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SUMMARY

We investigate mean field variational approximate Bayesian inference for models that
use continuous distributions, Horseshoe, Negative-Exponential-Gamma and General-
ized Double Pareto, for sparse signal shrinkage. Our principal finding is that the most
natural, and simplest, mean field variational Bayes algorithm can perform quite poorly
due to posterior dependence among auxiliary variables. More sophisticated algorithms,
based on special functions, are shown to be superior. Continued fraction approximations
via Lentz’s Algorithm are developed to make the algorithms practical.
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1 Introduction

We report on an investigation into the extension of mean field variational Bayes (MFVB)
methodology to accommodate various continuous sparse signal shrinkage distributions.
Our findings are two-pronged. Firstly, MFVB can possess pitfalls when applied naı̈vely –
that is, when using natural auxiliary variable representations of continuous sparse signal
distributions. Natural auxiliary variable representations are those that allow conjugate
Gibbs sampling updates. The root cause is strong posterior dependence among auxiliary
variables. Secondly, remedies are developed based on alternative auxiliary variable rep-
resentations that remove the posterior dependence problem. These remedies involve a
new MFVB tool: continued fraction approximations via Lentz’s Algorithm.

Mean field approximation is a versatile and principled approach to approximate Baye-
sian inference in graphical models (e.g. Wainwright & Jordan, 2008). Over the past decade
or so it has become increasingly popular as a fast alternative to Markov chain Monte
Carlo (MCMC) for inference in hierarchical Bayesian models, where it has become known
as variational Bayes or, more descriptively, mean field variational Bayes (MFVB). Much of
the early MFVB literature treated models with standard distributions such as the Dirich-
let, Gamma and Normal families (e.g. Attias, 1999; Teschendorff et al., 2005; Flandin &
Penny, 2007; McGrory & Titterington, 2007; Consonni & Marin, 2007). More recently ef-
forts have targeted effective incorporation of more elaborate distributions into the MFVB
framework such as the t, Laplace and Generalized Extreme Value distributions (e.g. Ar-
chambeau & Bach, 2008; Armagan, 2009; Wand, Ormerod, Padoan & Frürwirth, 2011).
An earlier reference on MFVB for an elaborate distribution is Tipping & Lawrence (2003),
who treated the t distribution with fixed degrees of freedom.
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Continuous sparse signal shrinkage distributions are a topical class of elaborate dis-
tributions that, to date, have received little or no attention with regard to MFVB method-
ology. The primary motivation for their development is regression analysis for wide data
(“p� n”) settings, but they can also be contemplated for Bayesian approaches to wavelet
nonparametric and semiparametric regression (e.g. Wand & Ormerod, 2011). Examples
of continuous sparse signal distributions are:

• the Horseshoe distribution (Carvalho, Polson & Scott, 2010),

• the Normal-Exponential-Gamma and Normal-Gamma distributions (Griffin & Brown,
2011), and

• the Generalized Double Pareto distribution (Armagan, Dunson & Lee, 2013).

Several other examples are given in Polson & Scott (2010). In each of these references,
the estimation properties of such distributions, when used as priors on coefficients in
sparse signal regression models, are established. They represent purely continuous al-
ternatives to so-called “slab-and-spike” priors such as Laplace-Zero mixtures (e.g. John-
stone & Silverman, 2004, 2005). The relative merits of the several options now available
for coefficient priors in sparse signal models are not studied here. Rather, we devise
MFVB algorithms and assess their quality once the shrinkage distribution has been cho-
sen. Whilst we focus on the three classes of distributions listed above, we expect that the
lessons apply generally to distributions of this type.

The current study is motivated by various versions of sparse signal regression, where
it is desirable to force many of the estimated regression coefficients to be zero or effec-
tively zero. In the past two decades, several Bayesian and non-Bayesian fitting methods
for sparse regression have been developed. Given our focus on MFVB fitting, our dis-
cussion here is confined to Bayesian approaches to sparse regression. A generic form
satisfied by many Bayesian sparse regression models is

g(E(y|β0,β)) = 1β0 + Xβ

where y is vector of response variables, 1 is a vector of ones and X is an n×p fixed design
matrix and g is a link function. Situations for which a sparse estimate of β is desirable
include:

• the columns of X correspond to wavelet basis functions of the observed values of
a continuous predictor variable,

• X is very wide, in that p � n; i.e. there are many more candidate predictors than
observations.

Sparseness may be achieved within the Bayesian paradigm via a prior specification of the
form

βj
ind.∼ p(βj)

where p is a “slab-and-spike” density function:

p(x) = wpcts.(x) + (1− w)δ0(x), 0 < w < 1,

with pcts. denoting a continuous density function. Johnstone & Silverman (2004, 2005),
for example, make a compelling case for use of such priors. As mentioned earlier, several
purely continuous alternatives to “slab-and-spike” density functions have been proposed
in the last few years, and the versions studied here are defined in Appendix A. They do
not lead to exactly sparse posterior distributions, but rather to “effectively” sparse results
in that the posterior density function of βj is very close to a point mass at zero. Despite
this supposed drawback, purely continuous priors have been shown to have good prop-
erties in sparse signal contexts when p < n. For example, Carvalho, Polson & Scott (2010)
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prove that the Horseshoe prior has tail robustness and super-efficient convergence prop-
erties. Markov chain Monte Carlo (MCMC) is the most common approach to Bayesian
inference. However, X can be extremely wide in certain areas of application such as ge-
nomics. This can cause MCMC to be unacceptably slow and recent research has been
concerned with fast MFVB alternatives in sparse signal regression (e.g. Logsdon, Hoff-
man & Mezey, 2010; Carbonetto & Stephens, 2011; Wand & Ormerod, 2011).

Section 2 is this article’s centerpiece. We confine attention to simple univariate models
involving continuous sparse signal shrinkage distributions. This means that the essence
of MFVB for continuous sparse signal shrinkage can be delved into with minimal struc-
ture and notation. The locality property of MFVB (e.g. Wand et al., 2011, Section 3) means
that the lessons and methodology apply to other Bayesian models containing distribu-
tions of this type. We provide theory and numerical studies that point to serious pitfalls
when MFVB is used naı̈vely, and then describe remedies. Some brief remarks on implica-
tions for sparse signal regression are made in Section 3. Appendix A contains necessary
backgound material on special functions, distributional definitions and results. Some
background on MFVB is also given. The derivations of the article’s MFVB algorithms
are given in Appendix B. Appendix C contains a proof of our main theoretical result,
Theorem 1, concerning pitfalls of MFVB for continuous sparse signal shrinkage.

2 Univariate Scale Models

In a vein similar to Wand et al. (2011), we now concentrate on simple univariate scale
models involving continuous sparse signal shrinkage distributions. These allow a deeper
understanding of the issues, with a minimal amount of notational overhead. Unlike
Wand et al. (2011), the location parameter is taken to be zero – which is in keeping with
the use of such distributions in sparse signal regression. Definitions and results needed
for this section are given in Appendix A.

2.1 Horseshoe Distribution

Consider the following Bayesian location-scale model for a univariate random sample
from the Horseshoe distribution:

xi|σ
ind.∼ Horseshoe(0, σ), σ ∼ Half-Cauchy(A), (1)

where A > 0 is a hyperparameter.
Table 1 lists three new models that are equivalent to (1). The equivalences are due to

Results 1a, 1b and 4 given in Appendix A. Model I introduces the single auxiliary variable
a. Model II adds the b = (b1, . . . , bn) vector of auxiliary variables. In Model III a third
set of auxiliary variables, corresponding to the vector c = (c1, . . . , cn), is added. Figure 1
shows the directed acyclic graphs corresponding to Models I, II and III.

An attraction of Model III is that each of the conditional distributions belong to the
Normal and Gamma families. This translates to the full conditional distributions being
standard distributions and Gibbs sampling being exact. Such is not the case for Models I
and II.

Now consider MFVB approximation of the joint posterior density functions of σ and
the auxiliary variables, according to the following product assumptions:

p(σ, a|x) ≈ q(σ) q(a) for Model I,
p(σ, a, b|x) ≈ q(σ) q(a, b) for Model II,
p(σ, a, b, c|x) ≈ q(σ, c) q(a, b) for Model III.

