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ON SEMIPARAMETRIC REGRESSION WITH

O’SULLIVAN PENALIZED SPLINES

M. P. WAND1∗ AND J. T. ORMEROD2

University of Wollongong and The University of New South Wales

Summary

An exposition on the use of O’Sullivan penalized splines in contemporary semiparamet-
ric regression, including mixed model and Bayesian formulations, is presented. O’Sullivan
penalized splines are similar to P-splines, but have the advantage of being a direct generaliza-
tion of smoothing splines. Exact expressions for the O’Sullivan penalty matrix are obtained.
Comparisons between the two types of splines reveal that O’Sullivan penalized splines more
closely mimic the natural boundary behaviour of smoothing splines. Implementation in
modern computing environments such as MATLAB, R and BUGS is discussed.

Key words: additive models; Markov chain Monte Carlo; mixed models; P-splines; smoothing
splines.

1. Introduction

Splines continue to play a central role in non-parametric and semiparametric regression
modelling. Recent synopses include Eubank (1999), Gu (2002), Ruppert, Wand & Carroll
(2003) and Denison et al. (2002). In all but the last reference, smooth functional relationships
are fitted using a large basis of spline functions subject to penalization. Up until the mid-1990s,
most literature on spline-based non-parametric regression was concerned with smoothing
splines, and their multivariate extension, thin-plate splines, in which the penalty takes a
particular form, and the number of basis functions roughly equals the sample size (e.g.
Wahba, 1990; Green & Silverman, 1994). In recent years, however, there has been a great
deal of research into more general spline/penalty strategies, most of which use considerably
fewer basis functions. Driving forces include:

(i) more complicated models, often with several smooth functions;
(ii) larger data sets, in which smoothing and thin-plate splines become computationally

intractable;
(iii) mixed model and Bayesian representations of smoothers that lend themselves to the use

of established software, such as BUGS (Spiegelhalter, Thomas & Best, 2000), lme() in
R (R Development Core Team, 2007), and PROC MIXED in SAS (SAS Institute, Inc.,
2007), provided that the number of basis functions is relatively low.
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Ruppert et al. (2003) summarize and provide access to many of these developments. The term
penalized splines has emerged as a descriptor for general spline fitting subject to penalties.

O’Sullivan (1986, Section 3) introduced a class of penalized splines based on B-spline
basis functions. O’Sullivan penalized splines are a direct generalization of smoothing splines,
in that the latter arise when the maximal number of B-spline basis functions is included.
Like smoothing splines, O’Sullivan penalized splines possess the attractive feature of natural
boundary conditions (e.g. Green & Silverman, 1994, p. 12). They have also become the most
widely used class of penalized splines in statistical analyses, as a result of their implementation
in the popular R and S-PLUS (Insightful Corporation, 2007) function smooth.spline() and
associated generalized additive model software (e.g. the gam library in R; Hastie, 2006).

Despite the omnipresence of O’Sullivan penalized splines, their use in semiparametric
regression contexts, particularly those involving mixed model and Bayesian representations,
is not very common. Recently, Welham et al. (2007) showed how most of the commonly used
penalized splines can be treated within a single mixed model framework, although they did
not work explicitly with the form given in O’Sullivan (1986).

In this paper we: (i) provide an exact matrix expression for the penalty of O’Sullivan
splines that can be implemented in a few lines of a matrix-based computing language;
(ii) compare O’Sullivan splines with their closest penalized spline relative, P-splines (Eilers
& Marx, 1996), revealing some noticeable differences near the boundaries; (iii) demonstrate
explicitly, including with R code, how O’Sullivan splines can be simply added to the mixed
model-based regression armoury; and (iv) investigate their efficacy in Bayesian semipara-
metric regression using MCMC software such as BUGS and its variants. We conclude that the
attractive features of O’Sullivan penalized splines – smoothness, numerical stability, natural
boundary properties, direct generalization of smoothing splines – make them a very good
choice of basis in semiparametric regression.

Section 2 provides a brief description of O’Sullivan penalized splines. A comparison
with P-splines is made in Section 3. Section 4 describes a mixed model representation of
O’Sullivan penalized splines, and how they can be used in models that benefit from this
representation. Issues concerning Bayesian penalized spline smoothing and Markov chain
Monte Carlo are described in Section 5. O’Sullivan splines of general degree are described in
Section 6. A closing discussion is given in Section 7. An appendix contains relevant R code.

2. O’Sullivan penalized splines

O’Sullivan penalized splines have already been described several times in the literature.
A recent reference is the Chapter 5 Appendix of Hastie, Tibshirani & Friedman (2001). A
brief sketch is given here for convenience.

