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The definitive and very general treatment of the conjugacy classes of the unitary, symplectic
and orthogonal groups was given by Wall [16] in 1963 building on the work of Williamson
[17, 18] for perfect fields of characteristic other than 2.

The following sections describe Magma code implementing the construction of conjugacy
classes for the special case of the finite symplectic groups defined over a Galois field GF.q/.
The approach given here follows Milnor [10] and Huppert [5, 6]. For other approaches
with more emphasis on the theory of algebraic groups see Springer–Steinberg [15] (based on
Springer’s thesis [14] of 1951), Humphreys [4] and the recent book of Liebeck and Seitz [7].
For fields of characteristic 2 see Riehm [12], Hesselink [3] and Xue [19].

The conjugacy classes are obtained by first computing a complete collection of invariants
and then determining a representative matrix for each invariant.

A partial analysis of similar algorithms for unitary groups can be found in [2]. There are
some remarks about the symplectic groups in the unpublished draft [11].

1 Symplectic groups

The ‘standard’ alternating form J D J2n is the 2n � 2n matrix
�

0 ƒn
�ƒn 0

�
, where ƒn is the

n � n matrix

ƒn D

0BBBB@
0 0 � � � 0 1

0 0 � � � 1 0

. . .

0 1 � � � 0 0

1 0 � � � 0 0

1CCCCA :
The symplectic group Sp.2n; q/ considered here is the set of 2n � 2n matrices A over the

field k D GF.q/ such that AJAtr D J , where Atr is the transpose of A.
The description of the conjugacy classes of Sp.2n; q/ closely parallels the description of

the conjugacy classes of GL.2n; q/.
The group GL.2n; q/ acts on V D k2n and for g 2 GL.2n; q/, the space V becomes a

kŒt �-module Vg by defining vf .t/ D vf .g/ for all v 2 V and all f .t/ 2 kŒt �.
The alternating form ˇ.u; v/ D uJvtr defines an isomorphism � W V ! V � W v 7! ˇ.�; v/.

An element g 2 GL.2n; q/ acts on V � according to the rule v. g/ D .vg�1/ for all v 2 V
and all  2 V �; that is,  g D g�1 . With this action V � becomes a kŒt �-module V �g and g
belongs to Sp.2n; q/ if and only if � W Vg ! V �g is an isomorphism of kŒt �-modules.
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If g; h 2 GL.2n; q/, then T W Vg ! Vh is a kŒt �-isomorphism if and only if gT D T h if and
only if T �1g�1 D h�1T �1 if and only if T W V �g ! V �

h
is an isomorphism. Since T 2 Sp.2n; q/

if and only if T � D �T it follows that g; h 2 Sp.2n; q/ are conjugate in Sp.2n; q/ if and only
if there is a kŒt �-isomorphism T W Vg ! Vh such that the diagram

Vg
T

����! Vh

�

??y ??y�
V �g ����!

T
V �
h

commutes.
As shown in Macdonald [9, Chap. IV], if P is the set of all partitions and ˆ is the set of

all monic irreducible polynomials (other than t ), then for g 2 GL.2n; q/ there is a function
� W ˆ! P such that

Vg D
M
f 2ˆ;i

kŒt �=.f /�i .f / (1.1)

and �.f / D .�1.f /; �2.f /; : : : ; / is a partition such thatX
f 2ˆ

deg.f /j�.f /j D 2n:

If g 2 Sp.2n; q/ there are restrictions—to be determined in the sections which follow—on
the polynomials and partitions that can occur in this decomposition.

The following functions, defined later in this document, are needed in the code for confor-
mal symplectic groups. Therefore we write them to the filecommon.m and import them into the
main files. We shall also write the intrinsics DUALPOLYNOMIAL and STARIRREDUCIBLEPOLYNOMIALS

to common.m. All code written to common.mwill be coloured brown.
import “common.m” : convert , primaryParts, stdJordanBlock , centralJoin,

getSubIndices, restriction, homocyclicSplit , type3Companion, addSignsSp ;
import “Classes/translate/translateSp.m” : tagToNameSp ;

Definition 1.1. The adjoint of ˛ 2 Endk.V / with respect to the alternating form ˇ.u; v/ D

uJvtr is the linear transformation ˛� such that

ˇ.u˛; v/ D ˇ.u; v˛�/ for all u; v 2 V :

Proposition 1.2. IfA is the matrix of˛, thenA� D JAtrJ�1 and the bilinear form 
.u; v/ D ˇ.u˛; v/
is alternating if and only if A D A�. Moreover if g 2 GL.V / preserves ˇ, then g preserves 
 if and
only if g˛ D ˛g.
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Polynomials

Definition 1.3.

(i) Let f .t/ 2 kŒt � be a monic polynomial of degree d such that f .0/ ¤ 0. The dual of f .t/
is the polynomial

f �.t/ D f .0/�1tdf .t�1/:

(ii) The polynomial f .t/ is �-symmetric if f �.t/ D f .t/.

(iii) A polynomial f .t/ is �-irreducible if it is �-symmetric and has no proper �-symmetric
factors.

The monic polynomial f .t/ D a0 C a1t C � � � C ad�1td�1 C td is �-symmetric if and only
if

a20 D 1 and ad�i D a0ai for 0 < i < d . (1.2)

It follows thata0 D ˙1 and an elementa in an extension field ofk is a root of a�-symmetric
polynomial f .t/ if and only if a�1 is also a root with the same multiplicity.

It is clear from the definition that for monic polynomials f and g we have f �� D f and
.fg/� D f �g�.

Remark 1.4. Both Riehm [12] and Huppert [5] define the dual of f .t/ to be f �.t/ D tdf .t�1/
and Huppert declares f to be symmetric when f and f � are equal up to a unit in kŒt �; that
is, when f .t/ D a�1

d
a0f

�.t/. For monic polynomials this agrees with the definition given
above.

declare attributes GRPMAT: LABELS_A, LABELS_S;
intrinsic DUALPOLYNOMIAL(f :: RNGUPOLELT) ! RNGUPOLELT

{The dual of the polynomial f}

eseq := COEFFICIENTS(f ) ;
require eseq[1] ne 0 : “Polynomial must have non-zero constant term” ;
return eseq[1]�1 � PARENT(f ) ! REVERSE(eseq) ;

end intrinsic ;

If g preserves the alternating form ˇ introduced above, then for all u; v 2 V we have

ˇ.ug; v/ D ˇ.u; vg�1/

and thus for f .t/ 2 kŒt � we have

ˇ.uf .g/; v/ D ˇ.u; vf .g�1//: (1.3)

In particular, ifm.t/ is the minimal polynomial of g, then vm.g�1/ D 0 for all v and therefore
gdm.g�1/ D 0, where d is the degree of m.t/. Thus m�.g/ D 0 and it follows that m�.t/ D
m.t/; that is, the minimal polynomial of g is �-symmetric.

Lemma 1.5. Let f .t/ be a monic �-irreducible polynomial.

(i) If f .t/ is reducible, there exists an irreducible polynomial g.t/ such that f .t/ D g.t/g�.t/ and
g.t/ ¤ g�.t/.
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(ii) If the degree of f .t/ is even, then f .0/ D 1.

(iii) If the degree of f .t/ is odd, f .t/ is either t � 1 or t C 1.

(iv) If f .t/ is irreducible of even degree 2d , there is an irreducible polynomial g.t/ of degree d such
that f .t/ D tdg.t C t�1/.

Proof. (i) Suppose that g.t/ is an irreducible factor of f .t/. Then g�.t/ divides f �.t/ D f .t/

and since f .t/ is �-irreducible f .t/ D g.t/g�.t/ and g�.t/ ¤ g.t/.
(ii) Suppose that the degree of f .t/ is 2d . We may suppose that the characteristic of the

field is not 2. If a0 D �1 it follows from (1.2) that ad D 0 and that a2d�i D �ai for 1 � i < d .
Thus f .1/ D 0 and so t � 1 divides f .t/. The polynomial t � 1 is �-symmetric and therefore
f .t/ D t � 1. But this contradicts the assumption that the degree of f .t/ is even. Therefore
a0 D 1.

(iii) Suppose that the degree of f .t/ is odd. It follows from (1.2) that f .�a0/ D 0 where
a0 D ˙1 is the constant term of f .t/. It is a consequence of (i) that f .t/ is irreducible and
therefore f .t/ D t C a0, proving (iii).

(iv) Suppose that f .t/ is irreducible of degree 2d . Then from (ii) we have a0 D 1 and it
follows by induction — successively subtracting multiples of .t C t�1/i from t�df .t/— that
there exists a polynomial g.t/ such that f .t/ D tdg.t C t�1/. �

intrinsic STARIRREDUCIBLEPOLYNOMIALS( F :: FLDFIN, d :: RNGINTELT ) ! SEQENUM

{All monic polynomials of degree d with no proper *-symmetric

factors}

P := POLYNOMIALRING(F ) ; t := P :1;

monicIrreducibles := func< n j
(n eq 1) select [ t � a : a in F j a ne 0 ]
else SETSEQ(ALLIRREDUCIBLEPOLYNOMIALS(F , n)) > ;

Given a polynomial g.t/ of degree d , define Og.t/ D tdg.t C t�1/.

hatPoly := function( g )
R := RATIONALFUNCTIONFIELD( F ) ; x := R :1;

return P ! ( x DEGREE(g) � EVALUATE( R ! g , x + 1/x ) ) ;
end function ;

pols := f@ P j@g ;
if d eq 1 then

pols := f@ t + 1, t � 1 @g ;
elif ISEVEN(d ) then

allhalf := monicIrreducibles(d div 2 ) ;
if d eq 2 and ISODD(CHARACTERISTIC(F )) then pols := f@ t 2 + 1 @g ; end if ;
pols join:= f@ f : g in allhalf j ISIRREDUCIBLE(f ) where f is hatPoly (g) @g

join f@ g�gstar : g in allhalf j g ne gstar where gstar is DUALPOLYNOMIAL(g) @g ;
end if ;
return INDEXEDSETTOSEQUENCE( pols ) ;

end intrinsic ;
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Partitions

A partition is a sequence Œ�1; �2; : : : ; � of integers such that �1 � �2 � � � � � 0 and
j�j D

P
�i <1. The nonzero �i are the parts of �.