(2)
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Model I Model II Model III

xi|σ
ind.∼ Horseshoe(0, σ) xi|σ, bi

ind.∼ N(0, σ2/bi) xi|σ, bi
ind.∼ N(0, σ2/bi)

σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1)

a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2)

p(bi) = π−1b
−1/2
i (bi + 1)−1, bi > 0 bi| ci

ind.∼ Gamma(1
2 , ci)

ci
ind.∼ Gamma(1

2 , 1)

Table 1: Three auxiliary variable models that each give rise to the Horseshoe model (1).

Model I

x

σ

a
Model II

x

σ

a

b

Model III

x

σ

a

b

c

Figure 1: Directed acyclic graphs corresponding to the three models listed in Table 1.

Under Model I, the optimal q-densities satisfy

q∗(σ2) ∝ (σ2)−
1
2 (n+3) exp

{
−µq(1/a)/σ

2 +
n∑

i=1

log pHS(xi/σ)

}
.

The normalizing factor and moments of q∗(σ2) require numerical integration methods.
The integrands involve n evaluations of the exponential integral function. This makes
Model I quite challenging for MFVB and full assessment of the feasibility of such an
approach is omitted here.

The appeal of Models II and III is the closed-form q-density for σ2:

q∗(σ2) ∼ IG

(
1
2(n+ 1), µq(1/a) + 1

2

n∑
i=1

x2
i µq(bi)

)
. (3)

We work with σ2, rather than σ, due to q∗(σ2) being in a standard density function family.
The derivation of (3), as well as required optimal q-densities and relevant moments

of the auxiliary variables, are given in Appendix B. These results give rise to Algorithm
1 for MFVB-approximate Bayesian inference for σ2. We note that the Model III branch
of Algorithm 1 is, to some degree, a special case of a procedure given in Section 4.1 of
Armagan, Dunson & Clyde (2011).

Model II requires repeated evaluation of the function Q, defined by (14) in Appendix
A. Lentz’s Algorithm (Lentz, 1976; Press et al., 1992, pp. 169–171) is an effective method
for continued fraction approximation of Q(x) to a prescribed accuracy. Algorithm 2 pro-
vides the details. Figure 2 shows that convergence is quite rapid for x bigger than about
1. For small 0 < x ≤ 1, we recommend direct computation of Q(x). In this case the

4



Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci) > 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.

For i = 1, . . . , n:

Gi ← 1
2µq(1/σ2) x

2
i

if Model II: µq(bi) ← {GiQ (Gi)}−1 − 1
if Model III: µq(bi) ← 1

/{
Gi + µq(ci)

}
; µq(ci) ← 1

/{
µq(bi) + 1

}
µq(1/σ2) ← (n+ 1)

/{
2µq(1/a) +

∑n
i=1 x

2
i µq(bi)

}
until the increase in p(x; q) is negligible.

Algorithm 1: Mean field variational Bayes algorithm for determination of q∗(σ2) from data mod-
elled according to (1). The schemes differ according to which auxiliary variable representations,
Model II or Model III, from Table 1 is used.

underflow threat, described in Appendix A.1.2, is absent since since exp(−x) is close to
1.
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Figure 2: The number of iterations required for Lentz’s Algorithm to converge when used to
approximate Q(x). The convergence criteria correspond to the default settings in Algorithm 2.

It remains to discuss computation of the lower bound on the marginal log-likelihood,
log p(x; q). The results in Appendix B lead to the explicit expressions:

log p(x; q) =


log p(x; q,BASE)− n log(π) +

∑n
i=1 [Gi µq(bi) + log{Q(Gi)}] for Model II

log p(x; q,BASE)− n log(π) +
∑n

i=1[µq(bi){Gi + µq(ci)}
− log(Gi + µq(ci))− log(µq(bi) + 1)] for Model III

where

log p(x; q,BASE)≡ log Γ
(

n+1
2

)
− n

2 log(2π)− log(π)− log(A)− log(µq(1/σ2) +A−2)
−n+1

2 log
(
µq(1/a) + 1

2

∑n
i=1 x

2
i µq(bi)

)
+ µq(1/a) µq(1/σ2).

(4)
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Inputs (with defaults): x > 0, ε1(10−30), ε2(10−7),

If x > 1 then (use Lentz’s Algorithm)

fprev ← ε1 ; Cprev ← ε1 ; Dprev ← 0 ; ∆ = 2 + ε2 ; j ← 1

cycle while |∆− 1| ≥ ε2:

j ← j + 1 ; Dcurr ← x+ 2j − 1− (j − 1)2Dprev

Ccurr ← x+ 2j − 1− (j − 1)2/Cprev

Dcurr ← 1/Dcurr ; ∆← Ccurr Dcurr ; fcurr ← fprev ∆
fprev ← fcurr ; Cprev ← Ccurr ; Dprev ← Dcurr

return 1/(x+ 1 + fcurr)

Otherwise (use direct computation)

return exE1(x).

Algorithm 2: Algorithm for stable and efficient computation of Q(x).

2.1.1 Simplicity Comparison of Models II and III

Perusal of Algorithm 1 shows that Model III produces the simplest MFVB scheme since
it involves only standard algebraic calculations such as taking square-roots.

Model II is obviously not as simple as Model III because of the requirement to com-
pute Q for each 1 ≤ i ≤ n and for each coordinate ascent iteration. However, as indi-
cated by Figure 2, Q evaluations are relatively cheap, and stable, for arguments exceed-
ing 1. Special function software such as the R (R Development Core Team, 2014) function
expint E1() in the package gsl allows efficient and stable computation of Q for small
x.

2.1.2 Simulation Comparison of Models II and III

Models II and III were compared via simulation. We generated 1000 data-sets according
to

xi ∼ Horseshoe(0, 1), 1 ≤ i ≤ n,

and sample sizes n = 100 and n = 1000. Hence σ2 has a “true value” of 1. The accuracy
of each MFVB approximation q∗(σ2) was assessed using

accuracy ≡ 1− 1
2

∫ ∞

0

∣∣ q∗(σ2)− pMCMC(σ2|x)
∣∣ d(σ2)

where pMCMC(σ2|x) is an accurate MCMC-based approximation to p(σ2|x), obtained us-
ing WinBUGS (Lunn et al. 2000) with R interfacing via the BRugs package (Ligges et
al. 2011). MCMC samples of size 10000 were generated, with the first 5000 values dis-
carded as burn-in and the remaining 5000 thinned by a factor of 5. Kernel density estima-
tion, with direct plug-in bandwidth selection using the R package KernSmooth (Wand
& Ripley, 2010), was used to obtain pMCMC(σ2|x) over a fine grid of σ2 values. Note that
0 ≤ accuracy ≤ 1, with an accuracy score of 1 implying perfect correspondence between
the MFVB and MCMC approximations. We also kept track of coverage of the MFVB-
approximate 95% credible intervals.

Table 2 summarizes the accuracy and coverage percentages for Model II and Model
III MFVB. The Model III results are abysmal. In particular, none of the n = 1000 credible
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n = 100 n = 1000
accuracy coverage accuracy coverage

Model II 54.3 (1.4) 55% 56.8 (0.9) 58%
Model III 6.3 (0.9) 4% 0.0 (0.0) 0%

Table 2: Average (standard deviation) accuracy and percentage coverage of true σ2 value by
approximate 95% credible intervals based on MFVB for a simulation of size 1000 from (1).

intervals include the true value of σ2 and each of the q∗(σ2) densities has 0% accuracy.
Model II has reasonably acceptable accuracy and interval coverage.
Figure 3 provides graphical comparison between pMCMC(σ2|x) and q∗(σ2) for four repli-
cations. The Model III q∗(σ2) densities have their probability mass tightly centered on
about 0.4, with negligible mass including the true value of 1. However, the Model II
q∗(σ2) densities tend to be centered on 1 albeit with a lower amount of spread compared
with pMCMC(σ2|x).
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Figure 3: Comparison of pMCMC(σ2|x) and two q∗(σ2) densities, based Model II and Model III
MFVB, for four replications from the simulation study corresponding to Table 2 with n = 1000.

2.1.3 Theoretical Comparison of Models II and III

The simulation comparison of Section 2.1.2 shows that the most computationally conve-
nient MFVB scheme, that based on Model III, has poor practical performance compared
with that based on Model II. In this section we provide some theoretical explanations for
these differences.