Consider the simplest non-parametric regression setting

yi = f (xi ) + εi , 1 ≤ i ≤ n, (1)

where (xi , yi ) ∈ R × R. Suppose that an estimate of f is required over [a, b], an interval
containing the xi s. For an integer K ≤ n, let κ1, . . . , κK+8 be a knot sequence such that

a = κ1 = κ2 = κ3 = κ4 < κ5 < · · · < κK+4 < κK+5 = κK+6 = κK+7 = κK+8 = b,
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Figure 1. Illustration of natural boundary properties of a 20-interior knot O’Sullivan penalized spline
fit to fossil data (source: Chaudhuri & Marron, 1999) over the interval [85, 130] millions of years. The

interior knots are shown as solid diamonds. Inset: the 24 B-spline basis functions.

and let B1, . . . , BK+4 be the cubic B-spline basis functions defined by these knots (see, for
example, pp. 160–161 of Hastie et al., 2001). Set up the n × (K + 4) design matrix B with
(i , k)th entry Bik = Bk(xi ), and the (K + 4) × (K + 4) penalty matrix � with (k, k ′)th entry

�kk ′ =
∫ b

a
B ′′

k (x)B ′′
k ′(x) dx .

Then an estimate of f at location x ∈ R can be obtained as

f̂O (x ; λ) ≡ Bx ν̂O , where ν̂O ≡ (B� B + λ�)−1 B� y, (2)

Bx ≡ [B1(x), . . . , BK+4(x)], and λ > 0 is a smoothing parameter.
Note that the cubic smoothing spline arises in the special case K = n and κk+4 = xk ,

1 ≤ k ≤ n, provided that the xi s are distinct (e.g. Green & Silverman, 1994, Section 3.6).
Apart from giving a smooth (twice continuously differentiable) scatterplot smooth, f̂O (·; λ)
has good numerical properties. The basis functions are bounded and so not prone to overflow
problems. Moreover, B� B is four-banded, which leads to O(n) algorithms when K is close to
n (e.g. Hastie et al., 2001). In addition, f̂O (·; λ) satisfies so-called natural boundary conditions,
meaning that

f̂ ′′
O (a; λ) = f̂ ′′′

O (a; λ) = f̂ ′′
O (b; λ) = f̂ ′′′

O (b; λ) = 0,

and implying that f̂O (·; λ) is approximately linear over [a, κ5] and [κK+4, b] (linearity is exact
if κ5 = min(xi ) and κK+4 = max(xi )). Figure 1 illustrates these natural boundary properties
of f̂O (·; λ) for data on ratios of strontium isotopes found in fossil shells and their age; see
Chaudhuri & Marron (1999) for details. Furthermore, f̂O (·; λ) approximates the least squares
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line as λ → ∞. The implication for mixed model smoothing is that the induced fixed effects
component corresponds to straight line basis functions. Details are given in Section 4.

Computation of the design matrix B is usually quite easy. For example, B-splines are
readily available in the MATLAB (The Mathworks, Inc., 2007), R and S-PLUS computing
environments. Otherwise, recurrence formulae (e.g. de Boor, 1978; Eilers & Marx, 1996)
can be called upon. However, computation of � requires some additional effort. In Section
6, while treating general degree O’Sullivan penalized splines, we derive an exact matrix
algebraic expression for the corresponding penalty matrices. In the cubic case, our theorem
reduces to the expression

� = (B̃
′′
)�diag(w)B̃

′′
, (3)

where B̃
′′

is the 3(K + 7) × (K + 4) matrix with (i, j)th entry B ′′
j (̃xi ), x̃i is the i th entry of

the vector

x̃ =
(

κ1,
κ1 + κ2

2
, κ2, κ2,

κ2 + κ3

2
, κ3, . . . , κK+7,

κK+7 + κK+8

2
, κK+8

)
,

and w is the 3(K + 7) × 1 vector given by

w =
(

1

6
(�κ)1,

4

6
(�κ)1,

1

6
(�κ)1,

1

6
(�κ)2,

4

6
(�κ)2,

1

6
(�κ)2, . . . ,

1

6
(�κ)K+7,

4

6
(�κ)K+7,

1

6
(�κ)K+7

)
,

where (�κ)k ≡ κk+1 − κk , 1 ≤ k ≤ K + 7. Result (3) is none other than Simpson’s rule applied
over each of the inter-knot differences. This is because each B ′′

i B ′′′
j function is piecewise-

quadratic. For commonly used values of K , (3) allows straightforward computation of � in
matrix-based languages such as MATLAB, R and S-PLUS. In the Appendix, we demonstrate the
computation of � in four lines of R code.

Finally, we mention knot choice. The R and S-PLUS function smooth.spline() uses

κk �
(

k

K + 1

)
th sample quantile of the unique xi s,

where

K =

⎧⎪⎪⎨
⎪⎪⎩

n n < 50
100 n = 200
140 n = 800
200 + (n − 3200)1/5 n > 3200.