Given a partition in the form Œ�1; �2; : : : ; �n�, convert it to a sequence of multiplicities
Œh1;m1 i; h2;m2 i; : : : ; hn;mn i�, omitting the terms with mi D 0.

convert := func< � j SORT([ <i , MULTIPLICITY(�, i ) > : i in SET(�) ]) > ;

The function allPartitions(d ) returns a sequence of length d whose nth term is the list of
partitions of n.

allPartitions := func<d j [[convert (�) : � in PARTITIONS(n)] : n in [1: : d ]] > ;

Definition 1.6. A signed partition is a sequence Œh1;m1 i; h˙2;m2 i; : : : ; hn;mn i� such that mi
is even for all odd i and with a sign associated to each pair h i; mi i for all even i . Terms with
mi D 0 are omitted.

addSignsSp := function(plist )
slist := [] ;
for � in plist do

if forallf � : � in � j ISEVEN(�[1]) or ISEVEN(�[2])g then
ndx := f i : i in [1::#�] j ISEVEN(�[i ][1]) g ;
for S in SUBSETS(ndx ) do
� := � ;
for i in S do
� := �[i ] ;
�[i ] := < ��[1],�[2] > ;

end for ;
APPEND(�slist ,�) ;

end for ;
end if ;

end for ;
return slist ;

end function ;

signedPartitionsSp := func< d j [ addSignsSp(�) : � in allPartitions(d ) ] > ;

It turns out (cf. Shinoda [13, Theorem 1.20]) that when q is odd, the conjugacy classes
of Sp.2n; q/ are parametrised by functions � W ˆ� ! P [ S , where ˆ� is the set of (monic)
�-irreducible polynomials and S is the set of signed partitions such that �.f / 2 S if and only
if f .t/ D t ˙ 1.

We shall refer to � as a conjugacy invariant and represent it as an indexed set of pairs
hf; � i, where f is a �-irreducible polynomial and � is either a partition or, when f is t C 1
or t � 1, a signed partition. If k D GF.11/, an example of a conjugacy invariant is
f@ <t + 1, [< �2, 1>]>, <t 4 + 7t 3 + 7t + 1, [<1, 2>, <2, 1>]> @g.

With polynomials and partitions at our disposal it would be possible to present the code
to construct all conjugacy invariants for Sp.2n; q/ for q odd. However, we defer this until we
have justified the choice of signs.
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2 Conjugacy and congruence

Definition 2.1. Suppose that V1 and V2 are vector spaces furnished with bilinear forms 
1
and 
2. The forms 
1 and 
2 are congruent if there is an invertible linear transformation
g W V2 ! V1 such that 
1.ug; vg/ D 
2.u; v/ for all u; v 2 V2. If J1 and J2 are the matrices of

1 and 
2 and if A is the matrix of g, the condition for congruence becomes AJ1Atr D J2.

Suppose that g 2 Sp.V / and that the symplectic geometry on V is defined by the non-
degenerate alternating form ˇ. Denote im.1 � g/ by ŒV; g�.

Definition 2.2. The Wall form of g is the bilinear form �g defined on ŒV; g� by

�g.u; v/ D ˇ.w; v/;

where u D w � wg for some w 2 V .

The following properties of �g were first proved in [16].

Lemma 2.3. �g is a well-defined non-degenerate bilinear form such that

�g.u; v/ � �g.v; u/ D ˇ.u; v/

for all u; v 2 ŒV; g�.

Proof. Suppose that u D w�wg D w0�w0g. Then w�w0 2 ker.1�g/ and a straightforward
calculation shows that ker.1 � g/ D ŒV; g�?. Thus for v 2 ŒV; g� we have ˇ.w � w0; v/ D 0

whence ˇ.w; v/ D ˇ.w0; v/ and �g is well-defined.
Suppose that �g.u; v/ D 0 for all u 2 ŒV; g�. Then ˇ.w; v/ D 0 for all w 2 V and so v D 0.

Thus �g is non-degenerate.
Finally, suppose that u D x � xg and v D y � yg. Then

�g.u; v/ � �g.v; u/ D ˇ.x; y � yg/ � ˇ.y; x � xg/

D ˇ.x; y/ � ˇ.x; yg/ � ˇ.y; x/C ˇ.y; xg/

D ˇ.x � xg; y � yg/ D ˇ.u; v/ �

Theorem 2.4. The assignment g 7! .ŒV; g�; �g/ is a one-to-one correspondence between Sp.V / and
the set of pairs .U; �/, where U is a subspace of V and � is a non-degenerate bilinear form on U such
that �.u; v/ � �.v; u/ D ˇ.u; v/ for all u; v 2 U .

Proof. Suppose that for g1; g2 2 Sp.V /, ŒV; g1� D ŒV; g2� and �g1
D �g2

. Then for w 2 V
and v 2 ŒV; g1� we have �g1

.w � wg1; v/ D ˇ.w; v/ D �g2
.w � wg2; v/. Since �g1

D �g2
is

non-degenerate it follows that w � wg1 D w � wg2 for all w 2 V and therefore g1 D g2.
To see that the correspondence is onto, suppose that U is a subspace of V and that � is a

non-degenerate bilinear form on U such that �.u; v/ � �.v; u/ D ˇ.u; v/ for all u; v 2 U .
For w 2 V we have ˇ.w;�/ 2 U � and since � is non-degenerate there is a unique vector

wg0 2 U such that
�.wg0; v/ D ˇ.w; v/ for all v 2 U :
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Define g W V ! V by wg D w � wg0. Then g is linear and for u;w 2 V we have

ˇ.ug;wg/ D ˇ.u � ug0; w � wg0/

D ˇ.u;w/ � ˇ.u;wg0/ � ˇ.ug0; w/C �.ug0; wg0/ � �.wg0; ug0/

D ˇ.u;w/ � ˇ.u;wg0/ � ˇ.ug0; w/C ˇ.u;wg0/ � ˇ.w; ug0/

D ˇ.u;w/:

Thus g 2 Sp.V /.
Moreover, ug0 D 0 if and only if ˇ.u; v/ D 0 for all v 2 U and so U D .kerg0/? D ŒV; g�

and �g D �. Thus �g D � and ŒV; g� D U . �

Lemma 2.5. For all g; h 2 Sp.V / and all u; v 2 ŒV; g� we have

ŒV; h�1gh� D ŒV; g�h and �h�1gh.uh; vh/ D �g.u; v/:

Proof. If u 2 ŒV; g�, then u D w � wg for some w and so uh D wh � whh�1gh 2 ŒV; h�1gh�.
Thus ŒV; g�h � ŒV; h�1gh� and similarly ŒV; h�1gh�h�1 � ŒV; g� whence ŒV; h�1gh� � ŒV; g�h

and equality holds.
For u D w � wg we have �h�1gh.uh; vh/ D ˇ.wh; vh/ D ˇ.w; v/ D �g.u; v/ and this

completes the proof. �

Theorem 2.6. The elements g; h 2 Sp.V / are conjugate in Sp.V / if and only if the bilinear forms
�g and �h are congruent.

Proof. If g and h are conjugate in Sp.V /, it follows from the previous lemma that �g and �h
are congruent.

Conversely, suppose that �g and �h are congruent. Then there is a linear transformation
˛ W ŒV; g� ! ŒV; h� such that �h.u˛; v˛/ D �g.u; v/ for all u; v 2 ŒV; g�. It follows from the
Theorem 2.4 that ˛ is an isometry and hence, by Witt’s theorem, it extends to an isometry
of V . Then ŒV; h� D ŒV; ˛�1g˛� and �h D �˛�1g˛ whence h D ˛�1g˛. �

Lemma 2.7. For g 2 Sp.V /, ŒV; g� is g-invariant and �g.v; u/ D �g.ug; v/.

Proof. It is clear that ŒV; g� is g-invariant. If v 2 ŒV; g�, then v D w � wg and for u 2 ŒV; g� we
have

ˇ.ug; v/ D �g.ug; v/ � �g.v; ug/

hence
ˇ.ug;w/ � ˇ.ug;wg/ D �g.ug; v/ � ˇ.w; ug/

and therefore
�g.ug; v/ D �ˇ.u;w/ D ˇ.w; u/ D �g.v; u/: �

This lemma and the previous theorem establish the essential link between conjugacy
classes of symplectic transformations and congruence classes of non-degenerate bilinear
forms, first proved by Wall [16]. This is also the connection between the work of Riehm
[12] on congruence classes and the techniques of Milnor [10] classifying conjugacy classes of
orthogonal and symplectic transformations.

Suppose that V is a vector space over the field k and that 
 is a non-degenerate bilinear
form on V . The first step in both Wall [16] and Riehm [12] is to observe that there exists a
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unique � 2 GL.V / such that 
.u; v�/ D 
.v; u/ for all u; v 2 V . It follows immediately that

.u�; v�/ D 
.u; v/ for all u; v 2 V and that the minimal polynomial of � is �-symmetric.
Wall calls � the multiplier of 
 whereas Riehm calls it the asymmetry of 
 . If g 2 Sp.V /, the
multiplier of �g is the restriction of g�1 to ŒV; g�.

3 A skew-hermitian form

Throughout this section g is an element of Sp.2n; q/ whose minimal polynomial m.t/ is
irreducible of degree d . We follow the exposition in Milnor [10, §1], modified for symplectic
groups.

In this case V is a vector space over the field E D kŒt �=.m.t//. Then E D kŒ��, where
� D t C .m.t// and the linear transformation g becomes right multiplication by � ; that is,
g W v 7! v� .

