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This treatment of the conformal symplectic groups is modelled on the report ‘Conjugacy
Classes in Finite Symplectic Groups’. It is a revision of the C code of Sergei Haller (in
classes_classical.c) and the package code of Scott Murray (in symplectic.m).

The conjugacy classes are obtained by first computing a complete collection of invariants
and then determining a representative matrix for each invariant.

A partial analysis of similar algorithms for unitary groups can be found in [2]. There are
some remarks about the conformal symplectic groups in the unpublished draft [5]. A more
extended account is in Chapter 5 of Britnell’s thesis [1] and a description of the invariants,
based on the work of Wall [8], Springer and Steinberg [7] and Milnor [4] can be found in the
Shinoda’s paper [6].

1 Conformal symplectic groups

The ‘standard’ alternating form J D Jn is the 2n � 2n matrix
�

0 ƒn
�ƒn 0

�
, where ƒn is the

n � n matrix

ƒn D

0BBBB@
0 0 � � � 0 1

0 0 � � � 1 0

. . .

0 1 � � � 0 0

1 0 � � � 0 0

1CCCCA :
The conformal symplectic group CSp.2n; q/ considered here is the set of 2n� 2nmatrices

A over the field k D GF.q/ such that for each A there is a non-zero element � D �.A/ in
k such that AJAtr D �.A/J , where Atr is the transpose of A. We say that A preserves the
alternating form ˇ.u; v/ D uJvtr with multiplier �.

It is immediate that � W CSp.2n; q/ ! k� is a homomorphism. If Q is the subgroup��
aI 0

0 I

� ˇ̌̌
a 2 k�

�
, then Q \ Sp.2n; q/ D 1 and CSp.2n; q/ D Sp.2n; q/Q. It follows that

� is surjective and its kernel is Sp.2n; q/. That is, g1; g2 2 CSp.2n; q/ are in the same coset
of Sp.2n; q/ if and only if �.g1/ D �.g2/. The centre Z of CSp.2n; q/ is the group of q � 1
non-zero scalar matrices and jCSp.2n; q/ W Z ı Sp.2n; q/j is 2 if q is odd and 1 if q is a power
of 2. Let CSp�.2n; q/ denote the coset of elements of CSp.2n; q/ with multiplier �.

The description of the conjugacy classes of CSp.2n; q/ closely parallels the descriptions
of the conjugacy classes of GL.2n; q/ and Sp.2n; q/.
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The group GL.2n; q/ acts on V D k2n and for g 2 GL.2n; q/, the space V becomes a
kŒt �-module Vg by defining vf .t/ D vf .g/ for all v 2 V and all f 2 kŒt �.

As shown in Macdonald [3, Chap. IV], if P is the set of all partitions and ˆ is the set of
all monic irreducible polynomials (other than t ), then for g 2 GL.2n; q/ there is a function
� W ˆ! P such that

Vg D
M
f 2ˆ;i

kŒt �=.f /�i .f / (1.1)

and �.f / D .�1.f /; �2.f /; : : : ; / is a partition such thatX
f 2ˆ

deg.f /j�.f /j D 2n:

If g 2 CSp.2n; q/ there are restrictions on the polynomials and partitions that can occur in
this decomposition. The elements g; h 2 CSp.2n; q/ are conjugate in CSp.2n; q/ if and only
if there is an isomorphism of kŒt �-modules T W Vg ! Vh such that T 2 CSp.2n; q/.

The functions listed in the following import statement were defined in SpConjugacy.tex
and written to the file common.m. The code is included in this file (coloured red) but not
written to the MAGMA file CSpConjugacy.m.

import “common.m” : convert , allPartitions, signedPartitionsSp, stdJordanBlock ,
centralJoin, getSubIndices, restriction, homocyclicSplit ;

import “SpConjugacy.m” : classesSp, centraliserOrderSp ;

Definition 1.1. The adjoint of ˛ 2 Endk.V / with respect to the alternating form ˇ.u; v/ D

uJvtr is the linear transformation ˛� such that

ˇ.u˛; v/ D ˇ.u; v˛�/ for all u; v 2 V :

If A is the matrix of ˛, then A� D JAtrJ�1 and the bilinear form 
.u; v/ D ˇ.uA; v/ is
alternating if and only if A D A�. Moreover if g 2 GL.V / preserves ˇ, then g preserves 

with the same multiplier � if and only if gA D Ag.

A conjugacy calculation

Let g1 and g2 be elements of CSp�.V / and suppose that g1 and g2 are conjugate in GL.V /.
Then there are linear transformations �1, �2 and � 2 GL.V / such that

�1g1�
�1
1 D � D �2g2�

�1
2 :

For i D 1; 2 define 
i .u; v/ D ˇ.u�i ; v�i / and observe, as in Williamson [9], that


i .u�; v�/ D �
i .u; v/:

Lemma 1.2. Using the notation just established, g1 D ˛�1g2˛ for some ˛ 2 Sp.V / if and only if
there exists � 2 GL.V / such that �� D �� and 
2.u; v/ D 
1.u�; v�/.

Proof. Suppose that �� D �� and 
2.u; v/ D 
1.u�; v�/. Let ˛ D ��12 ��1. Then

˛�1g2˛ D �
�1
1 ��2g2�

�1
2 ��1 D �

�1
1 ����1 D �

�1
1 ��1 D g1
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and

ˇ.u˛; v˛/ D ˇ.u��12 ��1; v�
�1
2 ��1/ D 
1.u�

�1
2 �; v��12 �/

D 
2.u�
�1
2 ; v��12 / D ˇ.u; v/:

Conversely, suppose that g1 D ˛�1g2˛ for some ˛ 2 Sp.V / and let � D �2˛�
�1
1 . Then

�� D �� and 
2.u; v/ D 
1.u�; v�/. �

The following corollary is used implicitly in several places in Chapter 5 of [1].

