ui|y) values and

density approximations of the p(ui|y) along with the p(ui|y) with largest absolute skewness for

the Bacteria and Toenail datasets. We note that for the Bacteria dataset almost no skewness

is evident for each of the p(ui|y)s and that even the most skewed p(ui|y) is nearly Gaussian.

However, for the Toenail dataset many of the p(ui|y)s have large negative values Skew(ui|y)

values and the p(ui|y)s are clearly non-Gaussian for these cases.

Based on the rightmost panel in Figure 7 GVA appears to approximate the E(ui|y) better

than the Laplace approximation. Let µLaplace,i and µGVA,i be the Laplace and GVA approxima-

tions of E(ui|y) respectively. For the Bacteria dataset∑m
i=1(µLaplace,i − E(ui|y))2∑m
i=1(µGVA,i − E(ui|y))2

≈ 7787.8
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Bacteria and Toenail datasets. Middle panel: Approximations of the most skewed p(ui|y) for the Bacteria

dataset. Right panel: Approximations of the most skewed p(ui|y) for the Toenail dataset.

and for the Toenail dataset ∑m
i=1(µLaplace,i − E(ui|y))2∑m
i=1(µGVA,i − E(ui|y))2

≈ 3029.3

and so we speculate that GVA is a better approximation ofE(ui|y) than the Laplace approxima-

tion since it attempts to approximate E(u|y) more directly. While we do not have theoretical

evidence to support this we believe that this is a matter for further investigation.

8 Concluding Remarks

As data become cheaper to collect and store, both the number and size of data analyses will

continue to grow. Therefore, it is important that statistical methodology adapts accordingly.

MCMC provides an effective means of analysis for many grouped data GLMM applications.

However, there are numerous situations where faster approximate methods are desirable. One

example is model selection in the presence of a high number of candidate predictors. In such

a situation, it is often too expensive to fit several models via MCMC. Gaussian variational

approximation offers itself as an attractive alternative to PQL for fast GLMM approximate in-

ference. In this paper we have focussed on the grouped data version of GLMMs and mostly

resolved issues regarding their implementation. A future challenge is to handle more general
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GLMMs, such as those with spatial correlation structures or containing spline basis functions

in the random effects design matrix.

Appendix A: Computational Details

A.1 Notation Useful for Derivative and Hessian Expressions

Let f be a real-valued function in the d× 1 vector x = [x1, . . . , xd]
T . Then the derivative vector

Dxf(x), is the 1 × d with ith entry ∂f(x)/∂xi. The corresponding Hessian matrix is given by

Hxf(x) = Dx{Dxf(x)}T .

We extend the B notation to higher derivatives as follows:

B(r)(µ, σ2) ≡
∫ ∞
−∞

b(r)(σx+ µ)φ(x) dx.

Define

Q(A) ≡ (A⊗ 1T )� (1T ⊗A)

where A � B is the element-wise product of two equi-sized matrices A and B. Next, we let

Dp denote the duplication matrix of order p. This matrix is defined through the relationship

vec(A) = Dpvech(A)

for a symmetric p× p matrixA. Lastly, for each 1 ≤ i ≤ m, let

B(r)(β,µi,Λi) ≡ B(r)(X iβ +Ziµi,diagonal(ZiΛiZ
T
i )).

A.2 Gauss-Hermite Quadrature for Evaluation of B(r)

Here we briefly describe numerical evaluation ofB(r) using the adaptive Gauss-Hermite quadra-

ture procedure developed by Liu & Pierce (1994) for approximating positive Gaussian integrals.

For r = 1, 2, . . . we have

B(r)(µ, σ) =
∫∞
−∞

b(r)(µ+σx)φ(x)
φσ∗ (x−µ∗) φσ∗(x− µ∗)dx

=
∫∞
−∞

[√
2σ∗b(r)(µ+ σ(µ∗ +

√
2σ∗x))φ(µ∗ +

√
2σ∗x)ex

2
]
e−x

2
dx

20



for any µ∗ and σ∗. We choose µ∗ and σ∗ so that the integrand of B(µ, σ) is “most Gaussian” in

shape so that

µ∗ = argmaxx {b(µ+ σx)φ(x)}

and σ∗ = −
{[

d2

dx2 log {b(µ+ σx)φ(x)}
]
x=µ∗

}−1/2

We use the values of µ∗ and σ∗ corresponding to r = 0 because it is both computationally

cheaper to evaluate µ∗ and σ∗ once and because b(r) may not be positive everywhere (poten-

tially making the corresponding evaluation of σ∗ problematic). We then apply Gauss-Hermite

quadrature which uses∫ ∞
−∞

g(x)e−x
2

dx =
N∑
k=1

wkg(xk) +

√
πN !