We have already seen that m.t/ is �-symmetric and so m.��1/ D 0. It follows that there
is an automorphism e 7! Ne of E such that N� D ��1. The automorphism is the identity if and
only if �2 D 1 and so for the remainder of this section we assume that m.t/ is neither t C 1
nor t � 1. Then (1.3) becomes

ˇ.ue; v/ D ˇ.u; v Ne/:

For fixed u; v 2 V the map L W E ! k W e 7! ˇ.ue; v/ is k-linear and so there is a unique
element u ı v 2 E such that

traceE=k.e.u ı v// D L.e/ for all e 2 E:

Lemma 3.1. u ı v is the unique skew-hermitian inner product on V such that

ˇ.u; v/ D traceE=k.u ı v/:

Moreover u ı v is non-degenerate.

Proof. By definition
traceE=k.e.u ı v// D ˇ.ue; v/ (3.1)

Thus for all u1; u2; v 2 V we have

traceE=k.e..u1 C u2/ ı v// D ˇ..u1 C u2/e; v/
D ˇ.u1e; v/C ˇ.u2e; v/

D traceE=k.e.u1 ı v//C traceE=k.e.u2 ı v//
D traceE=k.e.u1 ı v C u2 ı v//

whence
.u1 C u2/ ı v D u1 ı v C u2 ı v:

Furthermore,

traceE=k.e1e2.u ı v// D ˇ.ue1e2; v/ D traceE=k.e1.ue2 ı v//

and therefore
ue2 ı v D .u ı v/e2:
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In addition

traceE=k.e.u ı v// D traceE=k. Ne.u ı v//
D ˇ.u Ne; v/ D ˇ.u; ve/ D �ˇ.ve; u/

D � traceE=k.e.v ı u//

and therefore u ı v D �v ı u, which completes the proof that u ı v is skew-hermitian.
Taking e D 1 in (3.1) we have ˇ.u; v/ D traceE=k.u ı v/ and therefore u ı v is non-

degenerate.
If u � v is another skew-hermitian inner product on V such that ˇ.u; v/ D traceE=k.u � v/,

then traceE=k.e.u � v// D traceE=k.ue � v/ D ˇ.ue; v/ D traceE=k.e.u ı v// whence u � v D
u ı v. �

Remark 3.2. Suppose that m.t/ 2 kŒt � is an irreducible �-symmetric polynomial of degree at
least 2.

Let H be a vector space over the field E D kŒt �=.m.t// and let u ı v be a non-degenerate
skew-symmetric hermitian form on H . Then ˇ.u; v/ D traceE=k.u ı v/ is a non-degenerate
symplectic form on the space V obtained by restriction of scalars.

If � D t C .m.t//, then m.��1/ D 0 and � 7! ��1 extends to an automorphism of E. Then
multiplication by � satisfies ˇ.u�; v�/ D ˇ.u; v/ and hence belongs to the symplectic group.

4 Orthogonal decompositions

In this section we show that for g 2 Sp.2n; q/ D Sp.V / and the corresponding function
� W ˆ! P , the direct sum decomposition (1.1)

Vg D
M
f 2ˆ;i

kŒt �=.f /�i .f /

can be converted to an orthogonal decomposition and the calculation of the conjugacy class
of g can be reduced to studying the restriction of g to each component.

The polynomials f such that �.f / is non-trivial are divisors of the minimal polynomial
of g, which is �-symmetric. Therefore we may restrict � to the set ˆ� of �-irreducible
polynomials.

We may represent � as an indexed set f@ hf; �i j f 2 ˆ�; � D �.f / ¤ ¿ @g, where ¿
denotes the trivial partition. Writing � as a sequence of multiplicities Œh1;m1 i; h2;m2 i; : : : �
the direct sum decomposition becomes

Vg D
M

f 2ˆ�; i�1

mi � kŒt �=.f /
i ; (4.1)

where for any kŒt �-module M and natural number m, the notation m �M denotes the direct
sum of m copies of M .

4.1 Primary components

Definition 4.1. For each irreducible polynomial f .t/, the f -primary component of (4.1) is

V.f / D
M
i�1

mi � kŒt �=.f /
i
D f v j vf .g/i D 0 for sufficiently large i g:
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Lemma 4.2. V.f / is orthogonal to V.h/ unless h.t/ D f �.t/.

Proof. (Milnor [10]) Choose i large enough so that uf .g/i D 0 for all u 2 V.f /. Then for all
u 2 V.f / and v 2 V

ˇ.u; vf .g�1/i / D ˇ.uf .g/i ; v/ D 0;

whence V.f / is orthogonal to Vf �.g/i .
If f �.t/ ¤ h.t/, then by irreducibility there are polynomials r.t/ and s.t/ such that

1 D r.t/h.t/i C s.t/f �.t/. It follows that for large i and v 2 V.h/ we have v D vs.g/f �.g/

and therefore the map
V.h/ ! V.h/ W v 7! vf �.g/

is a bijection. Hence V.f / is orthogonal to V.h/. �

Corollary 4.3. Vg D?f eV .f /, where f ranges over all �-irreducible polynomials and where

eV .f / D
8<:V.h/ ˚ V.h�/ f D hh� and h ¤ h�I

V.f / f D f � is irreducible:

Corollary 4.4. If h.t/ is irreducible but not �-symmetric, then V.h/ and V.h�/ are totally isotropic
and V.h/ ˚ V.h�/ is non-degenerate.

Proof. It follows from the lemma thatV.h/ andV.h�/ are totally isotropic and from the previous
corollary V.h/ ˚ V.h�/ is non-degenerate. �

The PRIMARYRATIONALFORM(X ) intrinsic returns the rational form C of X , a transformation
matrix T such that TXT �1 D C and the primary invariant factors pFACT. The entries in pFACT

are pairs hf; e i, where f is an irreducible polynomial and e is an integer. If the polynomials
aref1, f2, . . . ,fr and if the entries with polynomialfi are hfi ; ei1 i, hfi ; ei2 i, . . . , hfi ; eis i, then
we rely on the return value pFACT to group all pairs with the same irreducible polynomials
and to order them so that ei1 � ei2 � � � � � eir .

Assuming this is the case, the function primaryParts returns the list of �-irreducible poly-
nomials, the corresponding list of partitions and a list of row indices giving the location of
each primary component. This is almost all that is needed to construct the conjugacy class
invariant for X . The complete invariant needs signs attached to the partitions associated
with t � 1 and t C 1.

By Corollary 4.3, we have an orthogonal splitting V D ?f eV .f /. The subspaces V.t�1/
and V.tC1/ can be found using the matrix T from the primary rational form. Suppose, for
example, that t C 1 occurs in the decomposition and that the corresponding portion of the
rational form occupies rows aC 1, aC 2, . . . , aCm of C . Since TX D CT the rows T ŒaC 1�,
T ŒaC 2�, . . . , T ŒaCm� of T are a basis for V.tC1/.

primaryParts := function(pFACT)
P := PARENT(pFACT[1][1]) ;
pols := [P j ] ;
parts := [] ;
duals := [P j ] ;
rows := [] ;
j := 1;
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rownum := 0;
for i := 1 to #pFACT do

f := pFACT[i ][1] ; ndx := pFACT[i ][2] ;
if f eq DUALPOLYNOMIAL(f ) then

if j eq 1 or pols[j�1] ne f then
pols[j ] := f ;
parts[j ] := [] ;
rows[j ] := [] ;
j +:= 1;

end if ;
r := j � 1;
APPEND(�parts[r ], ndx ) ;

elif f notin duals then // skip if in duals
h := DUALPOLYNOMIAL(f ) ;
if ISEMPTY(duals) or h ne duals[#duals] then

APPEND(�duals, h) ;
pols[j ] := h�f ;
parts[j ] := [] ;
rows[j ] := [] ;
j +:= 1;

end if ;
r := j � 1;
APPEND(�parts[r ], ndx ) ;

else
h := DUALPOLYNOMIAL(f ) ;
r := INDEX(pols, f�h) ;

end if ;
m := DEGREE(f )�ndx ;
rows[r ] cat := [rownum + i : i in [1: :m]] ;
rownum +:= m ;

end for ;
return pols, parts, rows ;

end function ;

As in Milnor [10] we divide the primary components eV .f /, where f .t/ is �-irreducible,
into three types:

Type 1. f .t/ D f �.t/ is irreducible and the degree of f .t/ is even.

Type 2. f .t/ D f �.t/ D t ˙ 1.

Type 3. f .t/ D h.t/h�.t/ and h.t/ ¤ h�.t/.

It follows from the orthogonal decomposition of Vg in Corollary 4.3 that the problem of
determining the conjugacy class of g reduces to solving the problem for the restriction of g
to each primary component eV .f /.

11



Type 3 companion matrices

For V D eV .f / of type 3, we choose a basis v1, v2, . . . , vr for V.h/ and then the basis w1,
w2, . . . , wr for V.h�/ such that ˇ.vi ; wr�jC1/ D ıij , The matrices of ˇ and g with respect to
this basis of V are �

0 ƒ

�ƒ 0

�
and

�
A 0

0 ƒA�trƒ

�
:

The minimal polynomial ofA is h.t/s for some s and the minimal polynomial ofA�1 is h�.t/s .
If �.h/ D .�1; �2; : : : / is the partition determined by A (in the general linear group), the
conjugacy class of g is completely determined by the pair hf; �.h/i, where f .t/ D h.t/h�.t/.
Note that ƒ�1 D ƒtr D ƒ. In the MAGMA code in section 5 we shall construct the matrix of
hf; �.h/i as a direct sum of type 3 companion matrices for f .t/�i .

type3Companion := function(h)
d := DEGREE(h) ;
A := COMPANIONMATRIX(h) ;
ƒ := ZEROMATRIX(BASERING(h), d , d ) ;
for i := 1 to d do ƒ[i , d�i+1] := 1; end for ;
return DIAGONALJOIN(A,ƒ�TRANSPOSE(A�1)�ƒ) ;

end function ;

Orthogonal splitting of a primary component of type 1 or 2

Throughout this section we suppose that V D Vg D V.f / is a primary component of
type 1 or 2; that is, the minimal polynomial of g is a power of the �-symmetric irreducible
polynomial f .t/.