Other values of n between 50 and 3200 are handled by means of a logarithmic interpolation.
For many functional relationships, fewer knots are sufficient. Figure 1 is one example, in
which only K = 20 interior knots are used without compromising the quality of the fit. A
common default in the penalized spline literature is K = min (nU /4, 35), where nU is the
number of unique xi s (e.g. Ruppert et al., 2003). Ruppert (2002) discusses ‘hi-tech’ choices
of K . The distribution of the knots, for a given K , may have some effect on the results. As
mentioned above, smooth.spline() uses quantile-based knots, whereas Eilers & Marx (1996),
for example, recommend equally spaced knots. In most situations this effect will be minor.
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Figure 2. Comparison of near-diagonal entries of the penalty matrices for O’Sullivan penalized splines
and cubic P-splines with k = 2 and equally spaced interior knots.

However, for either strategy it is possible to construct regression functions and predictor
variable distributions for which problems arise. More sophisticated knot placement strategies
may help. For example, Luo & Wahba (1997) propose more sophisticated basis function
reduction methods that could be adapted to the current context.

3. Comparison with P-splines

The closest relatives of O’Sullivan penalized splines are the P-splines of Eilers & Marx
(1996). If the interior knots κ5, . . . , κK+4 are taken to be equally spaced, the family of cubic
P-splines is given by (2) with the � replaced by D�

k Dk , where Dk is the kth-order differencing
matrix. This differencing penalty corresponds to a discrete approximation to the integrated
square of the kth derivative of the B-spline smoother. The choice k = 2 leads to the cubic
P-spline estimate

f̂ P (x ; λ) = Bx ν̂P , where ν̂P ≡ (
B� B + λD�

2 D2
)−1

B� y, (4)

having the property that f̂ P (·; λ) approaches the least squares line as λ → ∞. In this sense,
(4) is the closest relative of f̂O (·; λ). If the interior knots are equally spaced, the bands in the
interior rows are, up to multiplicative factors, as follows:

O’Sullivan penalized splines (2): 3, 0, −27, 48, −27, 0, 3
Cubic P-splines; second-order difference (4): 0, 8, −32, 48, −32, 8, 0

Figure 2 facilitates visual comparison of the two. It is seen that the differences are
relatively small, although not negligible.
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What are the relative advantages of smoothers based on cubic P-splines and O’Sullivan
penalized splines, or O-splines for short? A theoretical comparison between P-splines and
O-splines in terms of estimation performance, perhaps in the spirit of Hall & Opsomer (2005),
would be ideal – although this is beyond the scope of the current paper.

Eilers & Marx (1996) partially justify the use of P-splines rather than O-splines on
the simplicity of the P-spline penalty matrix. However, as seen from (3), the penalty ma-
trix needed for O-splines is straightforward to obtain. Furthermore, the discrete approx-
imation of P-splines requires equally spaced knots which, depending on f , may not be
desirable.

A possible advantage of P-splines is the option of higher-order penalties, although the
resulting smoothers can have erratic extrapolation behaviour. A possible advantage of O-
splines is their direct relationship with time-honoured smoothing splines, and their attractive
theoretical properties (e.g. Nussbaum, 1985). From the results described in Section 2, it is
clear that O-splines approach smoothing splines as K → n. But how close are O-splines to
smoothing splines for common (smaller) choices of K , and are they closer than P-splines with
the same value of K and the same interior knots? To address these questions, we conducted an
empirical study based on the 18 homoscedastic non-parametric regression settings in Wand
(2000). For O-splines, we used K = 100 equally spaced interior knots with four repeated
knots at each boundary, as described in Section 2. However, for P-splines, we used the knot
sequence described in the Appendix of Eilers & Marx (1996), which involves extending the
knots beyond the boundary, rather than repeating them. For each setting, 200 samples were
generated, and smoothing spline estimates f̂ S , with the smoothing parameter chosen by means
of the generalized cross-validation, were obtained. We then computed f̂O and f̂ P to have the
same effective degrees of freedom as f̂ S , and recorded closeness measures d( f̂O , f̂ S; A) and
d( f̂ P , f̂ S; A), where

d( f , g; A) ≡
∫

A
( f − g)2.

We took A corresponding to the intervals (a, κ5) (left boundary), (κ5, κK+5) (interior), (κK+5,
b) (right boundary) and (a, b) (total region), where the κk denote the knots used for the
O-spline fits. The Wand (2000) settings all involve predictor data within the unit interval. We
took (a, b) = (−0.1, 1.1) to assess behaviour beyond the range of the data. Wilcoxon tests on
the 200 differences d( f̂O , f̂ S; A) − d( f̂ P , f̂ S; A) were carried out for each setting and choice
of A. Apart from being distribution-free, Wilcoxon tests have the advantage of being invariant
to normalization and to whether differences or ratios are used. In all 72 cases O-splines were
closer to smoothing splines than P-splines, in the sense that the Wilcoxon P-value was less
than 0.01.