2N(2N)!
g(2N)(ξ), for some −∞ ≤ ξ ≤ ∞.

for some integerN and is exact for polynomials of degree less than 2N . Hence we may approx-

imate B(r)(µ, σ) by

B(r)(µ, σ) ≈
N∑
k=1

w∗kb
(r)(µ+ σx∗k)φ(x∗k)

where w∗k =
√

2σ∗wke
x2
k and x∗k = µ∗ +

√
2σ∗xk and the wk and xk values are the weights and

abscissae of standard (or non-adaptive) Gauss-Hermite quadrature respectively.

There are several ways of obtaining wj and xj in practice. Tables for these values can be

obtained form Abramowitz & Stegun (1972, Chapter 25). Computational details for calculating

these values be found form Golub & Welsch (1969) or Press, Teukolsky, Vetterling & Flannery

(2007). In the R package statmod (Smyth, 2009) the function gauss.quad() implements the

method outlined in Golub & Welsch (1969) and may also be used to find wj and xj .

Finally, it is worth noting the number of quadrature points needed to calculate `(β,Σ) and

`(β,Σ,µ,Λ) using adaptive Gauss-Hermite quadrature. Suppose that N points are used in

each dimension via a tensor product method then the calculation `(β,Σ) and its derivatives

uses O(mNK) points. In comparison the calculation of `(β,Σ,µ,Λ) and its derivative uses

O(N
∑

i=1 ni) points if we use N quadrature points to evaluate the B(r)s. Since the number of

quadrature points for GVA is independent of K the relative computational efficiency of GVA

over adaptive Gauss-Hermite quadrature can be substantial when K is large.
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A.3 Derivative Vector of Lower Bound on Log-Likelihood

The derivative vector of

` ≡ `(β,Σ,µ,Λ)

with respect to

(β,vech(Σ),µ1,vech(Λ1), . . . ,µm,vech(Λm))

is

D ` = [Dβ `, Dvech(Σ)
`, Dµ1

`, Dvech(Λ1)
` , · · · , Dµm

`, Dvech(Λm)
`].

We now give matrix algebraic expressions for each of these components:

Dβ ` =
m∑
i=1

{yi − B(1)(β,µi,Λi)}TX i,

Dvech(Σ)
` = 1

2

m∑
i=1

vec{Σ−1(µiµ
T
i + Λi)Σ

−1 −Σ−1}TDK ,

and, for 1 ≤ i ≤ m,

Dµi ` = {yi − B(1)(β,µi,Λi)}TZi − µTi Σ−1,

Dvech(Λi)
` = 1

2
vec[Λ−1

i −Σ−1 −ZT
i diag{B(2)(β,µi,Λi)}Zi]

TDK .

A.4 Hessian Matrix of Lower Bound on Log-Likelihood

The Hessian matrix of

` ≡ `(β,Σ,µ,Λ)

with respect to

(β,vech(Σ),µ1,vech(Λ1), . . . ,µm,vech(Λm))
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is

H ` =

Hββ ` 0 Hβµ1
` Hβvech(Λ1)

` · · · Hβµm ` Hβvech(Λm)
`

0 Hvech(Σ)vech(Σ)
` Hvech(Σ)µ1

` Hvech(Σ)vech(Λ1)
` · · · Hvech(Σ)µm

` Hvech(Σ)vech(Λm)
`

Hµ1β ` Hµ1vech(Σ)
` Hµ1µ1

` Hµ1vech(Λ1)
` · · · 0 0

Hvech(Λ1)β
` Hvech(Λ1)vech(Σ)

` Hvech(Λ1)µ1
` Hvech(Λ1)vech(Λ1)

` · · · 0 0
...