Lemma 4.5. If f is �-symmetric, V.f / splits as an orthogonal sum V.f / D V 1 ? V 2 ? � � � ? V r ,
where each V i is annihilated by f .g/i and is free as a module over kŒt �=.f i /.

Proof. (Milnor [10]) The primary rational decomposition of V.f / is V.f / D W1˚W2˚� � �˚Wr
with Wi free as a kŒt �=.f i /-module but where the decomposition may not be orthogonal.
Suppose thatWr \W ?r ¤ 0. SinceWr \W ?r is g-invariant we may choose u 2 Wr \W ?r such
that u ¤ 0 and uf .g/ D 0. But then u D vf .g/r�1 for some v 2 Wr . For i < r and w 2 Wi we
have

ˇ.u;w/ D ˇ.vf .g/r�1; w/ D ˇ.v;wf .g�1/r�1/ D 0

because f D f � and i < r . Thus u is in the radical of ˇ, which is a contradiction. It follows
that V.f / D W ?r ? Wr and the proof is complete by induction. �

Definition 4.6. The direct sum of copies of a cyclic module is homocyclic. The kŒt �-modules
V i are the homocyclic components of V.f /.

On writing V i D mi � kŒt �=.f /i the primary component V.f / corresponds to the partition
Œh1;m1 i; h2;m2 i; : : : ; hr;mr i�.
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4.2 Primary components of type 1

Recall that for primary components V.f / of type 1, the degree of f .t/ is even.

Lemma 4.7. Suppose that V.f / is a primary component of type 1 and define s.t/ D f .t/t�d , where
the degree of f .t/ is 2d . Then for all u; v 2 V.f / we have ˇ.us.g/; v/ D ˇ.u; vs.g//.

Proof. For u; v 2 V.f / it follows from equation (1.3), and the assumption f .t/ D f �.t/ that

ˇ.us.g/; v/ D ˇ.uf .g/g�d ; v/ D ˇ.u; vgdf .g�1//

D ˇ.u; vg�df .g/ D ˇ.u; vs.g//: �

Corollary 4.8. If V 2i is a homocyclic component of type 1, then V 2is.g/i is a maximal totally
isotropic subspace.

Proof. For all u; v 2 V 2i we have ˇ.us.g/i ; vs.g/i / D ˇ.u; vs.g/2i / D 0.
If v is a generator of a cyclic direct summand of V 2i and if 2d is the degree of f .t/, the

vectors vs.g/i , vs.g/ig, . . . , vs.g/ig2di�1 are linearly independent. Thus dimV 2is.g/i D
1
2

dimV 2i , as claimed. �

Theorem 4.9 (Milnor [10]). Suppose that V.f / D V 1 ? V 2 ? � � � ? V r is a primary component
of type 1 where V i is free as a kŒt �=.f .t/i /-module and E D kŒt �=.f .t//. Then for all i the E-space
H i D V i=V if .g/ carries a unique skew-hermitian form .u/ ı .v/ such that

ˇ.us.g/i�1; v/ D traceE=k..u/ ı .v//:

Proof. If V.i/ D fv 2 V j vf .g/i D 0g, then

V.i/ D V 1 ? � � � ? V i ? V iC1f .g/ ? V iC2f .g/2 ? � � � ? V rf .g/r�i :

Therefore V i=V if .g/ Š V.i/=.V .i � 1/CV.i C 1/f .g// and so theE-spaceH i depends only
on V and g. Furthermore, since f .t/ is the minimal polynomial of the induced action of g on
H i , the results of section 3 apply to H i .

From the previous lemma, for u; v 2 V.i/ the bilinear form ˇ.us.g/i�1; v/ is alternating
and depends only on the images .u/ and .v/ of u and v modulo V.i �1/CV.iC1/f .g/. Thus
the result follows from Lemma 3.1. �

When Vg D V.f / Milnor [10] shows that the orthogonal splitting of Lemma 4.5 is unique
and the sequence of skew-hermitian spaces H 1, H 2, . . . forms a complete invariant for g.

Milnor determines a standard form for the restriction of g to H e by first choosing an
orthogonal basis .v1/, .v2/, . . . , .vr/ for H e and observing that the vectors v`gis.g/j for
0 � i < 2d and 0 � j < e form a basis for the cyclic submodule generated by v`.

Furthermore he chooses the representatives v` such that ˇ.v`gis.g/j ; v`gi
0

s.g/j
0

/ D 0

whenever ji � i 0j < d and j C j 0 ¤ e. The remaining values of ˇ.v`gis.g/j ; v`gi
0

s.g/j
0

/

are then uniquely determined. In particular, the restriction of ˇ to each cyclic summand is
non-degenerate and H e is the orthogonal sum of these cyclic submodules.
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Type 1 companion matrices

Suppose that V is a cyclic component of type 1. Then V ' kŒt �=.h.t//, where h.t/ D f .t/i

and f .t/ is an irreducible �-symmetric polynomial. If the degree of h is 2d , then h.t/ can be
written as

h.t/ D 1C a1t C a2t
2
C � � � C ad�1t

d�1
C td .ad C ad�1t C ad�2t

2
C � � � C a1t

d�1
C td /:

Thus, if v is a generator of V , the matrix of g with respect to the basis v, vg, . . . , vg2d�1 is
the ‘standard’ companion matrix

Ch D

0BBBBBBBBBBBBBBBBB@

0 1

0
: : :

: : : 1

0 1

0 1

0 1
: : :

: : :

0 1

�1 �a1 � � � �ad�1 �ad �ad�1 � � � �a2 �a1

1CCCCCCCCCCCCCCCCCA
:

Now set J 0 D
�
0 �P tr

P 0

�
where P is the d � d upper triangular matrix

0BBBBB@
1 a1 a2 � � � ad�1

1 a1 � � � ad�2
: : :

: : :
:::

1 a1
1

1CCCCCA :
A direct calculation shows that C tr

h
J 0Ch D J

0 and so g preserves the alternating form whose
matrix is J 0�1. Furthermore J 0 D QJ2dQtr, where

Q D

�
I

�Pƒd

�
D Qtr and J2d D

�
ƒd

�ƒd

�
:

Therefore Sh D QChQ
�1 satisfies ShJ2dShtr D J2d . Consequently Sh is the matrix of g

with respect to the basis u1, u2, . . . , u2d where Q D .qij / and ui D
P2d
jD1 qij vg

j�1. Setting
vi D u2d�iC1 for 1 � i � d the pairs .ui ; vi / are mutually orthogonal hyperbolic pairs and
(with a0 D 1) we have

ui D vg
i�1 and vi D �

iX
jD1

ai�j vg
dCj�1 1 � i � d:
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We call Sh the symplectic companion matrix of h.t/ and writing Sh with respect to the basis
u1, u2, . . . , ud , vd , vd�1, . . . , v1 we have

Sh D

0BBBBBBBBBBBBBBBBB@

0 1

0
: : :

: : : 1

0 �1

1 a1 � � � ad�1 0 0 � � � 0 �ad
1 0 � � � 0 �ad�1

: : :
: : :

:::

1 0 �a2
1 �a1

1CCCCCCCCCCCCCCCCCA
:

By construction det.tI � Sh/ D h.t/ and then a matrix representing the restriction of g to
V i D mi � kŒt �=.f /

i is 0BBB@
Sh

Sh
: : :

Sh

1CCCA
9>>>=>>>; mi blocks

This matrix preserves the form0BBB@
J2d

J2d
: : :

J2d

1CCCA
9>>>=>>>; mi blocks

and later we shall transform this to a matrix preserving the standard alternating form J2dmi
.

Remark 4.10. This construction of a symplectic normal form for a symplectic transformation
whose characteristic polynomial is h.t/ is independent of the characteristic of k; it requires
only that h.t/ is a power of an irreducible �-symmetric polynomial and that its degree is
even.

type1Companion := function( f )
error if f ne DUALPOLYNOMIAL(f ), “polynomial must be *-symmetric” ;
e := DEGREE( f ) ;
error if ISODD(e), “degree must be even” ;
d := e div 2;
a := COEFFICIENTS( f )[2: : d+1] ;
C := ZEROMATRIX( BASERING(f ), e, e ) ;
for i := 1 to d�1 do

C[i , i+1] := 1;
C[d+1, i+1] := a[i ] ;
C[d+i+1, d+i ] := 1;
C[e�i+1, e] := �a[i ] ;

end for ;
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C[d , e] := �1;
C[d+1, 1] := 1;
C[d+1, e] := �a[d ] ;
return C ;

end function ;

The endomorphism ring of a homocyclic component

This section connects Milnor’s approach with that of Britnell [1, Chapter 5] and Wall [16, §2].
We begin with the cyclic g-module W D kŒt �=.f .t/i / where f .t/ is irreducible, �-

symmetric and g is multiplication by t .
The endomorphism ring C D EndkŒt�.W / of W is the centralizer of g in the algebra of

all linear transformations of W . Suppose that v generates W . If the degree of f .t/ is d , the
vectors v, vg, vg2, . . . , vgdi�1 form a basis for W . Thus for A 2 C we have vA D vr.g/ for
some polynomial r.t/ of degree less than di and then vgjA D vgj r.g/. Therefore A D r.g/
and consequently C ' kŒt �=.f .t/i / as k-algebras. The radical of C is the ideal generated
by f .g/.

IfA D r.g/, thenA� D r.g�1/ and the adjoint mapA 7! A� is an automorphism of C. The
induced map of E D kŒt �=.f .t// is the field automorphism e 7! Ne considered in section 3. It
is the identity if and only if f .t/ D t ˙ 1.

Let V D W1 ? W2 ? � � � ? Wm be the orthogonal sum of m copies of W and let Cm denote
the endomorphism ring of V . The action of A 2 Cm on V is given by the m �m matrix .˛ij /,
where ˛ij is an endomorphism ofW regarded as a map fromWi toWj . Thus Cm is the matrix
algebra Mat.m; C/.