Our first theoretical observation is that the updates for µq(bi) in Algorithm 1 may be
written as:

µq(bi) ←
{

gII(Gi) for Model II
gIII(Gi) for Model III

(5)

where

gII(x) ≡ {xQ(x)}−1 − 1 and gIII(x) ≡
√

1
x

+
1
4
− 1

2
. (6)
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The expression for gIII(x) follows from algebraic reduction of the two equations in µq(bi)

and µq(ci) in the Model III updates.
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Figure 4: Plot of gIII(x)/gII(x) for the functions gII and gIII defined by (6).

The interpretation of (5) is that use of the ci auxiliary variables induces the approxima-
tion of gII by the simpler gIII. But, as shown in Figure 4, the functions differ considerably
for low positive arguments. This helps explain the poor performance of the Model III
MFVB algorithm exhibited in Table 2 and Figure 3.

The root cause of this discrepancy is the strong posterior dependence between the
bi and ci auxiliary variables, whereas MFVB assumes that there is no such dependence.
This dependence can be described in simple terms by considering random variables x, b
and c such that

x| b ∼ N(0, 1/b), b | c ∼ Gamma(1
2 , c), c ∼ Gamma(1

2 , 1). (7)

Figure 5 shows samples of {(log(1/b), log(c))|x = x0} for x0 = 1, 0.1, 0.01, 0.001, along
with corresponding sample correlation values. As x0 approaches 0, the sample correla-
tions are seen to get closer to 1.

The behavior exhibited in Figure 5 is described by Theorem 1, which uses Corr(u, v|w)
to denote the conditional correlation between two random variables u and v, given w:

Theorem 1. Consider random variables x, b and c such that

x| b ∼ N(0, 1/b), b | c ∼ Gamma(1
2 , c), c ∼ Gamma(1

2 , 1).

Then
lim

x0→0
Corr(log(1/b), log(c)|x = x0) = 1.

A proof of Theorem 1 is given in Appendix C. Theorem 1 verifies the behavior exhibited
in Figure 5 and reinforces the inappropriateness of Model III for MFVB.

2.2 Normal-Exponential-Gamma Distribution

As in Section 2.1, we consider the model for a univariate random sample, this time arising
from the Normal-Exponential-Gamma distribution:

xi|σ
ind.∼ NEG(0, σ, λ), σ ∼ Half-Cauchy(A). (8)

Table 3 lists three models that are equivalent to (8). The directed acyclic graphs in Figure
1 also convey the conditional dependence structure of Models I, II and III in Table 3.
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Figure 5: MCMC samples of size 1000 from the distribution {(log(1/b), log(c))|x = x0} for
x0 = 1, 0.1, 0.01, 0.001. The corresponding sample correlations are also shown.

Model I Model II Model III

xi|σ
ind.∼ NEG(0, σ, λ) xi|σ, bi

ind.∼ N(0, σ2/bi) xi|σ, bi
ind.∼ N(0, σ2/bi)

σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1)

a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2)

p(bi) = λ bλ−1
i (1 + bi)−λ−1, bi > 0 bi|ci

ind.∼ IG(1, ci)

ci
ind.∼ Gamma(λ, 1)

Table 3: Three auxiliary variable models that each give rise to the Negative-Exponential-Gamma
model (8).

Again we consider MFVB approximation of the joint posterior density function of σ2,
according to product restrictions (2). We eliminate Model I immediately since, as for the
Horseshoe distribution, the MFVB equations are very computationally challenging.

Models II and III representations lead to q∗(σ2) having an Inverse-Gamma distribu-
tion of the form (3). The q-density can be determined from Algorithm 3. Note that, as for
Algorithm 1, the Model III branch of Algorithm 1 is, to some degree, a special case of a
procedure given in Section 4.1 of Armagan, Dunson & Clyde (2011).
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Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci) > 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.

For i = 1, . . . , n:

Gi ← 1
2µq(1/σ2) x

2
i

if Model II: µq(bi) ← (2λ+ 1)R2λ

(√
2Gi

)/√
2Gi

if Model III: µq(bi) ←
√
µq(ci)/Gi ; µq(1/bi) ← 1/µq(bi) + 1/{2µq(ci)}

µq(ci) ← (λ+ 1)/{µq(1/bi) + 1}

µq(1/σ2) ← (n+ 1)
/{

2µq(1/a) +
∑n

i=1 x
2
i µq(bi)

}
until the increase in p(x; q) is negligible.

Algorithm 3: Mean field variational Bayes algorithm for determination of q∗(σ2) from data mod-
elled according to (8). The schemes differ according to which auxiliary variable representations,
Model II or Model III, from Table 3 is used.

Derivation of the updates in Algorithm 3 is given in Appendix B. The lower bounds
on the marginal log-likelihood can be shown to have explicit expressions

log p(x; q) =


log p(x; q,BASE) + n log(λ) + n(λ+ 1

2) log(2) + n log{Γ(λ+ 1
2)}

+
∑n

i=1 [{µq(bi) + 1
2}Gi + log{D−2λ−1(

√
2Gi)}] for Model II

log p(x; q,BASE) + n log(λ) + n
2 {1 + log(π)}

−
∑n

i=1

[
1
2 log{µq(ci)}+ (λ+ 1) log{µq(1/bi) + 1}

]
for Model III

where log p(x; q,BASE) is given by (4).
In the case of Model II, Algorithm 3, with ν = 2λ, should be accompanied by Algo-

rithm 4 to handle theR2λ evaluations. Note thatRν is defined in Appendix A.

Inputs (with defaults): x ≥ 0, λ > 0, ε1(10−30), ε2(10−7),

If (ν > 20) or (x > 0.2) then (use Lentz’s Algorithm)

fprev ← ε1 ; Cprev ← ε2 ; Dprev ← 0 ; ∆ = 2 + ε2 ; j ← 1

cycle while |∆− 1| ≥ ε2:

j ← j + 1 ; Dcurr ← x+ (ν + j)Dprev ; Ccurr ← x+ (ν + j)/Cprev

Dcurr ← 1/Dcurr ; ∆← Ccurr Dcurr ; fcurr ← fprev ∆
fprev ← fcurr ; Cprev ← Ccurr ; Dprev ← Dcurr

return 1/(x+ fcurr)

Otherwise (use direct computation)

return D−ν−2(x)/D−ν−1(x).

Algorithm 4: Algorithm for stable and efficient computation ofRν(x).
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2.2.1 Simplicity Comparison of Models II and III

The comments that we made in Section 2.1.1 for the Horseshoe distribution also apply to
MFVB for models containing Negative-Exponential-Gamma distributions.

Model II requires repeated evaluation of R2λ, defined in Appendix A, via Algorithm
4. Note the algorithm uses direct evaluation the ratio D−2λ−2(x)/D−2λ−1(x) only for
x ≤ 0.2 and λ < 40. Otherwise Lentz’s Algorithm is used. Careful checking of Lentz’s
Algorithm, via plots similar to Figure 2, found convergence to be quite rapid with these
cut-offs. In the case of R implementation, direct evaluation for low x and λ can be han-
dled using the function whittakerW() in the package fAsianOptions, as explained
in Appendix A.

2.2.2 Simulation Comparison of Models II and III

Models II and III were compared via a simulation study analogous to that described in
Section (2.1.2). We generated 500 data-sets for sizes n = 100 and n = 1000 according to

xi ∼ NEG(0, 1, λ), 1 ≤ i ≤ n,

and with
λ ∈ {0.1, 0.2, 0.4, 0.8, 1.6}.

λ
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Figure 6: Side-by-side boxplots of accuracy values for the simulation study described in the text.

Figure 7 compares the various approximations to p(σ2|x) for four replications from
the simulation study that produced Figure 6 for λ = 0.1. The q∗(σ2) density based on
Model III is seen to suffer from a pronounced locational shift to the right of pMCMC(σ2|x).
On other hand, the Model II q∗(σ2) tends to have its central location matching that of
pMCMC(σ2|x), although its spread is considerably lower.

Finally, we compared q∗(σ2) for Models II and III in terms of 95% credible interval
coverage of the known true value of σ2. Table 4 shows the resulting coverage percentages.