Corollary 1.3. Suppose that g 2 CSp�.V / and that for all non-degenerate alternating forms 

preserved by g with multiplier � there exists � 2 GL.V / which commutes with g and satisfies

.u; v/ D ˇ.u�; v�/. Then for all h 2 CSp�.V /, if h is conjugate to g in GL.V /, there exists an
element of Sp.V / which conjugates h to g.

Polynomials

Definition 1.4.

(i) Given � 2 k� and a polynomial f .t/ of degree d such that f .0/ ¤ 0, the �-dual of f .t/
is

f Œ��.t/ D f .0/�1tdf .�t�1/:

The polynomial f .t/ is �-symmetric if f Œ��.t/ D f .t/. Thus f .t/ is �-symmetric if and
only if tdf .�t�1/ D f .0/f .t/. For example t2 � � and t2 C � are �-symmetric and if
� D �2, then t � � and t C � are �-symmetric.

(ii) A polynomial f .t/ is �-irreducible if it is �-symmetric and has no proper �-symmetric
factors.

If f .t/ is a monic polynomial such that f .0/ ¤ 0, then f Œ��Œ��.t/ D f .t/. Furthermore,
the monic polynomial f .t/ D a0 C a1t C � � � C ad�1td�1 C td is �-symmetric if and only if

a20 D �
d and �d�iad�i D a0ai for 0 < i < d . (1.2)

Thus an element a in an extension field of k is a root of f .t/ if and only if �a�1 is also a root.

Remark 1.5.

(i) An irreducible polynomial may have the same �-dual for more than one value of �. For
example, if k D F5 and f .t/ D t4 C 2, then f .t/ is irreducible and f Œ2�.t/ D f Œ4�.t/ D

t4 C 3.

(ii) It is possible for a polynomial to be �-symmetric for several values of �. For example,
if � is a primitive element of k D F25 and f .t/ D t6 C �t3 C 3, then f .t/ D f Œ2�.t/ D

f Œ1C��.t/ D f Œ2���.t/ D .t3 C 1C 2�/.t3 � 1 � �/.

intrinsic PHIDUAL(f :: RNGUPOLELT, � :: FLDFINELT) ! RNGUPOLELT

{The phi-dual of the polynomial f}

eseq := COEFFICIENTS(f ) ;
require eseq[1] ne 0 : “Polynomial must have non-zero constant term” ;
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dseq := [ eseq[i ]�� (i�1) : i in [1::#eseq] ] ;
return dseq[1]�1 � PARENT(f ) ! REVERSE(dseq) ;

end intrinsic ;

Lemma 1.6. If ˇ.ug; vg/ D �ˇ.u; v/ for all u; v 2 V , then for all f .t/ 2 kŒt � we have f .g/� D
f .�g�1/; that is,

ˇ.uf .g/; v/ D ˇ.u; vf .�g�1//: (1.3)

Corollary 1.7. If m.t/ is the minimal polynomial of g, then m.t/ is �-symmetric.

Proof. It follows from the lemma that vm.�g�1/ D 0 for all v 2 V and so gem.�g�1/ D 0,
where e is the degree ofm.t/. Thusm.t/divides tem.�t�1/ and hencem.t/ is�-symmetric. �

Lemma 1.8. Let f .t/ be a monic �-irreducible polynomial.

(i) If f .t/ is reducible, there exists an irreducible polynomial h.t/ such that f .t/ D h.t/hŒ��.t/

and h.t/ ¤ hŒ��.t/.

(ii) If the degree of f .t/ is 2d , then f .0/ D �d or � is not a square and f .t/ D t2 � �.

(iii) If f .t/ is irreducible and of odd degree, then � D �2 for some � 2 k and f .t/ is either t � � or
t C �.

(iv) If f .t/ ¤ t2 � � is irreducible of degree 2d , there is an irreducible polynomial h.t/ of degree d
such that f .t/ D tdh.t C �t�1/.

Proof. (i) Suppose that h.t/ is an irreducible factor of f .t/. Then hŒ��.t/ divides f Œ��.t/ D f .t/
and since f .t/ is �-irreducible f .t/ D h.t/hŒ��.t/ or f .t/ D h.t/.

(ii) Suppose that the degree of f .t/ is 2d . Then a20 D �2d and hence a0 D ˙�d . Thus
we may suppose that the characteristic of the field is not 2. If a0 D ��d then (1.2) becomes
ai D ��

d�ia2d�i and hence ad D 0. Then for 0 � i � d we have ad�2i t2d�i C ai t i D
ad�2i t

i .t2.d�i/ � �d�i / and consequently the �-symmetric polynomial t2 � � divides f .t/
whence f .t/ D t2 � �. Since f .t/ is �-irreducible � cannot be a square in this case.

(iii) Suppose that f .t/ is irreducible and that its degree e is odd. We have a20 D �e and
hence � D �2 for some � 2 k. Thus a0 D ˙�e and (1.2) becomes �e�2iae�i D ˙ai . It follows
that either f .�/ D 0 or f .��/ D 0. Thus f .t/ is either t � � or t C �, proving (iii).