To appreciate the practical significance of these results, we plotted the data and estimates
at the 90th percentiles of each of the d( f̂O , f̂ S; A) and d( f̂ P , f̂ S; A) samples, corresponding
to relatively high discrepancies from f̂ S . Some examples are shown in Figure 3.

In the interior, all estimates based on the same data, and having the same degrees of
freedom, are almost indistinguishable with the naked eye. However, big differences occur at
the boundary. P-splines have a tendency to deviate from the natural boundary behaviour of
smoothing splines. We also observed this phenomenon in the other 16 settings. Further study
into this differing extrapolation behaviour would be worthwhile. We speculate that it comes
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Figure 3. O-spline and P-spline fits compared with smoothing spline fits corresponding to the 90th
percentiles of the d( f̂O , f̂ S ; A) and d( f̂ P , f̂ S ; A) samples, for two of the homoscedastic settings of Wand

(2000).

from differences between the exact integral penalty and its discrete approximation near the
boundary.

4. Mixed model formulation

There are several ways by which ν̂O in (2) can be expressed as a best linear unbiased
predictor (BLUP) in a mixed model (e.g. Speed, 1991; Verbyla, 1994). However, from a
software standpoint, the most convenient form is ν̂O = (β̂, û) where β̂ and û are (empirical)
BLUPs of β and u in the mixed model

y = Xβ + Zu + ε,

[
u
ε

]
∼ N

([
0

0

]
,

[
σ 2

u I 0

0 σ 2
ε I

])
(5)

for some design matrices X and Z. An explicit expression for the BLUP in (5) (e.g. Ruppert
et al., 2003; Section 4.5.3) is

[
β̂

û

]
= ν̂O =

(
C�C + λ

[
0 0

0 I

])−1

C� y, λ = σ 2
u /σ 2

ε ,
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Figure 4. Comparison of the B-spline basis and the Z matrix basis for the fossil data example of Figure
2. The interior knots are shown as solid diamonds.

where C = [X | Z], and I is the identity matrix with the same number of columns as Z. This
‘canonical form’ can be achieved if a (K + 4) × (K + 4) linear transformation matrix L can
be found such that C = BL and

L��L =
[

0 0

0 I

]
.

The usual method for obtaining L is spectral decomposition (e.g. Nychka & Cummins, 1996;
Cantoni & Hastie, 2002; Welham et al., 2007). It follows from results in the smoothing spline
literature (e.g. Speed, 1991, Section 6) that

rank(�) = K + 2.

Hence, the spectral decomposition of � is of the form � = U diag(d) U�, where U�U =I
and d is a (K + 4) × 1 vector with exactly two zero entries and K + 2 positive entries. Let
d Z be the (K + 2) × 1 sub-vector of d containing these positive entries, and let U Z be the
(K + 4) × (K + 2) sub-matrix of U with columns corresponding to the positive entries of
d. Then an appropriate linear transformation is L = [U X | U Z diag(d−1/2

Z )]. This leads to the
fixed and random effects design matrices

X = BU X and Z = BU Z diag
(
d−1/2

Z

)
. (6)

However, following again from the aforementioned smoothing spline literature (e.g. Speed,
1991, Section 6), BU X is a basis for the space of straight lines, so the simpler specification X =
[1 xi ]1≤i≤n may be used instead without affecting the fit. Figure 4 allows the comparison of
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Figure 5. Spinal bone mineral data versus age for female subjects across four ethnicity groups (source:
Bachrach et al., 1999). Lines connect measurements taken from the same subject.

the original B-spline basis, corresponding to B, and the basis corresponding to Z. Notice the
damping of the Z matrix basis functions with increasing oscillation. This compensates for
the fact that the penalty is a multiple of the identity matrix.

In the Appendix, it is shown how the R linear mixed model function lme() can be used
to obtain f̂O (·; λ) based on (5), with Z given by (6). For simple scatterplot smoothing there
is little difference between this approach and direct use of smooth.spline(), and the answers
are equivalent if the knot sequence and λ values are equal. The default choice of λ differs:
lme() uses restricted maximum likelihood (REML) to choose λ, whereas smooth.spline() uses
generalized cross-validation (GCV).

The main advantage of the mixed model formulation of penalized splines is the incor-
poration into more complex models. Several examples are given in, for example, Ruppert
et al. (2003). We will briefly describe one of them here. Figure 5 displays a longitudinal data
set on bone mineral acquisition in young females (source: Bachrach et al., 1999). The data
consist of spinal bone mineral density (SBMD) measurements on each of 230 female subjects
aged between 8 and 27. Each subject is measured between one and four times. Let ni denote
the number of measurements for subject i . The subjects have been divided into four ethnic
groups: Asian, Black, Hispanic and White.