Table 4 reveals that Model III can lead to very poor approximate inference when λ is
low.
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Figure 7: Comparison of pMCMC(σ2|x) and two q∗(σ2) densities, based on Model II and Model III
MFVB, for four replications from the simulation study described in the text, with λ = 0.1 and
n = 1000.

value of λ 0.1 0.2 0.4 0.8 1.6
Model II 31 47 56 64 74

Model III 0 0 1 6 21

Table 4: Percentage coverage of true σ2 value by approximate 95% credible intervals based on
MFVB approximate posterior density functions with n = 1000.

2.2.3 Theoretical Comparison of Models II and III

Note that the update for µq(1/bi) in Algorithm 3 may be written as:

µq(1/bi) ←
{

gII
λ (Gi) for Model II

gIII
λ (Gi) for Model III

(9)

where

gII
λ (x) ≡ (2λ+ 1)R2λ(

√
2x)√

2x
and gIII

λ (x) ≡
√

2λ+ 1
2x

+
1
4
− 1

2
.

The expression for gIII
λ (x) follows from algebraic reduction of the three equations in µq(bi),

µq(ci) and µq(1/bi) corresponding to the Model III updates. The gIII
λ expression is quite

similar to that for gIII in Section 2.1.3 for the Horseshoe theoretical comparison and its
interpretation as an approximation to gII

λ is analogous to the one described there. In
Figure 8 these ratios of the two functions are compared across different values of λ. It is
apparent that the gap between gII

λ and gIII
λ widens as λ becomes small. This transfers to

worse comparative performance of Method III for lower values of λ.
Figure 9 shows MCMC-based samples from the posterior distribution of (log(bi), log(ci))

for simulated data generated according to (8) with n = 5 and the same values of λ as Fig-
ure 8. Note that the posterior correlation is quite strong for λ = 1.6, and increases to
be near perfect correlation as λ decreases. Such behavior is directly at odds with the
q(b, c) = q(b) q(c) product restriction on which Model III MFVB is based.
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Figure 8: Plots of gIII
λ (x)/gII

λ (x) for λ ∈ {0.1, 0.2, 0.4, 0.8, 1.6}.

It is conjectured that analogues of Theorem 1 also hold for Model III in the NEG case.
Numerical corroboration of such conjectures are provided in Neville (2013).

2.3 Generalized Double Pareto Distribution

The univariate location-scale model that we consider is:

xi|σ
ind.∼ GDP(0, σ, λ), σ ∼ Half-Cauchy(A). (10)

Table 5 lists three alternative representations of this model. The directed acyclic graph
structure depicted in Figure 1 applies to these models as well.

Model I Model II Model III

xi|σ
ind.∼ GDP(0, σ, λ) xi|σ, bi

ind.∼ N(0, σ2/bi) xi|σ, bi
ind.∼ N(0, σ2/bi)

σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1) σ2| a ∼ IG(1
2 , a

−1)

a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2) a ∼ IG(1
2 , A

−2)

p(bi) = 1
2(λ+ 1)λλ+1 b

(λ−2)/2
i bi|ci

ind.∼ IG(1, 1
2c

2
i )

× eλ2 bi/4D−λ−2(λ
√
bi), bi > 0 ci

ind.∼ Gamma(λ, λ)

Table 5: Three auxiliary variable models that each give rise to the Generalized Double Pareto
model (10).

Algorithm 5 sets out the MFVB algorithms corresponding to Models II and III. Justi-
fication is given in Appendix B. Note that Algorithm 5 uses the result

D−λ−4(x)/D−λ−2(x) = {1− xRλ+1(x)}/(λ+ 3), λ > 0,

which follows from the recurrence formula for parabolic cylinder functions (Gradshteyn
& Ryzhik, 1994).
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Figure 9: MCMC samples from the posterior distributions of (log(bi), log(ci)) for simulated data
generated according to (8) with varying values of λ and x0. The sample correlations are also
shown.

log p(x; q) =



log p(x; q,BASE) + n
2 log(π) + n(λ+ 1) log(λ)− n

2 (3λ+ 4) log(2)

+
∑n

i=1 [µq(bi)Gi − 1
2(λ+ 1) log(Gi)

+ log{2F1(1
2λ+ 1; 1

2λ+ 1
2 ;λ+ 2, 1− λ2/(2Gi))}] for Model II

log p(x; q,BASE) + n[λ log(λ) + log{λ(λ+ 1)} − log(2) + 1
2 log(π) + 1

2 ]

−
∑n

i=1

[
1
2(λ+ 1) log{µq(1/bi)} −

1
4λ

2/µq(1/bi)

− log D−λ−2(λ/
√
µq(1/bi))

]
for Model III

where log p(x; q,BASE) is given by (4).

2.3.1 Comparison of Models II and III

MFVB for GDP has the unexpected feature of being simpler for Model II than it is for
Model III, since the latter involves special functions whereas the former does not. This
represents a reversal of relative complexities compared with the Horseshoe and NEG
cases. There is no compelling reason for introduction of the ci auxiliary variables and
Model III does not seem worthy of further consideration.

Fuller details, and associated numerical work, are provided in Neville (2013).
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Initialize: µq(1/σ2) > 0.
If Model III, initialize: µq(ci) > 0, 1 ≤ i ≤ n.
Cycle:

µq(1/a) ← A2/{A2µq(1/σ2) + 1}.

For i = 1, . . . , n:

Gi ← 1
2µq(1/σ2) x

2
i

if Model II: µq(bi) ←
λ+ 1√

2Gi(λ+
√

2Gi)

if Model III: µq(bi) ←
√
µq(c2i )/(2Gi) ; µq(1/bi) ← 1/µq(bi) + 1/µq(c2i )

µq(c2i ) ← (λ+ 2)[1− {λ/√µq(bi)}Rλ+1(λ/
√
µq(bi))]/µq(bi)

µq(1/σ2) ← (n+ 1)
/{

2µq(1/a) +
∑n

i=1 x
2
i µq(bi)

}
until the increase in p(x; q) is negligible.

Algorithm 5: Mean field variational Bayes algorithm for determination of q∗(σ2) from data mod-
elled according to (10). The schemes differ according to which auxiliary variable representations,
Model II or Model III, from Table 5 is used.

2.4 Conclusion

The numerical and theoretical results presented in Sections 2.1, 2.2 and 2.3 all point
to the same conclusion: the two-level auxiliary variable representations of continuous
sparse signal shrinkage distributions, that involve simple distributions and give rise to
simple MCMC algorithms, lead to serious pitfalls when used in MFVB algorithms. On
the other hand, one-level auxiliary variable representations are reasonably well-behaved
and, hence, provide remedies to these pitfalls.

3 Implications for Sparse Signal Regression

The findings laid out in Section 2 have immediate implications for MFVB fitting and infer-
ence in sparse signal regression with continuous sparse signal shrinkage priors. Because
of the locality property of MFVB, the pitfalls of high posterior dependence among auxil-
iary variables can impact the quality of inference for parameters close to those auxiliary
variables on the regression model’s directed acyclic graph.

We confine discussion here to the Horseshoe prior. Similar comments apply to the
Normal-Exponential-Gamma, Generalized Double Pareto and other similar priors. Con-
sider the sparse signal regression model

y|β0,β, σε ∼ N(1β0 + X β, σ2
ε I),

β0 ∼ N(0, σ2
β0

), βj |σβ
ind.∼ Horseshoe(0, σβ), 1 ≤ j ≤ p,

σε ∼ Half-Cauchy(0, Aε), σβ ∼ Half-Cauchy(0, Aβ)

(11)

where X is n × p and σ2
β0
, Aε, Aβ > 0 are hyperparameters. Analogously to the uni-

variate location-scale models, Model (11) has auxiliary variable representations based on
Results 1a and 1b being applied to the Horseshoe distribution. We will continue to use
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the Model II and Model III labeling. For example, Model III involves replacement of
βj

ind.∼ Horseshoe(0, σβ) by

βj |σβ, bi
ind.∼ N(0, σ2

β/bi), bj | cj
ind.∼ Gamma(1

2 , ci) and cj
ind.∼ Gamma(1

2 , 1).

We also continue to use Result 4 for auxiliary variable representation of Half Cauchy
distributions. Figure 10 shows the corresponding directed acyclic graphs.

Model II

β0 y σε

σβ β aε

aβ b

Model III

β0 y σε

σβ β aε

aβ b c

Figure 10: Directed acyclic graphs corresponding to Model II and Model III representations of
(11).

The pitfalls caused by the high correlation between the bj and cj described in Section
2 still apply to the Model III version of (11), and this can impact the inference for nodes
close to b and c on the graph — namely β and σβ.