(iv) Suppose that f .t/ ¤ t2�� is irreducible of degree 2d . Then from (ii) we have a0 D �d

and it follows by induction (successively subtracting multiples of .t C �t�1/i from t�df .t/)
that there exists a polynomial h.t/ such that f .t/ D tdh.t C �t�1/. �

intrinsic PHIIRREDUCIBLEPOLYNOMIALS(F :: FLDFIN, d :: RNGINTELT) ! SEQENUM[TUP]
{All pairs <phi,pols> where pols is the sequence of all monic

polynomials of degree d with no proper phi-symmetric factor}

P := POLYNOMIALRING(F ) ; t := P :1;

monicIrreducibles := func< n j
(n eq 1) select [ t � a : a in F j a ne 0 ]
else SETSEQ(ALLIRREDUCIBLEPOLYNOMIALS(F , n)) > ;

Given a polynomial h.t/ of degree d , define Oh.t/ D tdh.t C �t�1/.
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hatPoly := function(g , �)
R := RATIONALFUNCTIONFIELD(F ) ; x := R :1;

return P ! ( x DEGREE(g) � EVALUATE( R ! g , x + �/x ) ) ;
end function ;

multGrp := [ � : � in F j � ne 0 ] ;
m := #multGrp ;
polseq := [] ;
if d eq 1 then

for i := 1 to m do
� := multGrp[i ] ;
flag , � := ISSQUARE(�) ;

It is essential (for conjugacy testing) that the polynomials of degree 1 occur in the order
used by PRIMARYINVARIANTFACTORS and friends.

polseq[i ] := flag select <�, SORT([t + �, t � �])> else <�, [] > ;
end for ;

elif ISEVEN(d ) then
allhalf := monicIrreducibles(d div 2 ) ;
for i := 1 to m do
� := multGrp[i ] ;
pols := f@ @g ;
if d eq 2 then

if not ISSQUARE(�) then INCLUDE(�pols, t 2 � �) ; end if ;
if not ISSQUARE(��) then INCLUDE(�pols, t 2 + �) ; end if ;

end if ;
pols join:= f@ f : g in allhalf j ISIRREDUCIBLE(f ) where f is hatPoly (g ,�) @g

join f@ g�gphi : g in allhalf j g ne gphi where gphi is PHIDUAL(g , �) @g ;
polseq[i ] := < �, INDEXEDSETTOSEQUENCE(pols) > ;

end for ;
end if ;
return polseq ;

end intrinsic ;

Partitions

Given a partition in the form Œ�1; �2; : : : ; �n�, convert it to a sequence of multiplicities
Œh1;m1 i; h2;m2 i; : : : ; hn;mn i�, omitting the terms with mi D 0.

convert := func< � j SORT([ <i , MULTIPLICITY(�, i ) > : i in SET(�) ]) > ;

allPartitions := func <d j [[convert (�) : � in PARTITIONS(n)] : n in [1: : d ]] > ;

Definition 1.9. A signed partition is a sequence Œh1;m1 i; h˙2;m2 i; : : : ; hn;mn i� such that mi
is even for all odd i and with a sign associated to each pair h i; mi i for all even i .

The justification for the assignment of signs is given at the end of section 3.

addSignsSp := function(plist )
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slist := [] ;
for � in plist do

if forallf � : � in � j ISEVEN(�[1]) or ISEVEN(�[2])g then
ndx := f i : i in [1::#�] j ISEVEN(�[i ][1]) g ;
for S in SUBSETS(ndx ) do
� := � ;
for i in S do
� := �[i ] ;
�[i ] := < ��[1],�[2] > ;

end for ;
APPEND(�slist ,�) ;

end for ;
end if ;

end for ;
return slist ;

end function ;

Thus a signed partition � is a list of pairs � D he;mi. If e is odd, � is of symplectic type; if
e is even, � is of orthogonal type. The absolute value of e will be the exponent of an associated
irreducible polynomial.

signedPartitionsSp := func< d j [ addSignsSp(plist ) : plist in allPartitions(d ) ] > ;

Each conjugacy class of CSp.2n; q/ will be represented by a pair h�;„i, where � 2 k�

and„ is an indexed set of pairs hf; �i, where f is a �-irreducible polynomial and � is either
a partition or, in the case that f divides t2 � �, a signed partition. That is, a conjugacy class
invariant has the form h�; f@ hf1; �1 i; hf2; �2 i; � � � @gi.

2 A skew-hermitian form

Throughout this section g is an element of CSp.2n; q/ whose minimal polynomial m.t/ is
irreducible of degree d . We set � D �.g/ and we follow the exposition in Milnor [4, §1],
modified for conformal symplectic groups.

In this case V is a vector space over the field E D kŒt �=.m.t// and E D kŒ��, where
� D t C .m.t//. The linear transformation g becomes right multiplication by � ; that is,
g W v 7! v� .

By Corollary 1.7 m.t/ is �-symmetric and so m.���1/ D 0. It follows that there is an
automorphism e 7! Ne of E such that N� D ���1. The automorphism is the identity if and only
if �2 D �. If m.t/ does not divide t2 � � then by Lemma 1.8 the degree of m.t/ is even and
the automorphism e 7! Ne has order 2. In general (1.3) becomes

ˇ.ue; v/ D ˇ.u; v Ne/:

For fixed u; v 2 V the map L W E ! k W e 7! ˇ.ue; v/ is k-linear and so there is a unique
element u ı v 2 E such that

traceE=k.e.u ı v// D L.e/ for all e 2 E:
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Theorem 2.1. u ı v is the unique skew-hermitian inner product on V such that

ˇ.u; v/ D traceE=k.u ı v/:

Moreover u ı v is non-degenerate.

Proof. By definition
traceE=k.e.u ı v// D ˇ.ue; v/ (2.1)

Thus for all u1; u2; v 2 V we have

traceE=k.e..u1 C u2/ ı v// D ˇ..u1 C u2/e; v/
D ˇ.u1e; v/C ˇ.u2e; v/

D traceE=k.e.u1 ı v//C traceE=k.e.u2 ı v//
D traceE=k.e.u1 ı v C u2 ı v//

whence
.u1 C u2/ ı v D u1 ı v C u2 ı v:

Furthermore,

traceE=k.e1e2.u ı v// D ˇ.ue1e2; v/ D traceE=k.e1.ue2 ı v//

and therefore
ue2 ı v D .u ı v/e2:

In addition

traceE=k.e.u ı v// D traceE=k. Ne.u ı v//
D ˇ.u Ne; v/ D ˇ.u; ve/ D �ˇ.ve; u/

D � traceE=k.e.v ı u//

and therefore u ı v D �v ı u, which completes the proof that u ı v is skew-hermitian.
Taking e D 1 in (2.1) we have ˇ.u; v/ D traceE=k.u ı v/ and therefore u ı v is non-

degenerate.
If u � v is another skew-hermitian inner product on V such that ˇ.u; v/ D traceE=k.u � v/,

then traceE=k.e.u � v// D traceE=k.ue � v/ D ˇ.ue; v/ D traceE=k.e.u ı v// whence u � v D
u ı v. �

Remark 2.2. Suppose that m.t/ 2 kŒt � is an irreducible �-symmetric polynomial and let H be
a vector space over the field E D kŒt �=.m.t//.