The spaces Wi are orthogonal and therefore, for all vi 2 Wi and all vj 2 Wj we have

ˇ.vi ; vjA
�/ D ˇ.viA; vj / D ˇ.vi˛ij ; vj / D ˇ.vi ; vj˛

�
ij /

and so the matrix representing A� is the transpose of .˛�ij /. In this case the adjoint map
A 7! A� is an antiautomorphism.

The endomorphism ringbCm of H D V=Vf .g/ is Cm= rad Cm ' Mat.m;E/ and if B D bA
represents the action of A 2 Cm on H , the action of A� on H is represented by B

tr
.

Theorem 4.11 (Britnell [1, Theorem 5.6], Wall [16, Theorem 2.2.1]).

(i) Suppose that ˛ 2bCm and ˛� D "˛, where " D ˙1. Then there exists A 2 Cm such that bA D ˛
and A� D "A. If ˛ is non-singular, so is A.

(ii) Suppose that S; T 2 Cm are invertible, S� D "S , T � D "T and ˛bS˛� D bT for some ˛ 2 bCm.
Then there exists A 2 Cm such that bA D ˛ and ASA� D T .

Proof. (i) Choose A0 2 Cm such that ˛ D bA0 and put A D 1
2
.A0 C "A

�
0/. Then bA D ˛ and

A� D "A. If ˛ is invertible, there exists B 2 Cm such that AB D I �N , for some N 2 rad Cm.
But then N is nilpotent, hence I �N is invertible. Therefore A is invertible.

(ii) ChooseA0 such thatbA0 D ˛. ThenA0 is non-singular andN0 D T �A0SA�0 2 rad Cm.
Now suppose that we have Ai 2 Cm such thatbAi D ˛ andNi D T �AiSA�i 2 .rad Cm/2

i

. Put
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AiC1 D Ai C
1
2
NiA

��1
i S�1. Then bAiC1 D ˛. Furthermore, N �i D "Ni and therefore

T � AiC1SA
�
iC1 D T � .Ai C

1
2
NiA

��1
i S�1/S.A�i C

1
2
S�1A�1i Ni /

D T � AiSA
�
i �

1
2
Ni �

1
2
Ni �

1
4
NiA

��1
i S�1A�1i Ni

D �
1
4
NiA

��1
i S�1A�1i Ni 2 .rad Cm/2

iC1

:

For sufficiently large i we have .rad Cm/i D f0g and thus there exists A 2 Cm such that bA D ˛
and ASA� D T . �

Lemma 4.12. Let E be a finite field of odd characteristic and let � W x 7! Nx be an automorphism of E
such that �2 D 1. Acting on each matrix entry extends � to an automorphism A 7! A of M.n;E/.
Suppose that B 2 M.n;E/ satisfies B D B

tr
. If � D 1, suppose in addition that detB is a square.

Then B D AA
tr

for some A 2M.n;E/.

Proof. For unitary spaces over finite fields this is a consequence of the fact that up to isometry
there is just one unitary space in each dimension.

More specifically, let V be the vector space of row vectors of length n over E and furnish
V with the hermitian form .u; v/ 7! uB Nvtr. Choose an orthogonal basis v1, v2, . . . , vn with
respect to this form and put P D .v1; v2; : : : ; vn/

tr. Then PBP
tr
D D D diag.ı1; ı2; : : : ; ın/.

We have Nıi D ıi for all i .
If � ¤ 1, the norm map from E to the fixed field of � is onto and therefore, for all i

there exists ˛i such that ıi D ˛i N̨ i . Let A D diag.˛1; ˛2; : : : ; ˛n/, so that D D AA. Then

B D .P�1A/.P�1A/
tr

.
Suppose that � D 1. If a is a non-square in E, there exist x; y 2 E such that a D x2 C y2.

Then for all b 2 E we have�
x y

�by bx

��
x �by

y bx

�
D

�
x2 C y2 0

0 .x2 C y2/b2

�
D

�
a 0

0 ab2

�
:

By assumption detB is a square and so the number of non-squares amongst the ıi is even. It
follows that D D AAtr for some A and we have B D .P�1A/.P�1A/tr. �

Theorem 4.13. Suppose that V is a the orthogonal sum of m copies of the cyclic g-module W D
kŒt �=.f .t/i /, where f .t/ is irreducible and �-symmetric. If ˇ and 
 are non-degenerate alternating
forms on V preserved by g, there exists A 2 C such that 
.u; v/ D ˇ.uA; vA/ for all u; v 2 V .

Proof. If J is the matrix of ˇ, then the matrix of 
 has the form BJ . Since g preserves both
ˇ and 
 it follows from Proposition 1.2 that B 2 C and B D B�, where B� is the adjoint
with respect to ˇ. Thus the image b of B inbCm satisfies b D Nbtr. From the previous lemma
b D ˛ N̨ tr for some ˛ 2 bCm. It follows from the Approximation Theorem 4.11 that B D AA�

for some A 2 Cm. Thus 
.u; v/ D ˇ.uA; vA/ for all u; v 2 V . �

Corollary 4.14. Suppose that g and g0 are elements of Sp.2n; q/ such that V D k2n is a primary
component of type 1 for g and g0 with the same minimal polynomial and the same partition. Then g
and g0 are conjugate in Sp.2n; q/.
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Proof. We may suppose that V is homocyclic and that g and g0 have the same minimal
polynomial f .t/i . Furthermore we may suppose that the matrix of g is a diagonal join of
symplectic companion matrices, as constructed above. That is, V is an orthogonal sum of
cyclic modules kŒt �=.f .t/i /.

There exists � 2 GL.2n; q/ such that g D �g0��1 and the bilinear form 
.u; v/ D ˇ.u�; v�/

is non-degenerate and alternating. Moreover,


.ug; vg/ D ˇ.ug�; vg�/ D ˇ.u�g0; v�g0/ D ˇ.u�; v�/ D 
.u; v/

and therefore, by the previous theorem, there exists � 2 GL.2n; q/ such that g� D �g and

.u; v/ D ˇ.u�; v�/ for all u and v. Let ˛ D ��1� . Then

ˇ.u˛; v˛/ D ˇ.u��1�; v��1�/ D 
.u��1; v��1/ D ˇ.u; v/

and ˛�1g0˛ D ��1�g0��1� D g. Thus ˛ is an element of Sp.2n; q/ that conjugates g0 to g. �

This is another version of Theorem 3.3 of Milnor [10]; namely that the sequence of skew-
hermitian spaces H 1, H 2, . . . of Theorem 4.9 determines the conjugacy class of g.

4.3 Primary components of type 2, odd characteristic

Assume that the characteristic of k is odd. Suppose that f .t/ D t ˙ 1 and let V 1 ? � � � ? V r

be an orthogonal decomposition of V.f / as in Lemma 4.5. The corresponding partition is the
sequence of pairs h i; mi i, where V i D mi � kŒt �=.f /

i . Note that we may have mi D 0 for
some i .

Lemma 4.15. If � D g � g�1, then ˇ.u�; v/ D �ˇ.u; v�/. �

Define H i D V i=V if .g/. Then dimH i D mi . For v 2 V i , let .v/ denote its image in H i

and for .u/; .v/ 2 H i define
.u/ ı .v/ D ˇ.u�i�1; v/: (4.2)

Theorem 4.16 (Milnor [10]). The bilinear form .u/ ı .v/ is well-defined and non-degenerate. If i
is even it is symmetric, whereas if i is odd it is alternating and hence mi is even. Furthermore, the
sequence consisting of the isomorphism classes of these quadratic and symplectic spaces H i forms a
complete invariant for the restriction of g to V.f /.

Type 2, symplectic type

If i is odd, a matrix representing the action of g on V i can be obtained by repeated
application of type3Companion. Alternatively we may use the following code.

The ‘standard’ Jordan block of size n for the scalar a is the n � n matrix with a along the
diagonal, 1s on the upper diagonal and 0 elsewhere. Its primary invariant is .t � a/n.

stdJordanBlock := function(n, a)
D := SCALARMATRIX(n, a) ;
for i := 1 to n�1 do D[i , i+1] := 1; end for ;
return D ;

end function ;
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Here is the code to produce a symplectic companion matrix for < t + a0, [ <i , 2> ] >,
where i is odd and a0 D ˙1. This is a variant of type3Companion because in this case
ƒB�trƒ D B�1.

type2CompanionS := func< a0, i j DIAGONALJOIN(B , B�1) where
B is stdJordanBlock (i , �a0) > ;

Type 2, orthogonal type

If i is even, H i is a quadratic space of dimension mi . We may take the quadratic form to
be Q..v// D 1

2
.v/ ı .v/ and write H i as an orthogonal sum of 1-dimensional subspaces.

Definition 4.17.

(i) A pair of vectors u; v in a quadratic space with quadratic form Q and polar form
.u; v/ 7! u ı v D Q.u C v/ �Q.u/ �Q.v/ is a hyperbolic pair if Q.u/ D Q.v/ D 0 and
u ı v D 1. The subspace spanned by u and v is called a hyperbolic plane.

(ii) The discriminant dV of a quadratic space V is the determinant (modulo squares) of a
matrix representing the symmetric form.

(iii) A quadratic space is a metabolic space if it is the orthogonal sum of hyperbolic planes. The
discriminant of a hyperbolic plane is �1 and therefore the discriminant of a metabolic
space that is the sum of m hyperbolic planes is .�1/m.

Because we assume that q is odd, we regard a quadratic space as a pair .V; ˇ/ and use the
notation V D ha1; a2; : : : ; am i to mean that V has an orthogonal basis v1, v2, . . . vm such that
ˇ.vi ; vi / D ai for all i . In particular, h0i is the unique quadratic space of dimension 0.

Lemma 4.18. If a and b are non-zero elements of k, then for all c 2 k there exist x; y 2 k such that
c D ax2 C by2.