A useful additive mixed model for these data is

SBMDi j = Ui + f (agei j ) + β1Blacki + β2Hispanici

+β3Whitei + εi j , 1 ≤ i ≤ 230, 1 ≤ j ≤ ni , (7)
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where the U i are independent and identically distributed (i.i.d.) N(0, σ 2
u) random intercepts

for each subject, and Blacki , Hispanici and Whitei are ethnicity indicators. The εi j are i.i.d.
N (0, σ 2

ε) random errors. More sophisticated models that account for, say, serial correlation
could be entertained.

O’Sullivan penalized splines can be used to fit (7) with the design matrices set up as
follows. Based on the agei values and appropriate knots, set up

Zspline = BU Z diag
(
d−1/2

Z

)
analogous to the Z matrix of (6) for simple scatterplot smoothing. In the Appendix, when
fitting data of this type, we use 15 interior knots corresponding to quantiles of the unique age
values. Form

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 age11 Black1 Hispanic1 White1
...

...
...

...
...

1 age1n1
Black1 Hispanic1 White1

...
...

...
...

...
1 age230,1 Black230 Hispanic230 White230
...

...
...

...
...

1 age230,n230
Black230 Hispanic230 White230

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Zsubj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

... · · · ...
1 0 · · · 0
...

...
. . .

...
0 0 · · · 1
...

... · · · ...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Concatenate Zsubj and Zspline to form

Z = [Zsubj|Zspline].

The appropriate mixed model is then

y = Xβ + Zu + ε, cov

[
u
ε

]
=

⎡
⎣σ 2

U I 0 0

0 σ 2
u I 0

0 0 σ 2
ε I

⎤
⎦ . (8)

The Appendix contains R code for fitting this model. Note, in particular, that it circum-
vents explicit specification of Zsubj. This is important for large longitudinal datasets.

5. Bayesian analysis and Markov chain Monte Carlo

A particularly attractive advantage of penalized splines, compared with smoothing
splines, is the ease with which they can be fed into Markov chain Monte Carlo (MCMC)
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schemes for fitting Bayesian semiparametric regression models – as a result of the reduction
in the number of basis functions. For simple scatterplot smoothing, this involves the Bayesian
version of (5), namely

y | β, u, σ 2
ε ∼ N

(
Xβ + Zu, σ 2

ε I
)
, u | σ 2

u ∼ N
(
0, σ 2

u I
)
,

and suitable (usually diffuse) prior distributions for β, σ 2
u and σ 2

ε . However, the big advantages
of a Bayesian/MCMC approach are realized when handling complications such as measure-
ment error (e.g. Carroll et al., 2006) and generalized responses (e.g. Zhao et al., 2006), which
are hindered by intractable integrals in the likelihood.

Crainiceanu, Ruppert & Wand (2005) focussed on the use of the MCMC package
WINBUGS (the Windows version of BUGS, Spiegelhalter et al., 2000) for Bayesian penalized
spline models. They reported that the choice of basis functions can have a substantial impact
on the convergence of the chain. We decided to conduct some convergence checks for MCMC
fitting of the regression model

logit{P(unioni = 1 | wagei )} = f (wagei ), (9)

with f estimated by means of O’Sullivan penalized splines. Here (wagei , unioni ), 1 ≤ i ≤
534, are pairs of wage amounts (dollars per hour) and trade union membership indicators for
a sample of U.S. workers (source: Berndt, 1991). We expressed (9) as the Bayesian logistic
mixed model:

logit{P(unioni = 1 | wagei )} = (Xβ + Zu)i , 1 ≤ i ≤ 534,

where X = [1 wagei ]1≤i≤534 and Z =BU Z diag (d−1/2
Z ), using the notation of Section 4. We

used 15 interior knots with quantile spacing.
Following the advice of Zhao et al. (2006), we used WINBUGS to generate chains of

length 5000 after a burn-in of 5000 and applied a thinning factor of 5, resulting in posterior
samples of size 1000. Also in keeping with the recommendations of Zhao et al. (2006),
we placed diffuse priors on the fixed effect parameters and variance component: β0, β1

independent N (0, 108) and the prior density of σ 2
u proportional to (σ 2

u )−1.01e−1/(100σ 2
u ), the

inverse gamma distribution with shape and rate parameter both 0.01, after scaling the predictor
to have unit variance. Zhao et al. (2006) found that the results can be sensitive to the choice
of the inverse gamma hyperparameter.

The pointwise posterior mean effect of wage on the probability of trade union mem-
bership, together with 95% pointwise credible sets, is shown in Figure 6. Figure 7 allows
assessment of the convergence of the MCMC at each quartile of the wage sample, and is seen
to be excellent in each case. We also conducted convergence checks for larger logistic additive
models involving up to six predictors and three smooth functions, and found the mixing to be
very good when O-splines were used.

Several examples of semiparametric regression with WINBUGS, including code, are
given in Crainiceanu et al. (2005) and Zhao et al. (2006).