If m.t/ does not divide t2 � � let u ı v be a non-degenerate skew-symmetric hermitian
form on H whereas, if m.t/ divides t2 � �, let u ı v be a non-degenerate alternating form
on H .

Then ˇ.u; v/ D traceE=k.u ı v/ is a non-degenerate symplectic form on the space V
obtained by restriction of scalars.

If � D t C .m.t//, then m.���1/ D 0 and � 7! ���1 extends to an automorphism of E.
Then multiplication by � satisfies ˇ.u�; v�/ D �ˇ.u; v/ and hence belongs to the conformal
symplectic group.
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3 Orthogonal decompositions

We return to a general element g 2 CSp.2n; q/ and set � D �.g/.

3.1 Primary components

Definition 3.1. For each irreducible polynomial f .t/, the f -primary component of Vg is

V.f / D
M
i

kŒt �=.f /�i .f / D f v j vf .g/i D 0 for sufficiently large i g:

Lemma 3.2. V.f / is orthogonal to V.h/ unless h.t/ D f Œ��.t/.

Proof. (cf. Milnor [4]) If u 2 V.f / and v 2 V , then for sufficiently large i

ˇ.u; vf .�g�1/i / D ˇ.uf .g/i ; v/ D 0

and hence V.f / is orthogonal to Vf Œ��.g/i .
If f Œ��.t/ ¤ h.t/, then by irreducibility there are polynomials r.t/ and s.t/ such that

1 D r.t/h.t/iCs.t/f Œ��.t/. It follows that for large i and for v 2 V.h/ we have v D vs.g/f Œ��.g/
and therefore the map

V.h/ ! V.h/ W v 7! vf .�g�1/

is a bijection. Hence V.f / is orthogonal to V.h/. �

Corollary 3.3. V D?f eV .f /, where f ranges over all �-irreducible polynomials and where

eV .f / D (V.f / f D f Œ�� is irreducibleI
V.h/ ˚ V.hŒ��/ f D hhŒ�� and h ¤ hŒ��:

Lemma 3.4. If f .t/ is not �-symmetric, then V.f / and V.f Œ��/ are totally isotropic and V.f /˚V.f Œ��/
is non-degenerate.

Proof. LetU D V.f / and write V D U ˚W , whereW is the sum of the h-primary components
with h ¤ f . Then U � D W ? is a kŒt �-submodule and dimU � D dimU .

For all u 2 U , v 2 U � and i � 1 we have

ˇ.uf .g/i ; v/ D 0 if and only if ˇ.u; vf Œ��.g/i / D 0

and therefore f .g/i vanishes on U if and only if f Œ��.g/i vanishes on U �. (This is a con-
sequence of the equalities W D W ??, U? \ W ? D 0 and U \ W D 0.) It follows that
U � D V.f Œ��/. But V.f Œ��/ � W and hence U � is totally isotropic. Reversing the rôles of U
and U � we see that U is also isotropic. It is now clear that U ˚ U � is non-degenerate. �

The PRIMARYRATIONALFORM(X ) intrinsic returns the rational form C of X , a transformation
matrix T and the primary invariant factors pFACT. The entries in pFACT are pairs hf; e i, where
f is an irreducible polynomial and e is an integer. If the polynomials are f1, f2, . . . , fr and if
the entries with polynomial fi are hfi ; ei1 i, hfi ; ei2 i, . . . , hfi ; eis i, then we rely on the return
value pFACT to group all pairs with the same irreducible polynomials and to order them so
that ei1 � ei2 � � � � � eir .

Assuming this is the case, the function primaryPhiParts returns
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� the sequence pols of �-irreducible polynomials,

� the corresponding sequence parts of partitions, and

� a sequence rows of row indices giving the location of each primary component.

Then the subspace V.f / can be found using the matrix T . Suppose, for example, that the
corresponding portion of the rational form occupies rows aC 1, aC 2, . . . , aCm of C . Since
TX D CT the rows T ŒaC 1�, T ŒaC 2�, . . . , T ŒaCm� of T are a basis for V.f /.

primaryPhiParts := function(�, pFACT)
P := PARENT(pFACT[1][1]) ;
pols := [P j ] ;
parts := [] ;
duals := [P j ] ;
rows := [] ;
j := 1;
rownum := 0;
for i := 1 to #pFACT do

f := pFACT[i ][1] ; ndx := pFACT[i ][2] ;
if f eq PHIDUAL(f ,�) then

if j eq 1 or pols[j�1] ne f then
pols[j ] := f ;
parts[j ] := [] ;
rows[j ] := [] ;
j +:= 1;

end if ;
r := j � 1;
APPEND(�parts[r ], ndx ) ;

elif f notin duals then // skip if in duals
h := PHIDUAL(f ,�) ;
if ISEMPTY(duals) or h ne duals[#duals] then

APPEND(�duals, h) ;
pols[j ] := h�f ;
parts[j ] := [] ;
rows[j ] := [] ;
j +:= 1;

end if ;
r := j � 1;
APPEND(�parts[r ], ndx ) ;

else
h := PHIDUAL(f ,�) ;
r := INDEX(pols, f�h) ;

end if ;
m := DEGREE(f )�ndx ;
rows[r ] cat := [rownum + i : i in [1: :m]] ;
rownum +:= m ;

end for ;
return pols, parts, rows ;
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end function ;

As in Milnor [4] we divide the primary components eV .f /, where f .t/ is �-irreducible,
into three types.