...
...

...
. . .

...
...

Hµmβ ` Hµmvech(Σ)
` 0 0 · · · Hµmµm ` Hµmvech(Λm)

`

Hvech(Λm)β
` Hvech(Λm)vech(Σ)

` 0 0 · · · Hvech(Λm)µm
` Hvech(Λm)vech(Λm)

`


where

Hββ` = −
m∑
i=1

XT
i diag{B(2)(β,µi,Λi)}X i,

Hvech(Σ)vech(Σ)
` = 1

2
DT

K

(
m(Σ−1 ⊗Σ−1)−

m∑
i=1

[Σ−1 ⊗ {Σ−1(µiµ
T
i + Λi)Σ

−1}

+{Σ−1(µiµ
T
i + Λi)Σ

−1} ⊗Σ−1]
)
DK ,

and, for 1 ≤ i ≤ m,

Hβµi` = −XT
i diag{B(2)(β,µi,Λi)}Zi,

Hβvech(Λi)
` = −1

2
XT

i diag{B(3)(β,µi,Λi)}Q(Zi)DK ,

Hvech(Σ)µi
` = DT

K{(Σ−1µi)⊗Σ−1},

Hvech(Σ)vech(Λi)
` = −1

2
DT

K(Σ−1 ⊗Σ−1)DK ,

Hµiµi ` = −ZT
i diag{B(2)(β,µi,Λi)}Zi −Σ−1,

Hµivech(Λi)
` = −1

2
ZT
i diag{B(3)(β,µi,Λi)}Q(Zi)DK ,

Hvech(Λi)vech(Λi)
` = −1

4
DT

K [Q(Zi)
Tdiag{B(4)(β,µi,Λi)}Q(Zi) + 2(Λ−1

i ⊗Λ−1
i )]DK .

A.5 Newton-Raphson Scheme

We are a now in a position to describe an efficient Newton-Raphson scheme for solving the

maximization problem (5). In particular, we make use of the block-diagonal structure in the

(µ,Σ) section of Hββ` to reduce the number of operations to O(m).
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Recall the notation given in (6) for the β and ξ. In keeping with this notation, define the

gradient vectors

gθ ≡

 (Dβ `)
T

{Dvech(Σ)
`}T

 and gξi
≡

 (Dµi `)
T

{Dvech(Λi)
`}T


and the Hessian matrix components

Hθθ ≡

 Hθθ ` 0

0 Hvech(Σ)vech(Σ)
`

 , Hξiξi
≡

 Hµiµi ` Hµivech(Λi)
`

Hvech(Λi)µi
` Hvech(Λi)vech(Λi)

`

 ,
and

Hθξi
≡

 Hβµi ` Hβvech(Λi)
`

Hvech(Σ)µi
` Hvech(Σ)vech(Λi)

`


for 1 ≤ i ≤ m. Finally, define

sθξ ≡

(
Hθθ −

m∑
i=1

HθξiH
−1
ξiξi
HT
θξi

)−1(
gθ −

m∑
i=1

HθξiH
−1
ξiξi
gξ

)
.

Let  β

vech(Σ)

(0)

and

 ξi

vech(Λi)

(0)

, 1 ≤ i ≤ m,

be starting values of the relevant parameter vectors and let a superscript of (t) denote the same

vectors after t iterations of the Newton-Raphson algorithm. Then the updates are given by: β

vech(Σ)

(t+1)

=

 β

vech(Σ)

(t)

− s(t)
θξ (10)

and  ξi

vech(Λi)

(t+1)

=

 ξi

vech(Λi)

(t)

− (H
(t)
ξiξi

)−1(g
(t)
ξi
−H(t)

ξiθ
s

(t)
θξ) (11)

Note that these updates involves inversion of ‘small’ matrices – i.e. those of dimension similar

to β and the ui. The Newton-Raphson scheme then involves cycling through (10) and (11) until

convergence.