We ran a small simulation study involving wavelet regression to see if, and to what
degree, Model II and Model III differ in terms of quality of the regression fit. We gener-
ated 1000 samples according to

yi = fWO(xi) + εi, 1 ≤ i ≤ n,

where xi ∼ Uniform(0,1) and εi ∼ N(0, 1) and n ∈ {1000, 5000, 10000}. Here fWO is the
jagged/jumpy regression function used throughout Wand & Ormerod (2011) and defined
by

fWO(x) ≡ 18
[√

x(1− x) sin(1.6π/(x+ 0.2)) + 0.4 I(x > 0.13)
−0.7 I(0.32 < x < 0.38) + 0.43{(1− |(x− 0.65)/0.03|)+}4

+0.42{(1− |(x− 0.91)/0.015|)+}4
]
, 0 < x < 1,

where I(P) = 1 if P is true and zero otherwise. Estimation of fWO involved MFVB fitting
of (11) with X containing 255 Daubechies 5 wavelet basis functions applied to the xis
using the construction described in Section 3.1 of Wand & Ormerod (2011) with L =
8 levels. The quality of the resulting estimator, f̂WO, was measured using the average
squared error:

n−1
n∑

i=1

{f̂WO(xi)− fWO(xi)}2.

Figure 11 provides a visual summary of the simulation results, with the ratios of the av-
erage squared error values plotted as boxplots for each sample size. Model II is the clear
winner, with a superior average squared error performance across all 1000 replications.
The advantage of Model II is seen to be greater for lower sample sizes.

We are planning to conduct a large-scale simulation to assess the fuller implications of
Model II versus Model III for sparse signal regression, particularly when p is very high,
but this is yet to be carried out.

16



av
er

ag
e 

sq
ua

re
d 

er
ro

r 
ra

tio
s 

(M
od

el
 II

/M
od

el
 II

I)

0.85

0.90

0.95

1.00

n=1000 n=5000 n=10000

●

●

●

●●

●

●

●●
●

●

●

●●●
●

●

●

●●
●●

●

●
●●

●
●
●●

●

●

●

●

Figure 11: Boxplots of ratios of average squared errors for the wavelet regression simulation study
described in the text. The Model II errors are divided by the Model III errors.

Appendix A: Background

In this appendix we assemble all special function and distributional definitions and re-
sults required for the study given in Section 2. We also provide a brief description of
mean field variational Bayes.

A.1 Special function results

Continuous sparse signal shrinkage distributions depend on certain special functions.
Additionally, the superior MFVB algorithms that we develop for models containing such
distributions involve ratios of such functions. The necessary background material is laid
out here.

A.1.1 Special function definitions

We now define all special functions used in later sections. We follow the conventions
and notation of Gradshteyn & Ryzhik (1994). Their evaluation in the R computing en-
vironment (R Development Core Team, 2014), which is now ubiquitous in mainstream
Statistics, is also dealt with.

The exponential integral function of order 1, E1, is defined by

E1(x) ≡
∫ ∞

x

e−t

t
dt, x ∈ R, x 6= 0.

Evaluation of E1 is supported by the function expint E1() in the R package gsl (Han-
kin, 2007), which uses the GNU Scientific Library (Galassi et al., 2009).

The parabolic cylinder function of order ν ∈ R, is denoted byDν . The parabolic cylinder
functions of negative order admit the integral expression

Dν(x) = Γ(−ν)−1 exp(−x2/4)
∫ ∞

0
t−ν−1 exp(−xt− 1

2 t
2) dt, ν < 0, x ∈ R.
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Note that only such negative order members of the parabolic cylinder family arise in the
present article. Consequently, we have the relationship∫∞

0 xp exp(qx− rx2) dx = (2r)−(p+1)/2Γ(p+ 1) exp{q2/(8r)}D−p−1(−q/
√

2r),

p > −1, q ∈ R, r > 0.
(12)

Note that
Dν(x) = 2ν/2+1/4Wν/2+1/4,−1/4(1

2 x
2)/
√
x, x > 0, (13)

whereWk,m is a confluent hypergeometric function as defined in Whittaker & Watson (1990).
Due to (13) and Wk,m being supported by the R function whittakerW() within the
package fAsianOptions (Wuertz et al., 2009), evaluation of Dν(x), for ν ∈ R, x > 0, can
be achieved via:

library(fAsianOptions)
2ˆ(nu/2+1/4)*Re(whittakerW(xˆ2/2,nu/2+1/4,-1/4))/sqrt(x)

where nu and x denote the respective values of ν and x.
Gauss’s hypergeometric function of order (α, β, γ) has an infinite series definition (Grad-

shteyn & Ryzhik, 1994), but has the integral representation

2F1(α, β; γ;x) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0
(1− tx)−α tβ−1(1− t)γ−β−1 dt for γ > β > 0.

Section 9.130 of Gradshteyn & Ryzhik (1994) gives conditions under which 2F1(α, β; γ;x)
converges. Evaluation of 2F1(α, β; γ; ·) is supported by the function hyperg 2F1 in the
R package gsl.

A.1.2 Additional function definitions and continued fraction representations

The following new function definitions permit convenient listing and analysis of our
MFVB algorithms in Sections 2.1–2.3:

Q(x) ≡ exE1(x), x > 0,

and Rν(x) ≡
D−ν−2(x)
D−ν−1(x)

, ν > 0, x > 0.
(14)

Whilst both of these functions are simple forms involving special functions, care needs to
be taken with their computation, as we now explain.

First note that Q can be written as

Q(x) =
E1(x)

exp(−x)
, x > 0. (15)

As is well-known, the denominator on the right-hand side of (15) is strictly positive,
and rapidly approaches zero as x → ∞. Unfortunately, the numerator has the same
properties, and accurate evaluation of the ratio is impeded by underflow for large x. A
remedy would be to work with log{E1(x)}, but we know of no established software for
accurate computation of this function for large positive x. Fortunately, Q(x) admits the
simple continued fraction expansion:

Q(x) =
1

x+ 1−
12

x+ 3−
22

x+ 5−
32

x+ 7− · · ·

(16)
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(Equation (14.1.23) of Cuyt et al., 2008).
Analogous underflow problems afflict direct computation ofRν(x), and for its stable

computation we call upon:

Rν(x) =
1

x+
ν + 2

x+
ν + 3

x+
ν + 4
x+ · · ·

(17)

(Equation (16.5.7) of Cuyt et al., 2008).
Algorithms 2 and 4 achieve practical computation of Q and Rν based on these con-

tinued fraction representations.
A succinct summary of continued fraction enhancement of Bayesian computing is

given in Wand & Ormerod (2012).

A.2 Distributional definitions and results

Mean field variational Bayes for models containing continuous sparse shrinkage distri-
butions depend on certain special functions and distributional results, which we give
here.

A.2.1 Continuous sparse signal shrinkage density functions

The standard Horseshoe density function is

pHS(x) = (2π3)−1/2 exp(x2/2)E1(x2/2). (18)

If the random variable x has density function σ−1pHS((x− µ)/σ) then we write

x ∼ Horseshoe(µ, σ).

The standard Normal-Exponential-Gamma density function, with shape parameter
λ > 0, is

pNEG(x;λ) = π−1/2λ 2λΓ(λ+ 1
2) exp(x2/4)D−2λ−1(|x|). (19)

If the random variable x has density function σ−1pNEG((x− µ)/σ;λ) then we write

x ∼ NEG(µ, σ, λ).

The standard Generalized Double Pareto density function is

pGDP(x;λ) =
1

2(1 + |x|/λ)λ+1
. (20)

If the random variable x has density function σ−1pGDP((x− µ)/σ) then we write

x ∼ GDP(µ, σ, λ).

Figure 12 depicts standard (µ = 0, σ = 1) Horseshoe, Normal-Exponential-Gamma
and Generalized Double Pareto density functions with varying values of corresponding
shape parameters. For the Normal-Exponential-Gamma and Generalized Double Pareto
distributions a decrease of the shape parameter λ results in a density function having
higher kurtosis.
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Figure 12: Left panel: the standard Horseshoe density function. Middle panel: three standard
Normal-Exponential-Gamma density functions with varying shape parameter λ. Right panel:
three standard Double Generalized Pareto density functions with varying shape parameter λ.