Type 1. f .t/ D f Œ��.t/ is irreducible, f .t/ ¤ t2 � �, and the degree of f .t/ is even.

Type 2. f .t/ D f Œ��.t/ is irreducible and f .t/ divides t2 � �.

Type 3. f .t/ D h.t/hŒ��.t/ and h.t/ ¤ hŒ��.t/.

Type 3 companion matrices

For eV .f / of type 3, if we choose a basis v1, v2, . . . , vr for V.h/ and the basis w1, w2, . . . , wr
for V.hŒ��/ such that ˇ.vi ; wr�jC1/ D ıij , the matrices of ˇ and g restricted to eV .f / are�

0 ƒ

�ƒ 0

�
and

�
A 0

0 �ƒA�trƒ

�
: (3.1)

The minimal polynomial of A is h.t/s for some s and the minimal polynomial of �ƒA�trƒ

is hŒ��.t/s .

Theorem 3.5. Suppose that g and g0 are elements of CSp.2n; q/ such that V D k2n is a primary
component of type 3 for g and g0 with the same multiplier �, the same minimal polynomial and the
same partition. Then g and g0 are conjugate via an element of Sp.2n; q/. Therefore CSp.V / D
Sp.V /CCSp.V /.g/.

Proof. As shown above it is enough to prove that if 
 is a non-degenerate alternating form
such that 
.ug; vg/ D �
.u; v/ for all u; v 2 V , there is a matrix K, which commutes with g,
such that 
.u; v/ D ˇ.uK; vK/ for all u; v 2 V .

Let L be the matrix such that 
.u; v/ D ˇ.uL; v/. Then LJ D JLtr and Lg D gL and so
L fixes the primary components V.h/ and V.hŒ��/ of g. Hence there is a matrix M such that

L D

�
M 0

0 ƒM trƒ

�
:

Therefore 
.u; v/ D ˇ.uK; vK/ and gK D Kg, where

K D

�
M 0

0 I

�
: �

As a consequence of this theorem the conjugacy class of g jeV .f / is completely determined

by the triple h�; f; �.h/i, where f .t/ D h.t/hŒ��.t/ and every such triple represents a conju-
gacy class in CSp.eV .f //.
Definition 3.6. Define A to be a �-symplectic companion matrix of a polynomial f .t/ if f .t/ D
det.tI � A/ and AJAtr D �J .

Given � 2 k and the companion matrixA of a polynomial h.t/ the matrix
�
A 0

0 �ƒA�trƒ

�
is a �-symplectic companion matrix of h.t/hŒ��.t/.
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type3Companion := function(�, h)
d := DEGREE(h) ;
A := COMPANIONMATRIX(h) ;
ƒ := ZEROMATRIX(BASERING(h), d , d ) ;
for i := 1 to d do ƒ[i , d�i+1] := 1; end for ;
return DIAGONALJOIN(A,��ƒ�TRANSPOSE(A�1)�ƒ) ;

end function ;

If h.t/ is �-symmetric, this code returns a matrix with characteristic polynomial h.t/2 and
minimal polynomial h.t/. In this case its conjugacy invariant is < �, f < h, [<d , 2>] > g >.

An example

Let k D F3 and consider the matrices

h1 D

�
1 �1

0 1

�
; h2 D

�
1 1

0 1

�
and h3 D

�
�1 1

0 �1

�
;

All three matrices belong to Sp.2; 3/ and .t � 1/2 is the only primary invariant factor of both
h1 and h2. The matrices h1 and h2 are conjugate in CSp.2; 3/ but not in Sp.2; 3/. Furthermore,
if g1 is the orthogonal sum of h1 and h3 and if g2 is the orthogonal sum of h2 and h3, then g1 is
not conjugate to g2 in CSp.4; 3/. Since Vg1 D Vg2 D V..t�1/2/ ? V..tC1/2/, this example shows
that conjugacy in CSp.2n; q/ cannot be decided by considering the primary components in
isolation.

Orthogonal splitting of a primary component

Suppose that V.f / is a primary component of type 1 or 2. In this case V.f / is an orthogonal
summand of Vg .

Theorem 3.7. The space V.f / splits as an orthogonal sum V.f / D V 1 ? V 2 ? � � � ? V r , where
each V i is annihilated by f .g/i and is free as a module over kŒt �=.f .t/i /.

Proof. (Milnor [4]) From the Jordan decomposition we have V.f / D W1˚W2˚� � �˚Wr with
Wi free as a kŒt �=.f i /-module but where the decomposition may not be orthogonal. Suppose
that Wr \ W ?r ¤ 0. Since Wr \ W ?r is g-invariant we may choose u 2 Wr \ W ?r such that
u ¤ 0 and uf .g/ D 0. But then u D vf .g/r�1 for some v 2 Wr . For i < r andw 2 Wi we have

ˇ.u;w/ D ˇ.vf .g/r�1; w/ D ˇ.v;wf .�g�1/r�1/ D 0

because f .t/ D f Œ��.t/ and i < r . Thus u 2 V ? D f0g contradicting the assumption that ˇ is
non-degenerate. Therefore V.f / D W ?r ? Wr and the theorem follows by induction on r . �

Definition 3.8. The kŒt �-modules V i are the homocyclic components of V.f /.

3.2 Primary components of type 1

Lemma 3.9. Suppose that V.f / is a primary component of type 1 and define s.t/ D f .t/t�d , where
the degree of f .t/ is 2d . Then s.g/ is self-adjoint; that is, for all u; v 2 V.f / we have

ˇ.us.g/; v/ D ˇ.u; vs.g//:
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Proof. For u; v 2 V.f / it follows from equation (1.3), Lemma 1.8 (ii) and the assumption that
f .t/ is �-symmetric that

ˇ.us.g/; v/ D ˇ.uf .g/g�d ; v/ D ˇ.u; v��dgdf .�g�1//

D ˇ.u; vg�df .g// D ˇ.u; vs.g//: �

Corollary 3.10. If V 2i is a homocyclic component of type 1, then V 2is.g/i is a maximal totally
isotropic subspace.