6. General degree extension

Cubic O’Sullivan penalized splines have a natural extension to general odd-degree
splines. Higher-degree splines have a role to play when smoother curve estimates are required.
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Figure 6. Fit of logit{P(unioni=1 | wagei )} = f (wagei ) for trade union membership data (source:
Berndt, 1991) using O’Sullivan penalized splines.
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Figure 7. Assessment of MCMC convergence for the fit shown in Figure 6 at each quartile of wage. The
columns are: quartile of wage, trace plot of sample of corresponding coefficient, plot of sample against
1-lagged sample, sample autocorrelation function, Gelman–Rubin

√
R̂ diagnostic, kernel estimates of

posterior density and basic numerical summaries.

This arises, for example, in feature significance methodology (e.g. Chaudhuri & Marron, 1999;
Hannig & Marron, 2006), in which first and second derivatives of the fit are required.

Return to the simple non-parametric regression setting (1) and let m be a general positive
integer. Form the knot sequence

a = κ1 = · · · = κ2m < κ2m+1 < · · · < κ2m+K < κ2m+K+1 = · · · = κ4m+K = b,
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and let B2m−1,1, . . . , B2m−1,K+2m be the degree (2m − 1) B-spline basis defined by these
knots. O’Sullivan penalized splines of order m then take the general form

f̂O (x ; m, λ) ≡ B2m−1,x ν̂O , where ν̂O ≡ (
B�

2m−1 B2m−1 + λ�(m))−1
B�

2m−1 y.

Here B2m−1 is the n × (K + 4m) design matrix with (i, k)th entry B2m−1,k(xi ), B2m−1,x ≡
[B2m−1,1(x), . . ., B2m−1,K+2m(x)], and �(m) is the (K + 2m) × (K + 2m) penalty matrix with
(k, k ′)th entry

�
(m)
kk ′ =

∫ b

a
B(m)

2m−1,k(x)B(m)
2m−1,k ′ (x) dx .

In the special case in which the interior knots coincide with the xi s, assumed distinct,
f̂O (·; m, λ) corresponds to the order m smoothing spline; that is, the minimizer of

n∑
i=1

{yi − f (xi )}2 + λ

∫ b

a
f (m)(x)2 dx

(e.g. Schoenberg, 1964).
We are now ready to state our result for the exact computation of O’Sullivan spline

penalty matrices.

Theorem. The penalty matrix �(m) admits the exact explicit expression

�(m) = (
B̃

(m))�
diag(w)B̃

(m)
,

where B̃
(m)

is the (2m − 1)(K + 4m − 1) × (K + 2m) matrix with (i , j)th entry B(m)
2m−1, j (̃xi ),

and w is a (2m − 1)(K + 4m − 1) × 1 vector with i th entry wi . The x̃i and wi values are
obtained according to

x̃(2m−1)(�−1)+�′+1 = κ� + �′hm,�, w(2m−1)(�−1)+�′+1 = hm,�ωm,�′

for 1 ≤ � ≤ K + 4m − 1, 0 ≤ �′ ≤ 2m − 2. Here, for 1 ≤ k ≤ K + 2m, h1,k = κk+1 − κk ,
and, for m ≥ 2, hm,k = (κk+1 − κk)/(2m − 2). Finally, for all m ≥ 1,

ωm,k = (−1)k

k!(2m − 2 − k)!

∫ 2m−2

0

t(t − 1) · · · (t − 2m + 2)

t − k
dt, k = 0, . . . , 2m − 2.

Proof. The (k, k ′)th entry of �(m) is

�
(m)
kk ′ =

∫ b

a
B(m)

2m−1,k(x)B(m)
2m−1,k ′ (x) dx =

K+4m−1∑
i=1

∫ κi+1

κi

B(m)
2m−1,k(x)B(m)

2m−1,k ′ (x) dx . (10)

Because B(m)
2m−1,k (x), B(m)

2m−1,k′ (x) are degree m − 1 polynomials on each interval x ∈ (κ i ,

κ i+1) for 1 ≤ i ≤ K + 4m − 1, the function B(m)
2m−1,k (x) B(m)

2m−1,k ′ (x) is a degree 2(m − 1)
polynomial on the same interval. The result follows by applying to the right-hand side of (10)
the Newton–Cotes integration (2m − 1)-point rule (e.g. Whittaker & Robinson, 1967) which
is exact for polynomials of degree 2(m − 1) or lower.
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TABLE 1
Table of ωm,k ≡ (−1)k

k!(2m−2−k)!

∫ 2m−2
0

t(t−1)···(t−2m+2)
t−k dt values for m ≤ 4

m\k 0 1 2 3 4 5 6

1 1
2 1/3 4/3 1/3
3 14/45 64/45 8/15 64/45 14/45
4 41/140 54/35 27/140 68/35 27/140 54/35 41/140

Table 1 provides values of ωm,k for O’Sullivan polynomials up to degree 7. This, together
with the Theorem, allows direct computation of penalty matrices of O’Sullivan splines for
m ≤ 4. Higher values of m require one-off calculation of the ωk,m through, say, a symbolic
computation package such as MAPLE (Waterloo Maple Inc., 2007).