Corollary 4.19. We have V D h1; 1; : : : ; 1; a i, where a is either 1 or a non-square in k. In this case
dV D a. In particular, H i has an orthogonal basis .v1/, .v2/, . . . , .vme

/ such that .vj / ı .vj / D 1

for 1 < j � mi and .v1/ ı .v1/ is either 1 or a non-square in k. �

Corollary 4.20. IfV is a quadratic space of dimension at least 3, thenV contains a singular vector. �

Corollary 4.21. The quadratic space V can be written in the form V D M ? V0, where M is a
metabolic space, dimV0 � 2 and there are no singular vectors in V0. �

The space V0 is called the anisotropic kernel of V . It is uniquely determined by V up to
isometry. The Witt index of V is 1

2
dimM . The Witt index is said to be maximal if V0 D 0. For

the finite field k D GF.q/ there are four possibilities for the anisotropic kernel: h0i, h1i, hı i
or h1;�ı i, where ı is a non-square in k.

Two quadratic spaces are equivalent if they have the same anisotropic kernel. The equiva-
lence classes of the spaces h1; 1; : : : ; 1i and h1; : : : ; 1; ı i, both of dimensionm, depend on the
congruences of m and q modulo 4.
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If q � 1 .mod 4/, then

h1; 1; : : : ; 1i �

(
h0i m � 0 .mod 2/

h1i m � 1 .mod 2/

h1; : : : ; 1; ı i �

(
h1;�ı i m � 0 .mod 2/

hı i m � 1 .mod 2/

If q � 3 .mod 4/, then

h1; 1; : : : ; 1i �

8̂̂̂̂
<̂
ˆ̂̂:
h0i m � 0 .mod 4/

h1i m � 1 .mod 4/

h1;�ı i m � 2 .mod 4/

hı i m � 3 .mod 4/

h1; : : : ; 1; ı i �

8̂̂̂̂
<̂
ˆ̂̂:
h1;�ı i m � 0 .mod 4/

hı i m � 1 .mod 4/

h0i m � 2 .mod 4/

h1i m � 3 .mod 4/

If i is even, there are two conjugacy classes of elements in Sp.imi ; q/ with the same
minimal polynomial .t C a0/i and multiplicity mi . In order to distinguish between these
classes we attach a sign to the pair h i; mi i, when i is even.

Definition 4.22. The sign of a non-degenerate quadratic space V isC if its anisotropic kernel
is h0i or h1i; otherwise the sign is �. Thus, if the dimension of V is even, its sign isC if and
only if its Witt index is maximal.

We shall apply this definition to the quadratic spaceH i in order to attach a sign to h i; mi i.
As can be seen from the calculation above the sign is determined by the discriminant, the
dimension modulo 4 and the size of the field modulo 4.

Suppose that the discriminant of H i is a square in k D GF.q/. If its dimension mi is
congruent to 2 or 3 modulo 4 and if q � 3 .mod 4/, the sign is �; otherwise it is C. On the
other hand, if the discriminant is a non-square, mi � 2; 3 .mod 4/ and q � 3 .mod 4/, the
sign isC; otherwise it is �.

For an even integer e and a0 D ˙1, the following code constructs a representative for

< t + a0, [ <e , 1> ] >. The return value is g D
�
�a0B aS

0 �a0B
�1

�
, where B is a standard

c � c Jordan block all of whose non-zero entries are 1. All entries in S are 0 except for its last
row, which alternates between 1 and �1. If jej D 2c, one checks directly that BƒcB�tr D ƒc
and that SƒB tr is symmetric, whence g 2 Sp.2c; q/.

type2CompanionO := function(a0, e)
assert ISEVEN(e) ;
c := ABS(e) div 2;
F := PARENT( a0 ) ;
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B := stdJordanBlock (c , F ! 1) ;
X := �a0�DIAGONALJOIN(B , B�1) ;
a := ISEVEN(c) select F ! 2 else �F ! 2 ;
if (e lt 0) then a �:= NONSQUARE(F ) ; end if ;
for i := 1 to c do X [c , c+i ] := ISODD(i ) select a else �a ; end for ;
return X ;

end function ;

The quadratic space of Theorem 4.16 for g is one-dimensional and it follows from (4.2)
that its discriminant is �z, where z is the last entry in the first row of �2c�1. In this case

� D g � g�1 D

�
�a0R aU

0 a0R

�
, R D B � B�1 and U D S C B�1SB .

The matrixRc�1 is zero everywhere except for the last entry in the top row, which is 2c�1

and therefore �2c�1 D
�
0 .�1/c�1aRc�1URc�1

0 0

�
.

The code for type2CompanionO sets a D .�1/c2b, where b is 1 if e > 0 and a non-square if
e < 0. Thus every entry in�2c�1 is 0 except for the last entry in the top row, which is �22cb.
If u D .1; 0; : : : ; 0/, the discriminant of the quadratic space is ˇ.u�2c�1; u/ � b .mod k2/.
This means that the function returns an element of C type if e > 0 and an element of � type
if e < 0.

Let gC denote the element g with b D 1 and let g� denote g when b is a non-square. Let
gC
Œm�

be the direct sum of m copies of gC and let g�
Œm�

be the direct sum of m � 1 copies of gC

and a single copy of g�. The quadratic space of gC
Œm�

is h1; 1; : : : ; 1; 1i and its discriminant is
1, whereas the quadratic space of g�

Œm�
is h1; 1; : : : ; 1; b i and its discriminant is b .mod k2/.

The type of gC
Œm�

is � if and only if m � 2 or 3 .mod 4/ and q � 3 .mod 4/. On the other
hand, the type of g�

Œm�
isC if and only if m � 2 or 3 .mod 4/ and q � 3 .mod 4/.

5 Conjugacy classes in symplectic groups (q odd)

In order to preserve the standard alternating form when forming a direct sum of matrices we
replace the ‘diagonal join’ of matrices with their ‘central join’.

Symplectic direct sums

If A 2 Sp.2m; q/ and B 2 Sp.2n; q/ we may write A as the block matrix

A D

�
P Q

R S

�
:

and then the ‘central join’

A ı B D

0@P 0 Q

0 B 0

R 0 S

1A
belongs to Sp.2mC 2n; q/.

centralJoin := function( A, B )
d := NROWS(A) ;
if d eq 0 then return B ; end if ;
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e := NROWS(B) ;
if e eq 0 then return A ; end if ;
assert ISEVEN(d ) ;
m := d div 2;
X := ZEROMATRIX(BASERING(A), d+e, d+e) ;
INSERTBLOCK(�X , SUBMATRIX(A, 1, 1, m, m), 1, 1) ;
INSERTBLOCK(�X , SUBMATRIX(A, 1, m+1, m, m), 1, m+e+1) ;
INSERTBLOCK(�X , SUBMATRIX(A, m+1, 1, m, m), m+e+1, 1) ;
INSERTBLOCK(�X , SUBMATRIX(A, m+1, m+1, m, m), m+e+1, m+e+1) ;
INSERTBLOCK(�X , B , m+1, m+1) ;
return X ;

end function ;

type3Matrix := function(f , plist )
factors := FACTORISATION(f ) ;
h := factors[1][1] ;
assert f eq h�factors[2][1] ;
X := ZEROMATRIX( BASERING(f ), 0, 0 ) ;
for � in plist do

e, m := EXPLODE(�) ;
for i := 1 to m do X := centralJoin(X , type3Companion(h e )) ; end for ;

end for ;
return X ;

end function ;

type1Matrix := function(f , plist )
X := ZEROMATRIX( BASERING(f ), 0, 0 ) ;
for � in plist do

e, m := EXPLODE(�) ;
for i := 1 to m do X := centralJoin(X , type1Companion( f e )) ; end for ;

end for ;
return X ;

end function ;

isSignedPartition := func< � j
forallf � : � in � jISEVEN(�[1]) or (ISEVEN(�[2]) and �[1] gt 0)g > ;

type2Matrix := function(f , plist )
assert DEGREE(f ) eq 1;
error if not isSignedPartition( plist ), “not a signed partition” ;
a0 := COEFFICIENT(f , 0) ;
F := BASERING(f ) ;
q := #F ;
X := ZEROMATRIX( F , 0, 0 ) ;
for � in plist do

e, m := EXPLODE(�) ;
if ISODD( e ) then

for i := 1 to (m div 2) do
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X := centralJoin( X , type2CompanionS( a0, e ) ) ;
end for ;

else
X := ((q mod 4 eq 1) or (m mod 4 in f0, 1g))

select centralJoin(X , type2CompanionO(a0, e))
else centralJoin(X , type2CompanionO(a0, �e)) ;

for i := 2 to m do
X := centralJoin(X , type2CompanionO( a0, ABS(e))) ;

end for ;
end if ;

end for ;
return X ;

end function ;

Class invariants and representatives

intrinsic INTERNALREPMATRIXSP( inv :: SETINDX[TUP] ) ! GRPMATELT

{A representative of the symplectic conjugacy class with

invariant inv}

F := BASERING(PARENT(inv [1][1])) ;
X := ZEROMATRIX( F , 0, 0 ) ;
for polpart in inv do

f , plist := EXPLODE(polpart ) ;
if (DEGREE(f ) eq 1) then

X := centralJoin(X , type2Matrix (f , plist )) ;
elif ISIRREDUCIBLE(f ) then

X := centralJoin(X , type1Matrix (f , plist )) ;
else

X := centralJoin(X , type3Matrix (f , plist )) ;
end if ;

end for ;
return SYMPLECTICGROUP(NROWS(X ), F ) ! X ;

end intrinsic ;

The class invariants can be constructed in several steps. Firstly, choose a partition � D
Œn1; n2; : : : ; nk� of d where the parts ni are restricted to the set of degrees of the �-irreducible
polynomials, namely f1; 2; 4; : : : g. If � hasm parts of size n, choosem polynomials of degree
n (with repetition) represented as a list � of pairs, where hf; r i indicates that the polynomial
f of degree n has been chosen r times.