Proof. For all u; v 2 V 2i we have ˇ.us.g/i ; vs.g/i / D ˇ.u; vs.g/2i / D 0.
If v is a generator of a cyclic direct summand of V 2i and if 2d is the degree of f .t/, the

vectors vs.g/i , vs.g/ig, . . . , vs.g/ig2di�1 are linearly independent. Thus dimV 2is.g/i D
1
2

dimV 2i , as claimed. �

Theorem 3.11 (Milnor [4]). If V.f / D V 1 ? V 2 ? � � � ? V r is a primary component of type 1 where
V i is free as a kŒt �=.f .t/i /-module andE D kŒt �=.f .t//, then for all i theE-spaceH i D V i=V if .g/

carries a unique skew-hermitian form .u/ ı .v/ such that

ˇ.us.g/i�1; v/ D traceE=k..u/ ı .v//:

Proof. If V.i/ D fv 2 V j vf .g/i D 0g, then V i=V if .g/ Š V.i/=.V .i � 1/ C V.i C 1/f .g//

and so the E-space H i depends only on V and g. Furthermore, since f .t/ is the minimal
polynomial of the induced action of g, the results of section 2 apply to H i .

From the previous lemma and the comment following Definition 1.1, for u; v 2 V.i/ the
bilinear form ˇ.us.g/i�1; v/ is alternating and depends only on the images .u/ and .v/ of u
and v modulo V.i � 1/C V.i C 1/f .g/. Thus the result follows from Lemma 2.1. �

3.3 The endomorphism ring of a homocyclic component

This section connects Milnor’s approach with that of Britnell [1, Chapter 5] and Wall [8, §2].
Suppose at first thatW is a cyclic g-module and that the minimal polynomial of g is f .t/i ,

where f .t/ is irreducible and �-symmetric. Thus W ' kŒt �=.f .t/i /.
The endomorphism ring C D EndkŒt�.W / of W is the centralizer of g in the algebra of

all linear transformations of W . Suppose that v generates W . If the degree of f .t/ is d , the
vectors v, vg, vg2, . . . , vgdi�1 form a basis for W . Thus for A 2 C we have vA D vr.g/ for
some polynomial r.t/ of degree less than di and then vgjA D vgj r.g/. Therefore A D r.g/
and consequently C ' kŒt �=.f .t/i / as k-algebras. The radical of C is the ideal generated
by f .g/.

IfA D r.g/, thenA� D r Œ��.g/ and the adjoint mapA 7! A� is an automorphism of C. The
induced map of E D kŒt �=.f .t// is the field automorphism e 7! Ne considered in section 2. It
is the identity if and only if f .t/ divides t2 � �.

Let V D V1 ? � � � ? Vm where Vi D W for 1 � i � m and extend the action of g to V in
the obvious way. If Cm is the endomorphism ring of V , the action of A 2 Cm on V is given
by them�mmatrix .˛ij /, where ˛ij is an endomorphism ofW regarded as a map from Vi to
Vj . Thus Cm is the matrix algebra Mat.m; C/.

The spaces Vi are orthogonal and therefore, for all vi 2 Vi and all vj 2 Vj we have

ˇ.vi ; vjA
�/ D ˇ.viA; vj / D ˇ.vi˛ij ; vj / D ˇ.vi ; ˛

�
ij /

12



and so the matrix representing A� is the transpose of .˛�ij /. In this case the adjoint map
A 7! A� is an antiautomorphism.

The endomorphism ring bCm of bV D V=Vf .g/ is Mat.n;E/ and if B D bA represents the
action of A 2 Cm on bV , then the action of A� on bV is represented by B

tr
.

Theorem 3.12 (Britnell [1, Theorem 5.6], Wall [8, Theorem 2.2.1]).

(i) Suppose that ˛ 2bCm and ˛� D "˛, where " D ˙1. Then there exists A 2 Cm such that bA D ˛
and A� D "A. If ˛ is non-singular, so is A.

(ii) Suppose that S; T 2 Cm are invertible, S� D "S , T � D "T and ˛bS˛� D bT for some ˛ 2 bCm.
Then there exists A 2 Cm such that bA D ˛ and ASA� D T .

Proof. (i) Choose A0 2 Cm such that ˛ D bA0 and put A D 1
2
.A0 C "A

�
0/. Then bA D ˛ and

A� D "A. If ˛ is invertible, there exists B 2 Cm such that AB D I �N , for some N 2 rad Cm.
But then N is nilpotent, hence I �N is invertible. Therefore A is invertible.

(ii) ChooseA1 such thatbA0 D ˛. ThenA1 is non-singular andN1 D T �A1SA�1 2 rad Cm.
Now suppose that we have Ai 2 Cm such that bAi D ˛ and Ni D T � AiSA�i 2 .rad Cm/i . Put
AiC1 D Ai C

1
2
S�1A��1i Ni . Then bAiC1 D ˛. Furthermore, N �i D "Ni and therefore

T � AiC1SA
�
iC1 D T � .Ai C

1
2
NiA

��1
i S�1/S.A�i C

1
2
S�1A�1i Ni /

D T � AiSA
�
i �

1
2
Ni �

1
2
Ni �

1
4
NiA

��1
i S�1A�1i Ni

D �
1
4
NiA

��1
i S�1A�1i Ni 2 .rad Cm/iC1:

For sufficiently large i we have .rad Cm/i D f0g and thus there exists A 2 Cm such that bA D ˛
and ASA� D T . �

Theorem 3.13. Suppose thatW is a cyclic g-module such that the minimal polynomial of g is f .t/i ,
where f .t/ is irreducible, �-symmetric and does not divide t2 � �. If ˇ and 
 are non-degenerate
alternating forms on W preserved by g with the same multiplier �, then there exists A 2 C such that

.u; v/ D ˇ.uA; vA/ for all u; v 2 W .