Recall from Section 2 that, in the case of cubic O’Sullivan splines, Newton–Cotes
integration reduces to Simpson’s rule, and a simpler, more revealing, expression results in the
shape of (3).

7. Closing remarks

Smoothing splines have a special place in non-parametric and semiparametric regression.
They are based on simple and intuitive principles, have an attractive theory (e.g. Nussbaum,
1985; Wahba, 1990; Eubank, 1994; Solo, 2000), and possess good practical properties such
as natural boundary behaviour. Penalized splines, including P-splines, have gained popularity
for reasons stated in the Introduction. However, proponents of penalized splines have been
viewed by some, especially in the smoothing spline community, as ignoring the benefits that
have been established for smoothing splines over the past few decades. O’Sullivan penalized
splines, being a direct generalization and closer approximation of smoothing splines, provide
an attractive link between the two streams of semiparametric regression research, and allow
analysts to enjoy the best of both worlds.

Appendix: R implementation

In this Appendix we provide R code for the use of O’Sullivan penalized splines in the
simplest semiparametric regression setting: scatterplot smoothing. The extension to more
complex models, such as those described by Ngo & Wand (2004) and Crainiceanu et al.
(2005), is straightforward. We illustrate one of these extensions: additive mixed models.

Direct scatterplot smoothing with user choice of smoothing parameter

Obtain scatterplot data corresponding to environmental data from the R package LATTICE. Set
up plotting grid, knots and smoothing parameter:

library(lattice) ; attach(environmental)
x <- radiation ; y <- ozone(̂1/3)
a <- 0 ; b <- 350 ; xg <- seq(a,b,length=101)
numIntKnots <- 20 ; lambda <- 1000

Set up the design matrix and related quantities:

library(splines)
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intKnots <- quantile(unique(x),seq(0,1,length=
(numIntKnots+2))[-c(1,(numIntKnots+2))])

names(intKnots) <- NULL
B <- bs(x,knots=intKnots,degree=3,

Boundary.knots=c(a,b),intercept=TRUE)
BTB <- crossprod(B,B) ; BTy <- crossprod(B,y)

Create the � matrix:

formOmega <- function(a,b,intKnots)
{

allKnots <- c(rep(a,4),intKnots,rep(b,4))
K <- length(intKnots) ; L <- 3∗(K+8)
xtilde <- (rep(allKnots,each=3)[-c(1,(L-1),L)]+

rep(allKnots,each=3)[-c(1,2,L)])/2
wts <- rep(diff(allKnots),each=3)∗rep(c(1,4,1)/6,K+7)
Bdd <- spline.des(allKnots,xtilde,derivs=rep(2,length(xtilde)),

outer.ok=TRUE)$design
Omega <- t(Bdd∗wts)
return(Omega)

}

Omega <- formOmega(a,b,intKnots)

Obtain the coefficients:

nuHat <- solve(BTB+lambda∗Omega,BTy)
For large K , the following alternative Cholesky-based approach can be considerably faster
(O (K ), because B� B + λ� is banded diagonal):

cholFac <- chol(BTB+lambda∗Omega)
nuHat <- backsolve(cholFac,forwardsolve(t(cholFac),BTy))

Display the fit:

Bg <- bs(xg,knots=intKnots,degree=3,Boundary.knots=c(a,b),
intercept=TRUE)
fhatg <- Bg

plot(x,y,xlim=range(xg),bty="l",type="n",xlab="radiation",
ylab="cuberoot of ozone",main="(a) direct fit; user
choice of smooth. par.")

lines(xg,fhatg,lwd=2)
points(x,y,lwd=2)

Mixed model scatterplot smoothing with REML choice of smoothing parameter

Obtain the spectral decomposition of �:

eigOmega <- eigen(Omega)

Obtain the matrix for the linear transformation of B to Z:
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indsZ <- 1:(numIntKnots+2)
UZ <- eigOmega$vectors[,indsZ]
LZ <- t(t(UZ)/sqrt(eigOmega$values[indsZ]))

Perform a stability check:

indsX <- (numIntKnots+3):(numIntKnots+4)
UX <- eigOmega$vectors[,indsX]
L <- cbind(UX,LZ)
stabCheck <- t(crossprod(L,t(crossprod(L,Omega))))
if (sum(stabCheck2) > 1.0001∗(numIntKnots+2))

print("WARNING: NUMERICAL INSTABILITY ARISING FROM SPECTRAL
DECOMPOSITION")

Form the X and Z matrices:

X <- cbind(rep(1,length(x)),x)
Z <- B%∗%LZ
Fit using lme() with REML choice of smoothing parameter:

library(nlme)
group <- rep(1,length(x))
gpData <- groupedData(y x|group,data=data.frame(x,y))
fit <- lme(y -1+X,random=pdIdent(-1+Z),data=gpData)

Extract coefficients and plot scatterplot smooth over a grid:

betaHat <- fit$coef$fixed
uHat <- unlist(fit$coef$random)
Zg <- Bg%∗%LZ
fhatgREML <- betaHat[1] + betaHat[2]∗xg + Zg
plot(x,y,xlim=range(xg),bty="l",type="n",xlab="radiation",

ylab="cuberoot of ozone",main="(b) mixed model fit;
REML choice of smooth. par.")

lines(xg,fhatgREML,lwd=2)
points(x,y,lwd=2)

Execution of the above code leads to Figure 8.