Secondly, refine � by replacing each pair hf; r i by hf; �i, where � is a partition of r .
Moreover, if the degree of f is 1, � must be replaced by a sequence of pairs hf; �i, where
� runs through all signed partitions obtained by adding signs to �. This refinement step is
carried out by the following function.

refine := function(�, addsign)
ƒ := [f@ @g] ;
for � in � do
� := [] ;
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f , r := EXPLODE(�) ;
for � in PARTITIONS(r ) do

for � in ƒ do
ˇ := convert (�) ;
if addsign then

if forallf b : b in ˇ j ISEVEN(b[1]) or ISEVEN(b[2]) g then
evens := f i : i in [1::#ˇ] j ISEVEN(ˇ[i ][1]) g ;
for T in SUBSETS(evens) do
� := ˇ ;
for i in T do

e, m := EXPLODE(ˇ[i ]) ;
�[i ] := < �e, m > ;

end for ;
APPEND(��, INCLUDE(�,<f ,�>)) ;

end for ;
end if ;

else
APPEND(��, INCLUDE(�,<f ,ˇ> )) ;

end if ;
end for ;

end for ;
ƒ := � ;

end for ;
return ƒ ;

end function ;

signedPartitions := func< d j addSignsSp([convert (�) : � in PARTITIONS(d )]) > ;

The invariants for the unipotent conjugacy classes in the symplectic group Sp.d; q/.
If SUBSET is Semisimple (rep. Unipotent), only the invariants for the semisimple (resp.
unipotent) classes are returned.

intrinsic INTERNALCLASSINVARIANTSSP( d :: RNGINTELT, q :: RNGINTELT : SUBSET := “All”)
! SEQENUM

{ The conjugacy class invariants for the symplectic group Sp(d,q)}

require ISEVEN(d ): “d must be even” ;
require ISODD(q) or SUBSET eq “Semisimple”: “q must be odd” ;
if SUBSET eq “Unipotent” then

t := POLYNOMIALRING(GF(q)):1;
return [ f@ <t � 1, part> @g : part in signedPartitions(d ) ] ;

end if ;
deg := [1] cat [2: : d by 2] ;
pols := [] ;
polsz := [] ;
for k in deg do

pols[k ] := STARIRREDUCIBLEPOLYNOMIALS(GF(q), k ) ;
polsz [k ] := f 1::#pols[k ] g ;

end for ;
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degptns := RESTRICTEDPARTITIONS(d , SET(deg)) ;
degptnz := [convert (�) : � in degptns] ;
inv := [] ;
for ı in degptnz do

prev := [f@ @g] ;
for term in ı do

ss := [] ;
n, m := EXPLODE(term) ;
pp := pols[n] ;
for S in MULTISETS(polsz [n], m) do

if SUBSET eq “Semisimple” then
„ := [f@ @g] ;
for i ! r in S do
„ := [ INCLUDE(�,<pp[i ], [<1, r>]>) : � in „ j n ne 1 or ISEVEN(r ) ] ;

end for ;
else
� := [ < pp[i ], r > : i ! r in S ] ;
„ := refine(�, n eq 1) ;

end if ;
for stub in prev do

for � in „ do APPEND(�ss, stub join �) ; end for ;
end for ;

end for ;
prev := ss ;

end for ;
inv cat := ss ;

end for ;
return inv ;

end intrinsic ;

Centraliser orders

The centraliser orders of elements of the symplectic group can be computed using Wall’s
functions A.'�/ and B.'/ from [16]. Here f is a polynomial and he;mi is a term from the
partition list.

A_fn := function(f , e, m, q)
d := DEGREE(f ) ;
if ISIRREDUCIBLE(f ) then

if d eq 1 then
if ISODD(e) then

val := ORDERSP(m, q) ;
else

if ISODD(m) then
val := ORDERGO(m, q) ;

elif (e lt 0) then
val := ORDERGOMINUS(m, q) ;

else

25



val := ORDERGOPLUS(m, q) ;
end if ;

end if ;
else

val := ORDERGU(m, q (d div 2)) ;
end if ;

else

val := ORDERGL(m, q (d div 2)) ;
end if ;
return val ;

end function ;

� := function(plist , d )
val := 0;
for � in plist do

e, m := EXPLODE(�) ;
val +:= (ABS(e)�1)�m 2 ;
if d eq 1 and ISEVEN(e) then val +:= m ; end if ;

end for ;
for i := 1 to #plist�1 do

e := ABS(plist [i ][1]) ;
m := plist [i ][2] ;
for j := i+1 to #plist do val +:= 2�e�m�plist [j ][2] ; end for ;

end for ;
val �:= d ;
assert ISEVEN(val ) ;
return val div 2;

end function ;

Here pol_part has the form hf; Œ : : : ; he;mi; : : : �i.

B_fn := function(pol_part )
f , plist := EXPLODE(pol_part ) ;
q := #BASERING(f ) ;
d := DEGREE(f ) ;

return q �(plist , d ) � &�[A_fn(f ,�[1],�[2], q) : � in plist ] ;
end function ;

centraliserOrderSp := func< inv j &�[ B_fn(pol_part ) : pol_part in inv ] > ;

The conjugacy classes of Sp.d; q/, q odd

As well as returning the conjugacy classes we return the labels.

classesSp := function(d , q)
ord := ORDERSP(d , q) ;
L := INTERNALCLASSINVARIANTSSP(d , q) ;
cc := [car<INTEGERS(), INTEGERS(), SP(d , q)>j
< ORDER(M ), ord div centraliserOrderSp(�), M > : � in L j true
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where M is INTERNALREPMATRIXSP(�) ] ;
PARALLELSORT(�cc , �L) ;
return cc , L ;

end function ;

6 The conjugacy class invariant of a symplectic matrix

In the previous section we provided code to construct a representative of a conjugacy class
invariant. The code in this section does the converse and computes the conjugacy class
invariant of a symplectic matrix.

Guided by Lemma 4.5 we shall define a function homocyclicSplit designed to be applied to
a matrix g acting on a primary component V.f /. But first we need a function that returns the
row indices for the homocyclic components of the rational canonical form of the matrix g.
(We use this only when the polynomial is t ˙ 1.)

getSubIndices := function(pFACT)
f := pFACT[1][1] ;
error if existsf p : p in pFACT j p[1] ne f g,

“the component is not homocyclic” ;
d := DEGREE(f ) ;
ndx := 0;
base := [] ;
last := 0;
rng := [] ;
for j := 1 to #pFACT do

if j gt 1 and pFACT[j ][2] ne last then
APPEND(�base, rng) ;
rng := [] ;

end if ;
last := pFACT[j ][2] ;
n := last�d ;
rng cat := [ndx+i : i in [1: : n]] ;
ndx +:= n ;

end for ;
APPEND(�base, rng) ;
return base ;

end function ;

We also need the restriction of a linear transformation (defined by a matrix M ) to an
invariant subspace; S is either the basis matrix for the subspace or a sequence of basis
vectors. (There is no check that the subspace is invariant.)

restriction := func< M , S j SOLUTION(T , T�M ) where T is MATRIX(S) > ;

In the following function W represents a primary component of g.

homocyclicSplit := function(g , W )
U := UNIVERSE([ W , sub<W j> ]) ;
_, T , pFACT := PRIMARYRATIONALFORM(g) ;
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baseNdx := getSubIndices(pFACT) ;
W0 := sub< W j [T [i ] : i in baseNdx [#baseNdx ]] > ;
D := [U j W0 ] ;
while W ne W0 do

W0p := ORTHOGONALCOMPLEMENT(W , W0) ;
gp := restriction(g , BASISMATRIX(W0p)) ;
_, T , pFACT := PRIMARYRATIONALFORM(gp) ;
baseNdx := getSubIndices(pFACT) ;
W1 := sub< W j [T [i ]�BASISMATRIX(W0p) : i in baseNdx [#baseNdx ]] > ;
APPEND(�D , W1) ;
W0 := sub< W j W0, W1 > ;

end while ;
return REVERSE(D) ;

end function ;

In the following functionD is the subspace V e obtained from homocyclicSplit , g is the matrix
acting on the generic space of D, f is the polynomial t C 1 or t � 1 and � is the pair he;mi.

The matrix B represents the symmetric form .u/ ı .v/ defined on H e D V e=V ef .g/ as in
Theorem 4.9.

attachSign := function(D , g , f ,�)
F := BASERING(g) ;
a0 := EVALUATE(f , 0) ;
e, m := EXPLODE(�) ;
A := g + SCALARMATRIX(F , NROWS(g), a0) ;
D0 := sub< D j [v�A : v in BASIS(D)] > ;
E := [v : v in EXTENDBASIS(D0, D) j v notin D0] ;
assert #E eq m ;

ı := (g � g�1)(e�1) ;
B := MATRIX(F , m, m, [DOTPRODUCT(D ! (u�ı), v ) : u , v in E ]) ;
d := DETERMINANT(B) ;
assert d ne 0;
sq , _ := ISSQUARE(d ) ;

If the determinant of B is a square,m � 2 orm � 3 .mod 4/ and q � 3 .mod 4/, the sign
is �. On the other hand, if the determinant of B is a non-square, m � 2 or m � 3 .mod 4/

and q � 3 .mod 4/, the sign isC.

flag := (m mod 4 in f2, 3g) and (#F mod 4 eq 3) ;
return (sq and not flag) or (not sq and flag) select � else < �e, m> ;

end function ;

Given a symplectic matrix g, we find the invariant of its conjugacy class, following Wall
[16] and Milnor [10]. First obtain the generalised Jordan decomposition and then treat the
components whose minimal polynomials are powers of t � 1 or t C 1 specially.

intrinsic INTERNALCONJUGACYINVARIANTSP( g :: GRPMATELT ) ! SETINDX[TUP]
{ The conjugacy class invariant of the symplectic matrix g }