Proof. If J is the matrix of ˇ, then the matrix of 
 has the form BJ and since g preserves
both ˇ and 
 (with the same multiplier �) we have B 2 C. Furthermore B D B�, where B�

is the adjoint with respect to ˇ. Thus the image b of B in E D kŒt �=f .t/ is fixed by the field
automorphism. For a finite field the norm homomorphism is onto and therefore b D ˛˛�

for some ˛ 2 E. It follows from the previous theorem that B D AA� for some A 2 C. Thus

.u; v/ D ˇ.uA; vA/ for all u; v 2 W . �

Corollary 3.14. Suppose that g and g0 are elements of CSp.2n; q/ such that V D k2n is a primary
component of type 1 for g and g0 with the same multiplier �, the same minimal polynomial and the
same partition. Then g and g0 are conjugate via an element of Sp.2n; q/ and therefore CSp.V / D
Sp.V /CCSp.V /.g/.

This is another version of Theorem 3.3 of Milnor [4]; namely that the sequence of skew-
hermitian spaces H 1, H 2, . . . of Theorem 3.11 determines the conjugacy class of g j V.f /.
Milnor determines a standard form for the restriction of g to Hm by first choosing an
orthonormal basis .v1/, .v2/, . . . , .vr/ for Hm and observing that the vectors v`gis.g/j

for 0 � i < 2d and 0 � j < m form a basis for the cyclic submodule generated by v`.
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Furthermore he chooses the representatives v` such that ˇ.v`gis.g/j ; v`gi
0

s.g/j
0

/ D 0

whenever ji � i 0j < d and j C j 0 ¤ m. The remaining values of ˇ.v`gis.g/j ; v`gi
0

s.g/j
0

/

are then uniquely determined. In particular, the restriction of ˇ to each cyclic summand is
non-degenerate and Hm is the orthogonal sum of these cyclic submodules.

Type 1 companion matrices

Another normal form for the restriction of g to a cyclic submodule is the following
�-symplectic companion matrix.

Suppose that h.t/ D f .t/i where f .t/ is an irreducible �-symmetric polynomial. In
addition, if f .t/ divides t2 � � suppose that i is even. Therefore, if the degree of h.t/ is 2d ,
then h.0/ D �d and h.t/ has the form

h.t/ D �d C a1t C a2t
2
C � � � C ad�1t

d�1

C td .ad C �
�1ad�1t C �

�2ad�2t
2
C � � � C �1�da1t

d�1
C td /

and its �-symplectic companion matrix is

C�;h D

0BBBBBBBBBBBBBBBB@

0 1

0
: : :

: : : 1

0 ���d

�dC1 �a1 � � � �ad�1 0 � � � 0 ��1�dad

�
: : :

:::
: : : 0 ��1�da2

� ��1�da1

1CCCCCCCCCCCCCCCCA
:

That is, C�;h 2 CSp.2d; q/, h.t/ D det.tI � C�;h/ and C�;hJC tr
�;h
D �J .

Note that when d D 1 we have C�;h D
�
0 ���1

�2 �a1

�
.

type1Companion := function(�, f , i )
error if f ne PHIDUAL(f ,�), “polynomial must be phi-symmetric” ;
error if not ISIRREDUCIBLE(f ), “polynomial must be irreducible” ;
t := PARENT(f ):1;
error if ISDIVISIBLEBY(t 2 � �, f ) and ISODD(i ), “power must be even” ;
h := f i ;
e := DEGREE(h) ;
d := e div 2;
a := COEFFICIENTS(h)[2: : d+1] ;
C := ZEROMATRIX( BASERING(h), e, e ) ;

 := � (1�d ) ;
for i in [1: : d�1] do

C[i , i+1] := 1;
C[d+1, i+1] := ��a[i ] ;
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C[d+i+1, d+i ] := � ;
C[e�i+1, e] := � �a[i ] ;

end for ;
C[d , e] := ���d ;

C[d+1, 1] := � (d+1) ;
C[d+1, e] := � �a[d ] ;
return C ;

end function ;

3.4 Primary components of type 2

Suppose that V is a homocyclic component of type 2. That is, V is the sum of m copies of
a cyclic g-module W , where g has multiplier �. Then the minimal polynomial of g is f .t/i

and either � D �2 and f .t/ is t � � or t C � or else � is not a square and f .t/ D t2 � �.

Lemma 3.15. If � D g � �g�1, then ˇ.u�; v/ D �ˇ.u; v�/.

LetE D kŒt �=.f .t//. If � is not a square,E is a quadratic extension of k, otherwiseE D k.

Theorem 3.16. In the vector space bV D V=Vf .g/ over the field E let .v/ denote the image of v 2 V
in bV . Then bV has a non-degenerate well-defined inner product .u/ ı .v/ such that

ˇ.u�i�1; v/ D traceE=k..u/ ı .v//: (3.2)

If i is odd, the inner product is alternating and therefore m is even. If i is even, the inner product is
symmetric.

Type 2, symplectic type

If i is odd, a matrix representing the action of g on V can be obtained by repeated
application of type3Companion. Alternatively we may use the following code.