Fitting an additive mixed model

The spinal bone mineral density data of Bachrach et al. (1999) are not publicly available.
Therefore we will illustrate the fitting of additive mixed models using simulated data. For
simplicity, we will use two ethnicity categories rather than four.

Generate data:

set.seed(394600) ; m <- 230 ; nVals <- sample(1:4,m,replace=TRUE)
betaVal <- 0.1 ; sigU <- 0.25 ; sigEps <- 0.05
f <- function(x)

return(1 + pnorm((2∗x-36)/5)/2)
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Figure 8. Plots obtained from execution of the first two chunks of code in this Appendix.

U <- rnorm(m,0,sigU)
age <- NULL ; ethnicity <- NULL
Uvals <- NULL ; idNum <- NULL
for (i in 1:m)
{

idNum <- c(idNum,rep(i,nVals[i]))
stt <- runif(1,8,28-(nVals[i]-1))
age <- c(age,seq(stt,by=1,length=nVals[i]))
xCurr <- sample(c(0,1),1)
ethnicity <- c(ethnicity,rep(xCurr,nVals[i]))
Uvals <- c(Uvals,rep(U[i],nVals[i]))

}

epsVals <- rnorm(sum(nVals),0,sigEps)
SBMD <- f(age) + betaVal∗ethnicity + Uvals + epsVals

Set up basic variables for the spline component:

a <- 8 ; b <- 28; numIntKnots <- 15
intKnots <- quantile(unique(age),seq(0,1,length=

(numIntKnots+2))[-c(1,(numIntKnots+2))])

Obtain the spline component of the Z matrix:

B <- bs(age,knots=intKnots,degree=3,
Boundary.knots=c(a,b),intercept=TRUE)
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Figure 9. Plot obtained from execution of the last chunk of code in this Appendix.

Omega <- formOmega(a,b,intKnots)
eigOmega <- eigen(Omega)
indsZ <- 1:(numIntKnots+2)
UZ <- eigOmega$vectors[,indsZ]
LZ <- t(t(UZ)/sqrt(eigOmega$values[indsZ]))
ZSpline <- B

Obtain the X matrix:

X <- cbind(rep(1,length(SBMD)),age,ethnicity)

Set up the variables required for fitting via lme(). Note that the random intercept is taken
care of via the tree identification numbers variable idNum, and that explicit formation of the
random effect contribution to the Z matrix is not required.

groupVec <- factor(rep(1,length(SBMD)))
ZBlock <- list(list(groupVec=pdIdent(ZSpline-1)),list(idNum=
pdIdent(1)))
ZBlock <- unlist(ZBlock,recursive=FALSE)
dataFr <- groupedData(SBMD ethnicity|groupVec,

data=data.frame(SBMD,X,ZSpline,idNum))
fit <- lme(SBMD -1+X,data=dataFr,random=ZBlock)
betaHat <- fit$coef$fixed
uHat <- unlist(fit$coef$random)
uSplineHat <- uHat[1:ncol(ZSpline)]
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Plot the data and fitted curve estimates together:

ng <- 101 ; ageg <- seq(a,b,length=ng)
Bg <- bs(ageg,knots=intKnots,degree=3,Boundary.knots=c(a,b),
intercept=TRUE)
ZgSpline <- Bg

plotMatrix0 <- cbind(rep(1,ng),ageg,rep(0,ng),ZgSpline)
fhatgREML <- plotMatrix0

xLabs <- paste("ethnicity =",as.character(ethnicity))
pobj <- xyplot(SBMD age|xLabs,groups=idNum,xlab="age (years)",

ylab="spinal bone mineral density",subscripts=TRUE,
panel=function(x,y,subscripts,groups)
{

panel.grid() ; panel.superpose(x,y,subscripts,groups,
type="b",col="grey60",pch=16)

panelInd <- any(ethnicity[subscripts]==1)
panel.xyplot(ageg,fhatgREML+panelInd∗betaHat[3],

lwd=3,type="l",col="black")
})

print(pobj)

Print approximate 95% confidence intervals for key parameters:

print(intervals(fit))

Execution of the above code should lead to an outcome similar to that in Figure 9 (the
simulated data may differ between platforms).
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