F := BASERING(g) ;
J := STANDARDALTERNATINGFORM(NROWS(g), F ) ;
if g�J�TRANSPOSE(g) ne J then
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_, alt := INVARIANTBILINEARFORMS(PARENT(g)) ;
error if ISEMPTY(alt ), “the parent of g is not a symplectic group” ;
J := alt [1] ;

end if ;
_, T , pFACT := PRIMARYRATIONALFORM(g) ;
V := SYMPLECTICSPACE(J ) ;
pols, parts, bases := primaryParts(pFACT) ;
inv := f@ @g ;
for i := 1 to #pols do

f := pols[i ] ;
plist := convert (parts[i ]) ;
if DEGREE(f ) eq 1 then

base := bases[i ] ;

Extract the f -primary componentW as a symplectic space with the g-action given by gg .

gg := restriction(g , [T [j ] : j in base]) ;
d := #base ;
B := MATRIX(F , d , d , [DOTPRODUCT(V ! T [r ], V ! T [s]) : r , s in base]) ;
W := SYMPLECTICSPACE(B) ;
D := homocyclicSplit (gg , W ) ;
for j := 1 to #plist do

if ISEVEN(plist [j ][1]) then
plist [j ] := attachSign(D[j ], gg , f , plist [j ]) ;

end if ;
end for ;

end if ;
INCLUDE(�inv , <f , plist> ) ;

end for ;
return inv ;

end intrinsic ;

The following intrinsic is a variant of the old CLASSREPRESENTATIVESSP.

intrinsic INTERNALSYMPLECTICCLASSES(G :: GRPMAT : SUBSET := “All”)
! SEQENUM, SETINDX

{Conjugacy class representatives and labels for the standard

symplectic group. The parameter Subset is either "Unipotent",

"Semisimple" or "All" (the default)}

require SUBSET in f“Unipotent”, “Semisimple”, “All”g:
“invalid Subset” ;

F := BASERING(G) ;
d := DIMENSION(G) ;
q := #F ;
M := STANDARDALTERNATINGFORM(d , F ) ;
require forallf g : g in GENERATORS(G) j g�M�TRANSPOSE(g) eq M g:

“G is not a standard symplectic group” ;
if ISODD(q) or SUBSET eq “Semisimple” then

L := INTERNALCLASSINVARIANTSSP(d , q : SUBSET := SUBSET) ;
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ord := ORDERSP(d , q) ;
cc := [car<INTEGERS(), INTEGERS(), SP(d , q)>j
< ORDER(M ), ord div centraliserOrderSp(�), M > : � in L j true

where M is INTERNALREPMATRIXSP(�) ] ;
PARALLELSORT(�cc ,�L) ;
L := [ tagToNameSp(�) : � in L ] ;

else
fn := case <SUBSET j

“Unipotent” : UNIPOTENTCLASSES,
default : CLASSICALCONJUGACYCLASSES > ;

cc , L := fn(“Sp”, d , q) ;
end if ;
return cc , f@ x : x in L @g ;

end intrinsic ;

7 The number of conjugacy classes in Sp.2n; q/

7.1 q odd

It has been shown by Wall [16] that when the prime power q is odd, the number of conjugacy
classes in Sp.2n; q/ is the coefficient of 2n in the formal power series

1Y
kD1

.1C t2k/4

1 � qt2k
:

Using a calculation similar to that for GL.n; q/ this formal power series becomes (see Mac-
donald [8])

1Y
kD1

.1C t2k/4
1X
rD0

qr t2r
rY
kD1

.1 � t2k/�1:

TRUNCATEDEULERPRODUCT := function(t , s, m)
P := PARENT(t ) ;
f := P ! 1 ;
if m eq 0 then return f ; end if ;
for j := 1 to MIN(m, s) do

f �:= &+[P j t (j�i ) : i in [0: : (m div j )]] ;
end for ;
c := RANK(P ) eq 1 select COEFFICIENTS(f ) else COEFFICIENTS(f , t ) ;
return &+[c[i+1]�t i : i in [0: :MIN(#c�1, m)]] ;

end function ;

intrinsic NCLASSESSPODD(n :: RNGINTELT) ! RNGUPOLELT

{The number of conjugacy classes of Sp(n,q), q odd, as a

polynomial in q}

require ISEVEN(n) : “n must be even” ;
d := n div 2;
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P<t , qq> := POLYNOMIALRING(INTEGERS(), 2) ;
gf := P ! 0 ;
for r := 0 to d do

gf +:= qq r � t (2�r ) � EVALUATE(TRUNCATEDEULERPRODUCT(t , r , n�2�r ), [t 2, 1]) ;
end for ;

gf �:= &�[ (1+t (2�k ))4 : k in [1: : d ]] ;
_<q> := POLYNOMIALRING(INTEGERS()) ;
return EVALUATE(COEFFICIENT(gf , t , n), [1, q]) ;

end intrinsic ;

7.2 q even

Wall [16] has shown that when q is a power of 2, the number of conjugacy classes in Sp.2n; q/
is the coefficient of t2n in the formal power series

�.t2/

1Y
kD1

.1 � qt2k/�1 :

where �.t/ is defined as follows. First define a sequence of polynomials ��1.t/, �0.t/, �1.t/,
. . . , where

��1.t/ D 0;

�0.t/ D 1;

�2kC1.t/ � �2k.t/ D t
2kC1�2k�1.t/;

�2kC2.t/ � �2kC1.t/ D t
kC1.1C tkC1/.�2kC1.t/C .1 � t

2kC1/�2k�1.t//;

then let �.t/ be the formal power series such that

�.t/ � �2k.t/ .mod tk/ for r D 0; 1; 2; : : :

The following MAGMA function returns ��.t/.

� := function(�)
P<x> := POLYNOMIALRING(INTEGERS()) ;
val := P ! 0 ;
if � eq �1 then

val := P ! 0 ;
elif � eq 0 then

val := P ! 1 ;
elif ISEVEN(�) then
� := � div 2;
 := $$(��1) ;

val :=  + x ��(1+x �)�( +(1�x (��1))�$$(��3)) ;
else // if IsOdd(nu) then

val := $$(��1) + x � � $$(��2) ;
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end if ;
return val ;

end function ;

intrinsic NCLASSESSPEVEN(n :: RNGINTELT) ! RNGUPOLELT

{The number of conjugacy classes of Sp(n,q), q a power of 2,

as a polynomial in q}

require ISEVEN(n) : “n must be even” ;
d := n div 2;
P<t , qq> := POLYNOMIALRING(INTEGERS(), 2) ;
gf := P ! 0 ;
for r := 0 to d do

gf +:= qq r � t (2�r ) � EVALUATE(TRUNCATEDEULERPRODUCT(t , r , n�2�r ), [t 2, 1]) ;
end for ;
g := �(n+2) ;
cf := COEFFICIENTS(g)[1: : d+1] ;

gf �:= &+[ cf [i ]�t (2�(i�1)) : i in [1: : d+1]] ;
_<q> := POLYNOMIALRING(INTEGERS()) ;
return EVALUATE(COEFFICIENT(gf , t , n), [1, q]) ;

end intrinsic ;

8 Test code

testDual := procedure()
print “Test DualPolynomial” ;
for q in [11, 25] do

F := GF(q) ;
P<t> := POLYNOMIALRING(F ) ;
for i := 1 to 5 do

lst :=[ RANDOM(F ) : i in [1: : 6]] ;
if lst [1] ne 0 and lst [6] ne 0 then

assert DUAL(P ! lst ) eq DUALPOLYNOMIAL(P ! lst ) ;
end if ;

end for ;
end for ;
print “Passed\n” ;

end procedure ;

testDual () ;

test0sp := procedure(n, q)
print “Test 0: compare with Classes(G)” ;
G := SYMPLECTICGROUP(n, q) ;
reps := CLASSES(G) ;
delete G ;
G := SYMPLECTICGROUP(n, q) ;
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cc := CLASSES(G : AL := “Random”) ;
ndx := [] ;
for X in reps do

assert exists(i )f i : i in [1::#cc] j ISCONJUGATE(G, X [3], cc[i ][3]) g ;
APPEND(�ndx , i ) ;

end for ;
assert #reps eq #SEQUENCETOSET(ndx ) ;
print “Passed\n” ;

end procedure ;

test0sp(4, 3) ;

test1sp := procedure(n, r )
printf “Test 1: class sizes for Sp(%o,%o)\n”, n, r ;
f := NCLASSESSPODD(n) ;
#CLASSINVARIANTSSP(n, r ) eq EVALUATE(f , r ) ;

end procedure ;

test1sp(6, 5) ;

test2sp := procedure(n, r )
printf “Test 2: conjugacy invariants for Sp(%o,%o)\n”, n, r ;
for � in CLASSINVARIANTSSP(n, r ) do

g := INTERNALREPMATRIXSP(�) ;
c := INTERNALCONJUGACYINVARIANTSP(g) ;
assert � eq c ;

end for ;
print “Passed\n” ;

end procedure ;

test2sp(4, 3) ;
test2sp(6, 5) ;

test3sp := procedure(n, r )
printf “Test 3: centraliser orders for Sp(%o,%o)\n”, n, r ;
S := SP(n, r ) ;
for � in CLASSINVARIANTSSP(n, r ) do

g := INTERNALREPMATRIXSP(�) ;
assert #CENTRALISER(S , g) eq CENTRALISERORDERSP(�) ;

end for ;
print “Passed\n” ;

end procedure ;

test3sp(4, 3) ;

Conjugacy invariants (randomised)

test4sp := procedure(n, r )
printf “Randomised conjugacy invariants for Sp(%o,%o)\n”, n, r ;
G := SP(n, r ) ;
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for � in CLASSINVARIANTSSP(n, r ) do
g := INTERNALREPMATRIXSP(�) ;
h := RANDOM(G) ;
c := INTERNALCONJUGACYINVARIANTSP(g h ) ;
assert � eq c ;

end for ;
print “Passed\n” ;

end procedure ;

test4sp(4, 5) ;
test4sp(8, 5) ;
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