To increase the robustness of the Newton-Raphson algorithm we: incorporated step-halving

to ensure that Σ and Λis remained positive definite and that the approximate likelihood in-

creased at each step of the algorithm. Laplace approximation was used to choose, for fixed β

and Σ, the initial values for µis and Λis.
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A.6 Asymptotic Covariance Matrix

Results used in Section A.5 that take advantage of diagonal structure in H`(β,Σ,µ,Λ) can also

be used to obtain a streamlined expression for the asymptotic covariance matrix of the model

parameters. These lead to

̂Asy. Cov(θ̂) =

(
Hθθ −

m∑
i=1

HθξiH
−1
ξiξi
HT
θξi

)−1

and allow standard errors to be computed with O(m) operations.

Appendix B: Proof of Theorem 1

The proof relies on straightforward algebra and the following lemmas:

LEMMA 1: Let A be a positive definite matrix and B be a positive semidefinite matrix of the

same dimensions asA. Then

|A+B| ≥ |A|

with equality if and only ifB = 0.

Proof of Lemma 1.

Lemma 1 corresponds to Theorem 22 of Magnus & Neudecker (1988) and a prove is given

there.

�

LEMMA 2. Let the symmetric matrixA be partitioned as A11 A12

AT
12 A22


where A11 is square and invertible. Then A is positive definite if any only if both A11 and

A22 −AT
12A

−1
11A12 are positive definite.

Proof of Lemma 2.

Lemma 2 is a special case of Theorem 7.7.6 of Horn & Johnson (1985).
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�

LEMMA 3. Let Ψ be a symmetric, positive definite mK ×mK matrix. Given the K ×K blocks

Ψi, 1 ≤ i ≤ m, down the main diagonal of Ψ, the determinant |Ψ| is uniquely maximized by

setting all other entries of Ψ equal to zero.

Proof of Lemma 3.

Consider the partition of Ψ:

Ψ =

 Ψ̃ C

CT D

 .
where Ψ̃ is an m(K − 1) ×m(K − 1) matrix, C is an m(K − 1) ×K matrix and D is a K ×K

matrix. Then, from a standard result on determinants of partitioned matrices,

|Ψ| = |Ψ̃||D −CT Ψ̃
−1
C|.

Since Ψ is positive definite then, from Lemma 2, the matrices Ψ̃, D − CT Ψ̃
−1
C must also

be positive definite. Also Ψ−1 is positive definite, which implies that CT Ψ̃
−1
C is positive

semidefinite.

We shall prove the lemma by induction over m. The lemma holds trivially when m = 1.

By the induction hypothesis, we may assume that |Ψ̃| is uniquely maximized by taking the

off block-diagonal components of Ψ̃ to vanish. For Ψ̃ and D fixed, we can use Lemma 1 with

A = D − CT Ψ̃
−1
C and B = CT Ψ̃

−1
C to show that |D − CT Ψ̃C| is uniquely maximized by

taking C = 0. The lemma then follows by induction.

�

The right-hand side of (8), with q set to the N(µ,Σ) density and p(y|u) given by (2), is

`(β,Σ,µ,Λ) = mK
2

+ yT (Xβ +Zµ)− 1T B(Xβ +Zµ,diagonal(ZΛZT )) + 1T c(y)

−1
2
{µTG−1µ+ tr(G−1Λ)}+ 1

2
log |G−1Λ|.

Now consider the special case of the grouped data GLMM (1). Applying the definitions of yi,
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X i and Zi given in Section 2 and setting Z = blockdiag1≤i≤m(Zi) andG = I ⊗Σ we obtain

`(β,Σ,µ,Λ) = mK
2

+
∑m

i=1 1Ti c(yi)− m
2

log |Σ|+ 1
2
log |Λ|

+
∑m

i=1[y
T
i (X iβ +Ziµi)− 1Ti B(X iβ +Ziµi,diagonal(ZiΛiZ

T
i ))

−1
2
{µTi Σ−1µi + tr(Σ−1Λi)}].

By Lemma 3, |Λ| is maximal for Λ = blockdiag1≤i≤m(Λi). Hence there is no loss from replace-

ment of 1
2
log |Λ| by 1

2

∑m
i=1 log(Λi), and this leads to the expression for `(β,Σ,µ,Λ) given at

(4).
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