A.2.2 Related distributional results

The notation v ∼ Gamma(A,B) means that v has a Gamma distribution with shape pa-
rameter A > 0 and rate parameter B > 0. The corresponding density function is

p(v) = BAΓ(A)−1vA−1 exp(−Bv), v > 0.

The notation v ∼ IG(A,B) means that v has an Inverse-Gamma distribution with shape
parameter A > 0 and rate parameter B > 0. The corresponding density function is

p(v) = BAΓ(A)−1v−A−1 exp(−B/v), v > 0.

Note that v ∼ IG(A,B) if and only if 1/v ∼ Gamma(A,B).

Result 1a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ Gamma(1
2 , c) and c ∼ Gamma(1

2 , 1).

Then x ∼ Horseshoe(µ, σ).

Result 1b. Let x and b be random variables such that

x| b ∼ N(µ, σ2/b) and p(b) = π−1b−1/2(b+ 1)−1, b > 0.

Then x ∼ Horseshoe(µ, σ).

Results 1a and 1b follow from results on the Horseshoe distribution given in Carvalho,
Polson & Scott (2010) as well as Proposition 1 of Armagan, Dunson & Clyde (2011) or
Result 5 of Wand et al. (2011).

Result 2a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ IG(1, c) and c ∼ Gamma(λ, 1).

Then x ∼ NEG(µ, σ, λ).

Result 2b. Let x and b such that

x| b ∼ N(µ, σ2/b) and p(b) = λ bλ−1 (b+ 1)−λ−1, b > 0.

Then x ∼ NEG(µ, σ, λ).

Results 2a and 2b are related to results on the Normal-Exponential-Gamma distribution
given in Griffin & Brown (2011).
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Result 3a. Let x, b and c be random variables such that

x| b ∼ N(µ, σ2/b), b | c ∼ IG(1, 1
2 c

2) and c ∼ Gamma(λ, λ).

Then x ∼ GDP(µ, σ, λ).

Result 3b. Let x and b be random variables such that

x| b ∼ N(µ, σ2/b) and p(b) = 1
2(λ+ 1)λλ+1 b(λ−2)/2 eλ

2 b/4D−λ−2(λ
√
b), b > 0.

Then x ∼ GDP(µ, σ, λ).

Results 3a and 3b are related to results on the Generalized Double Pareto distribution
given in Armagan, Dunson & Lee (2013).

A.2.3 Half-Cauchy distribution

The notation v ∼ Half-Cauchy(A) means that v has a Half Cauchy distribution with scale
parameter A > 0. The corresponding density function is

p(x) =
2A

π(x2 +A2)
, x > 0.

We use the Half-Cauchy family to impose non-informative priors on scale parameters.
The following result, a special case of Proposition 1 in Armagan, Dunson & Clyde

(2011) and Result 5 in Wand et al. (2011), is useful for mean field variational Bayes calcu-
lations for models containing Half Cauchy random variables:

Result 4. Let x and a be random variables such that

x| a ∼ IG(1
2 , a

−1) and a ∼ IG(1
2 , A

−2).

Then
√
x ∼ Half-Cauchy(A).

A.3 Mean field variational Bayes

Consider a Bayesian model (graphical model) with observed data vector x (evidence
node), parameter θ and auxiliary variable vectors a and b. Concrete examples of such
a model are given in Sections 2.1–2.3. Typically, the joint posterior density function
p(θ,a, b|x) is intractable. A mean field variational approach postulates an approxima-
tion such as

p(θ,a, b|x) ≈ q(θ) q(a, b) (21)

and chooses densities q(θ) and q(a, b) to minimize the following Kullback-Liebler dis-
tance between the two joint density functions:∫

q(θ) q(a, b) log
{
q(θ) q(a, b)
p(θ,a, b|x)

}
dθ da db.

The solutions can be shown to satisfy

q∗(θ) ∝ exp{Eq(a,b)p(θ|x,a, b)}
and q∗(a, b) ∝ exp{Eq(θ)p(a, b|x, θ)}.

(22)

These conditions gives rise to an iterative coordinate ascent algorithm which is guar-
anteed to converge under mild conditions. Convergence can be monitored using the
following lower bound on the marginal log-likelihood:

log p(x; q) ≡ Eq(θ,a,b)[log p(x, θ,a, b)− log{q(θ) q(a, b)}] ≤ log p(x),
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since each iteration leads to an improvement in the bound. Several illustrative examples
are given in Section 2.2 of Ormerod & Wand (2010). The number of iterations required
for convergence with strict tolerances is typically in the tens or hundreds.

Note that it is possible that the optimal density q∗(a, b) factorizes as q∗(a) q∗(b) even
though this restriction is not imposed by (21). This is known as induced factorization in
the MFVB literature (e.g. Section 10.2.5 of Bishop, 2006).

Ease of implementation and speed depends on the ease with which the expectations
in (22) can be evaluated. For simple models involving common distributions, the expec-
tations often admit explicit forms – in which case computation can be quite rapid. Models
involving more complicated distributions may be such that quadrature or Monte Carlo
is required, which tends to compromise speed.

Description of the MFVB algorithms in the upcoming sections benefit from notation
such as

µq(v) ≡
∫ ∞

−∞
v q(v) dv, µq(v2) ≡

∫ ∞

−∞
v2 q(v) dv. and σ2

q(v) ≡
∫ ∞

−∞
{v − µq(v)}2 q(v) dv.

Appendix B: Mean Field Variational Bayes Derivations

Algorithms 1, 3 and 5 depend on the following derivations of the optimal density func-
tions and relevant moments under product restrictions (2). Throughout the derivations,
the symbol ‘rest’ denotes all other random variables in the Bayesian model at hand. Con-
stants with respect to the function argument are denoted by ‘const’.

The notation v ∼ Inverse-Gaussian(µ, γ) means that v has an Inverse-Gaussian distri-
bution with mean µ and rate parameter γ. The corresponding density function is

p(v) =
√

γ

2π v3
exp

{
−γ(v − µ)2

2µ2v

}
, v > 0,

and is such that E(v) = µ and E(1/v) = 1/µ+ 1/γ.

B.1 Horseshoe Models

The full conditional of a satisfies

log p(a|rest) = −2 log(a)− (σ−2 +A−2)/a+ const.

For Models II and III, the full conditional of σ2 satisfies

log p(σ2|rest) = −1
2 (n+ 3) log(σ2)−

(
1
2

n∑
i=1

bi x
2
i + a−1

)/
σ2 + const.

For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = − log(bi + 1)− bi x
2
i

2σ2
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = −
(
x2

i

2σ2
+ ci

)
bi + const.

and
log p(ci|rest) = − (bi + 1) ci + const.
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B.1.1 Expressions for q∗(a) and µq(1/a)

q∗(a) ∼ IG
(
1, µq(1/σ2) +A−2

)
and

µq(1/a) = 1
/{

µq(1/σ2) +A−2
}
.

Derivations:

Eq{log p(a|rest)} = Eq

{
−2 log(a)−

(
σ−2 +A−2

)/
a
}

+ const

and so
q∗(a) ∝ a−2 exp

{
−
(
µq(1/σ2) +A−2

)/
a
}
.

Standard manipulations involving the Inverse Gamma family of density functions lead
to the stated results.

B.1.2 Expressions for q∗(σ2) and µq(1/σ2) for Models II and III

q∗(σ2) ∼ IG

(
1
2(n+ 1), 1

2

n∑
i=1

x2
i µq(bi) + µq(1/a)

)
and

µq(1/σ2) = 1
2(n+ 1)

/{
1
2

n∑
i=1

x2
i µq(bi) + µq(1/a)

}
.

Derivations:

Eq{log p(σ2|rest)} = Eq

[
−1

2 (n+ 3) log(σ2)−

(
1
2

n∑
i=1

x2
i bi + a−1

)/
σ2

]
+ const

and so

q∗(σ2) ∝ (σ2)−
1
2 (n+3) exp

[
−

{
1
2

n∑
i=1

x2
i µq(bi) + µq(1/a)

}/
σ2

]
.

Standard manipulations involving the Inverse Gamma family of density functions lead
to the stated results.

B.1.3 Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
1

(bi + 1) exp{Gi (bi + 1)}E1(Gi)
, bi > 0

and
µq(bi) =

1
Gi exp(Gi)E1(Gi)

− 1

where
Gi ≡ 1

2 µq(1/σ2) x
2
i . (23)

Derivations:

Eq{log p(bi|rest)} = Eq

{
− log(bi + 1)− x2

i bi
2σ2

}
+ const
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and so

q∗(bi) ∝ (bi + 1)−1 exp
[
−1

2 µq(1/σ2){(xi − µq(µ))
2 + σ2

q(µ)} bi
]
, bi > 0

= (bi + 1)−1 exp(−Gi bi), bi > 0.

where Gi is given by (23). The normalizing factor is∫ ∞

0
(bi + 1)−1 exp(−Gi bi) dbi = exp(Gi)E1(Gi),

which follows from 3.352(4) of Gradshteyn & Ryzhik (1994).
The numerator of µq(bi) is∫ ∞

0
bi(bi + 1)−1 exp(−Gi, bi) dbi = G−1

i − exp(Gi)E1 (Gi) ,

by application of 3.353(5) of Gradshteyn & Ryzhik (1994). The stated results then follow
immediately.

B.1.4 Expressions for q∗(bi) and µq(bi) for Model III

q∗(bi) ∼ Gamma(1, Gi + µq(ci)), bi > 0,

and
µq(bi) = 1

/{
Gi + µq(ci)

}
where Gi is given by (23).

Derivations:

Eq{log p(bi|rest)} = Eq

[
−
{
x2

i

2σ2
+ ci

}
bi

]
+ const

and so
q∗(bi) ∝ exp[−{Gi + µq(ci)} bi], bi > 0.

Standard manipulations involving the Gamma family of density functions lead to the
stated results.

B.1.5 Expressions for q∗(ci) and µq(1/ci) for Model III

q∗(ci) ∼ Gamma(1, µq(bi) + 1)

and
µq(ci) = 1

/{
µq(bi) + 1

}
.

Derivations:

Eq{log p(ci|rest)} = Eq {− (1 + bi) ci}+ const.

Hence
q∗(ci) ∝ exp[−{µq(bi) + 1} ci], ci > 0.

The stated results follow from properties of the Inverse Gamma family of distributions.
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B.2 Normal-Exponential-Gamma Models

The calculations for q∗(σ2) and q(a) are identical to those for the Horseshoe models.
For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = (λ− 1
2) log(bi)− (λ+ 1) log(bi + 1)− bi x

2
i

2σ2
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = −3
2 log(bi)−

bi x
2
i

2σ2
− ci
bi

+ const

and

log p(ci|rest) = λ log(ci)−
(

1
bi

+ 1
)
ci + const.

B.2.1 Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
b
λ−1/2
i (bi + 1)−λ−1 exp(−Gi bi)

2λ+
1
2 Γ(λ+ 1

2) exp(Gi/2)D−2λ−1

(√
2Gi

) , bi > 0

and

µq(bi) =
(2λ+ 1)D−2λ−2(

√
2Gi )√

2GiD−2λ−1

(√
2Gi

)
where Gi is given by (23).

Derivations:

Eq{log p(bi|rest)} = Eq

{
(λ− 1

2) log(bi)− (λ+ 1) log(bi + 1)− bi x
2
i

2σ2

}
+ const

and so
q∗(bi) ∝ bλ−1/2

i (bi + 1)−λ−1 exp(−Gi bi), bi > 0.

The normalizing factor is∫ ∞

0
b
(λ+

1
2)−1

i (bi + 1)−(λ+
1
2)−1

2 exp(−Gi bi) dbi

= 2λ+
1
2 Γ(λ+ 1

2) exp(Gi/2)D−2λ−1

(√
2Gi

)
which follows from 3.383(7) of Gradshteyn & Ryzhik (1994).

The numerator of µq(bi) is∫ ∞

0
b
(λ+

3
2)−1

i (bi + 1)−(λ+
3
2)+

1
2 exp(−Gi bi) dbi

= 2λ+
3
2 Γ(λ+ 3

2) exp(Gi/2)D−2λ−2

(√
2Gi

)/√
2Gi

with the last line being an application of 3.383(6) of Gradshteyn & Ryzhik (1994). The
stated result then follows from the fact that

2λ+
3
2 Γ(λ+ 3

2)
/
{2λ+

1
2 Γ(λ+ 1

2)} = 2λ+ 1.

25



B.2.2 Expressions for q∗(bi), µq(1/bi) and µq(bi) for Model III

q∗(bi) ∼ Inverse-Gaussian
(√

µq(ci)

Gi
, 2µq(ci)

)
,

µq(bi) =
√
µq(ci)

Gi
and µq(1/bi) =

1
µq(bi)

+
1

2µq(ci)

where Gi is given by (23).

Derivations:

Eq{log p(bi|rest)} = Eq

{
−3

2 log(bi)−
x2

i bi
2σ2

− ci
bi

}
+ const

and so

q∗(bi) ∝ b−3/2
i exp

{
−Gi bi −

µq(ci)

bi

}
, bi > 0.

Standard manipulations involving the Inverse Gaussian family of density functions lead
to the stated results.

B.2.3 Expressions for q∗(ci) and µq(ci) for Model III

q∗(ci) ∼ Gamma(λ+ 1, µq(1/bi) + 1)

and
µq(ci) =

λ+ 1
µq(1/bi) + 1

.

Derivations:

Eq{log p(ci|rest)} = Eq

{
λ log(ci)−

(
1
bi

+ 1
)
ci

}
+ const.

Hence
q∗(ci) ∝ c(λ+1)−1

i exp[−{µq(1/bi) + 1} ci], ci > 0,

which is proportional to the Gamma(λ+1, µq(1/bi)+1) density function. The stated results
follow from properties of the Gamma family of distributions.

B.3 Generalized Double Pareto Models

The calculations for q∗(σ2) and q(a) are identical to those for the Horseshoe models.
For Model II, the full conditionals of the bis satisfy

log p(bi|rest) = 1
2 (λ− 1) log(bi) +

(
λ2

4
− x2

i

2σ2

)
bi + log D−λ−2

(
λ
√
bi

)
+ const.

For Model III, the full conditionals of the bis and cis satisfy

log p(bi|rest) = −3
2 log(bi)−

x2
i bi

2σ2
− c2i

2bi

and

log p(ci|rest) = (λ+ 1) log(ci)− λ ci −
c2i
2bi

+ const.
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B.3.1 Expressions for q∗(bi) and µq(bi) for Model II

q∗(bi) =
2(3λ+2)/2(λ+ 1)G(λ+1)/2

i b
(λ−1)/2
i exp{(λ2/4−Gi)bi}D−λ−2(λ

√
bi)√

π2F1

(
λ+2

2 , λ+1
2 ;λ+ 2; 1− λ2(2Gi)

) , bi > 0

and
µq(bi) =

λ+ 1√
2Gi(λ+

√
2Gi)

.

Derivations:

Eq{log p(bi|rest)} = Eq

{
1
2 (λ− 1) log(bi) +

(
λ2

4
− x2

i

2σ2

)
bi + log D−λ−2

(
λ
√
bi

)}
+const

and so
q∗(bi) ∝ b(λ−1)/2

i exp
{(

1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi), bi > 0.

The expression for the normalizing factor follows from 7.725(6) of Gradshteyn & Ryzhik
(1994), existence of the hypergeometric function for all Gi > 0 depends on Stieltjes inte-
gral transform theory described in Sections 5.2 and 15.2 of Cuyt et al. (2008).

Therefore

µq(bi) =

∫∞
0 b

(λ+1)/2
i exp

{(
1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi) dbi∫∞

0 b
(λ−1)/2
i exp

{(
1
4λ

2 −Gi

)
bi
}
D−λ−2(λ

√
bi) dbi

=

∫∞
0 e−ztt−1+βn/2D−ν(2

√
kt) dt∫∞

0 e−ztt−1+βd/2D−ν(2
√
kt) dt

where

z = Gi − 1
4λ

2, βn = λ+ 3, βd = λ+ 1, ν = λ+ 2 and k = 1
4 λ

2.

Application of 7.725(6) of Gradshteyn & Ryzhik (1994) to the numerator and denominator
results in the expression

µq(bi) =
(λ+ 1) 2F1

(
1
2λ+ 1, 1

2λ+ 3
2 ;λ+ 3 ; 1− λ2/(2Gi)

)
4Gi 2F1

(
1
2λ+ 1, 1

2λ+ 1
2 ;λ+ 2 ; 1− λ2/(2Gi)

) . (24)

Results 15.1.1 and 15.1.13 of Abramowitz & Stegun (1972) are, respectively,

2F1(a, b; c;x) = 2F1(b, a; c;x) and 2F1

(
a, a+ 1

2 , 2a+ 1, x
)

= 22a
(
1 +
√

1− x
)−2a

.

These imply that

2F1

(
1
2λ+ 1, 1

2λ+ 3
2 ;λ+ 3;x

)
= 2λ+2

(
1 +
√

1− x
)−(λ+2) and

2F1

(
1
2λ+ 1, 1

2λ+ 1
2 ;λ+ 2;x

)
= 2F1

(
1
2λ+ 1

2 ,
1
2λ+ 1;λ+ 2;x

)
= 2λ+1

(
1 +
√

1− x
)−(λ+1)

.

The stated result for µq(bi) follows immediately.

B.3.2 Expressions for q∗(bi), µq(1/bi) and µq(bi) for Model III

q∗(bi) ∼ Inverse-Gaussian
(√

µq(c2i )

2Gi
, µq(c2i )

)
,

µq(bi) =
√
µq(c2i )

2Gi
and µq(1/bi) =

1
µq(bi)

+
1

µq(c2i )
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where Gi is defined by (23).

Derivations:

Eq{log p(bi|rest)} = Eq

{
−3

2 log(bi)−
x2

i bi
2σ2

− c2i
2 bi

}
+ const

and so
q∗(bi) ∝ b−3/2

i exp
{
−Gi bi − µq(c2i )/(2 bi)

}
, bi > 0.

Standard manipulations involving the Inverse Gaussian family of density functions lead
to the stated results.

B.3.3 Expressions for q∗(ci) and µq(c2i ) for Model III

q∗(ci) =
µ

(λ+2)/2
q(1/bi)

cλ+1
i exp{−λ ci − 1

2 µq(1/bi) c
2
i }

Γ(λ+ 2) exp{λ2/(4µq(1/bi))}D−λ−2(λ/
√
µq(1/bi) )

, ci > 0,

and

µq(c2i ) =
(λ+ 2)(λ+ 3)D−λ−4(λ/

√
µq(1/bi) )

µq(1/bi)D−λ−2(λ/
√
µq(1/bi) )

.

Derivations:

Eq{log p(ci|rest)} = Eq

{
(λ+ 1) log(ci)− λ ci −

c2i
2 bi

}
+ const.

Hence
q∗(ci) ∝ cλ+1

i exp{−λ ci − 1
2 µq(1/bi) c

2
i }, ci > 0.

From (12), the normalizing factor is∫ ∞

0
cλ+1
i exp{−λ ci − 1

2 µq(1/bi) c
2
i } dci =

µ
−(λ+2)/2
q(1/bi)

Γ(λ+ 2) exp
(

λ2

4µq(1/bi)

)
D−λ−2

(
λ/
√
µq(1/bi)

)
and the expression for q∗(ci) follows. Another application of (12) results in∫ ∞

0
cλ+3
i exp{−λ ci − 1

2 µq(1/bi) c
2
i } dci =

µ
−(λ+4)/2
q(1/bi)

Γ(λ+ 4) exp
(

λ2

4µq(1/bi)

)
D−λ−4

(
λ/
√
µq(1/bi)

)
,

which immediately leads to the stated result for µq(c2i ).

Appendix C: Proof of Theorem 1

First note that

E{log(1/b) log(c)|x} =
∫ ∞

0

∫ ∞

0
log(b) log(c) p(b, c|x) db dc

/
pHS(x)

=
∫ ∞

0
log(1/b)p(x| b)

{∫ ∞

0
log(c) p(b|c) p(c)

}
db
/
pHS(x)
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where pHS is given by (18). The inner integral is∫ ∞

0
log(c) exp{−c(b+ 1)} dc = π−1 b−1/2 (b+ 1)−1{ψ(1)− log(b+ 1)}

where ψ(x) ≡ d
dx log Γ(x) is the digamma function. Substitution of the expressions for

pHS(x) and p(x|b) then leads to the univariate integral expression

E{log(1/b) log(c)|x = ±
√

2κ} =
˜̃
B2(κ)− ψ(1)B1(κ)

B0(κ)

where ˜̃
B2(κ) ≡

∫ ∞

0

exp {−κ (b+ 1)} log(b) log(b+ 1)
b+ 1

db.

and

Bj(κ) ≡
∫ ∞

0

exp {−κ (b+ 1)} {log(b)}j

b+ 1
db, j = 0, 1.

After obtaining similar expressions for

E{{log(1/b)}j |x = ±
√

2κ} and E{{log(c)}j |x = ±
√

2κ}, j = 1, 2,

in terms of Bj(κ) and

B̃j(κ) ≡
∫ ∞

0

exp {−κ (b+ 1)} {log(b+ 1)}j

b+ 1
db, (25)

straightforward algebraic manipulations then lead to

Corr{log(1/b), log(c)|x = ±
√

2κ}

=
B0(κ)

˜̃
B2(κ)−B1(κ)B̃1(κ)√

{B0(κ)B2(κ)−B1(κ)2}{B0(κ)B̃2(κ)− B̃1(κ)2 + 1
6π

2B0(κ)2}

=
[
1 + {B0(κ)

˜̃∆2(κ)/D̃(κ)}+ {B̃1(κ) ∆̃1(κ)/D̃(κ)}
]([

1− {B0(κ) ∆̃2(κ)/D̃(κ)}

+2{B̃1(κ) ∆̃1(κ)/D̃(κ)} − {∆̃1(κ)2/D̃(κ)}
][

1 + 1
6{π

2B0(κ)2/D̃(κ)}
])−1/2

where
D̃(κ) ≡ B0(κ)B̃2(κ)− B̃1(κ)2, ∆̃1(κ) ≡ B̃1(κ)−B1(κ),

∆̃2(κ) ≡ B̃2(κ)−B2(κ) and ˜̃∆2(κ) ≡
˜̃
B2(κ)− B̃2(κ).

We then note that

∆̃1(0) =
∫ ∞

0

log(b+ 1)− log(b)
b+ 1

db = 1
6π

2,

∆̃2(0) =
∫ ∞

0

{log(b+ 1)}2 − {log(b)}2

b+ 1
db = 0

and ˜̃∆2(0) =
∫ ∞

0

log(b+ 1){log(b+ 1)− log(b)}
b+ 1

db = −ζ(3)

where ζ(x) ≡
∑∞

j=1 j
−x denotes the Riemann zeta function. From this we have, for

example, that
lim
κ→0
{∆̃1(κ)2/D̃(κ)} = 1

36 π
4 lim
κ→0
{1/D̃(κ)}.
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Next note that, via the substitution v = log(b+ 1) into (25), we have for j = 0, 1, 2:

B̃j(κ) =
∫ ∞

0
exp(−κ ev) vj dv.

From this we have

2D̃(κ) =
{∫ ∞

0
exp(−κ ev) dv

} {∫ ∞

0
exp(−κ ew)w2 dw

}
+
{∫ ∞

0
exp(−κ ev) v2 dv

}{∫ ∞

0
exp(−κ ew) dw

}
−2
{∫ ∞

0
exp(−κ ev) v dv

}{∫ ∞

0
exp(−κ ew)w dw

}
=

∫ ∞

0

∫ ∞

0
exp{−κ (ev + ew)}(v − w)2 dv dw

> exp
(
−2κ eM

) ∫ M

0

∫ M

0
(v − w)2 dv dw = exp

(
−2κ eM

)
M4/6

for any M > 0. Therefore,

lim
κ→0
{1/D̃(κ)} ≤ (12/M4) lim

κ→0
exp

(
−2κ eM

)
= 12/M4.

Since M is arbitrary we must have limκ→0{1/D̃(κ)} = 0. Hence {∆̃1(κ)2/D(κ)} vanishes
as κ→ 0. Similar arguments can be used to show

lim
κ→0
{B0(κ)

˜̃∆2(κ)/D̃(κ)} = lim
κ→0
{B̃1(κ) ∆̃1(κ)/D̃(κ)} = lim

κ→0
{B0(κ)2/D̃(κ)} = 0

and Theorem 1 immediately follows.
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