The ‘standard’ Jordan block of size n for the scalar a is the n � n matrix with a along the
diagonal, 1s on the upper diagonal and 0 elsewhere. Its primary invariant is .t � a/n.

stdJordanBlock := function(n, a)
D := SCALARMATRIX(n, a) ;
for i := 1 to n�1 do D[i , i+1] := 1; end for ;
return D ;

end function ;

Here is code to produce a�-symplectic companion matrix for h�; f@ hf; Œ h i; 2i �@giwhere
i is odd, m is even and f .t/ is irreducible of type 2. The difference between this code and
type3Companion is the use of stdJordanBlock when the degree of f .t/ is 1.

type3CompanionS := function(�, f , i )
a0 := COEFFICIENT(f , 0) ;
C := (DEGREE(f ) eq 1) select stdJordanBlock (i ,�a0) else COMPANIONMATRIX(f i ) ;
d := NROWS(C) ;
ƒ := ZEROMATRIX(BASERING(f ), d , d ) ;
for i := 1 to d do ƒ[i , d�i+1] := 1; end for ;
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return DIAGONALJOIN(C ,��ƒ�TRANSPOSE(C�1)�ƒ) ;
end function ;

If g is the matrix returned by this function and if W is the space on which it acts, then as in
the case of primary components of type 3, we have CSp.V / D Sp.V /CCSp.V /.g/.

Lemma 3.17. Suppose that g and g0 are elements of CSp�.W / such that as both a g-module and a
g0-module W is a direct sum of an even number of kŒt �=.f .t/i /-modules where f .t/ divides t2 � �
and i is odd. Then g and g0 are conjugate via an element of Sp.W /.

Type 2, orthogonal type

Assume that the characteristic of k is odd. If the minimal polynomials of g is f .t/i

where f .t/ divides t2�� and i is even, then bV D V=Vf .g/ is a quadratic space over the field
E D kŒt �=.f .t//. We may take the quadratic form to be Q..v// D 1

2
.v/ ı .v/ and write bV as

an orthogonal sum of 1-dimensional subspaces.

For completeness we record some well-known facts about finite fields.

Lemma 3.18. Suppose that q is an odd prime power.

(i) If a and b are non-zero elements of GF.q/, then for all c 2 GF.q/ there exist x; y 2 GF.q/ such
that c D ax2 C by2.

(ii) �1 is a square in GF.q/ if and only if q � 1 .mod 4/.

(iii) 2 is a square in GF.q/ if and only if q � ˙1 .mod 8/.

(iv) If � is not a square in GF.q/ and if � 2 GF.q2/ satisfies �2 D �, then � is a square in GF.q2/
if and only if q � 3 .mod 4/.

The following corollary is a consequence of part (i) of this lemma.

Corollary 3.19. In the notation of Theorem 3.16, bV has an orthogonal basis .v1/, .v2/, . . . , .vm/
such that .vj / ı .vj / D 1 for 1 < j � m and .v1/ ı .v1/ D a, where a is either 1 or a non-square
in E.

Thus if i is even there are at most two conjugacy classes of elements in CSp.bV / with the
same minimal polynomial f .t/i and multiplicity m. In order to distinguish between these
classes we attach a sign to the pair h i; mi as follows.

Definition 3.20.

(i) If m is even and bV has maximal Witt index the sign of h i; mi is C1 whereas if the Witt
index is not maximal the sign is �1.

(ii) If m is odd, there are two isomorphism classes of quadratic spaces bV , which have the
same group of isometries but are distinguished by the discriminant of the symmetric
form .u/ ı .v/. If the discriminant is a square, the sign isC1 and �1 otherwise.
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The discriminant of a hyperbolic plane is �1 .mod k2/ and the discriminant of a 2-
dimensional quadratic space with no isotropic vectors is �a .mod k2/, where a is a non-
square in k.

Consequently, if m is even and bV has maximal Witt index, the discriminant is .�1/m=2

.mod k2/ whereas if the Witt index is not maximal, the discriminant is .�1/m=2a .mod k2/.

The function type1Companion returns a �-symplectic companion matrix for f .t/i that
preserves ˇ with multiplier �. However when f .t/ D t � � it is important to know the sign
of the conjugacy invariant and the following code is easier to analyse. The return value is a

2c � 2c matrix g D
�
�B aS

0 �B�1

�
with the single primary invariant .t � �/2c . The matrix B

is the standard Jordan block all of whose non-zero entries are 1. All entries in S are 0 except
for the last row which alternates between 1 and �1.

The parameter flag is a boolean. It is related to, but not necessarily equal to, the sign of
the invariant.

type3CompanionO := function(�, c , flag)
F := PARENT(�) ;
B := stdJordanBlock (c , F ! 1) ;
g := ��DIAGONALJOIN(B , B�1) ;
a := ISEVEN(c) select �F ! 2 else F ! 2 ;
if (not flag) then a �:= NONSQUARE(F ) ; end if ;
for i := 1 to c do g[c , c+i ] := ISODD(i ) select a else �a ; end for ;
return g ;

end function ;

In this case � D g � �g�1 D

�
�R aU

0 ��R

�
and R D B � B�1. The matrix Rc�1 is zero

everywhere except for the last entry in the top row, which is 2c�1.

Since �2c�1 D
�
0 .�1/c�1�2c�2aRc�1URc�1

0 0

�
every entry in �2c�1 is 0 except for the

last entry in the top row, which is .�1/c�1�c�122c�1a. We have a D .�1/c�12b where b is 1
if the sign is positive and a non-square otherwise and therefore the only non-zero entry in
�2c�1 is 22c�c�1b, which is a square if and only if b is a square.

Let gC (resp. g�) be the matrix returned by type3CompanionO when flag is true (resp.

false). Then A�1gCA D g�, where A D
�
I 0

0 bI

�
. If J is the standard alternating form,

AJAtr D bJ and therefore A 2 CSp.2n; q/.
Let gC

Œm�
denote the direct sum of m copies of gC and let g�

Œm�
denote the direct sum of

m� 1 copies of gC and a single copy of g�. Then the discriminant of gC
Œm�

is .�1/m .mod k2/

and the discriminant of g�
Œm�

is .�1/mb .mod k2/, where b is a non-square.
If m � 0 .mod 4/ or q � 1 .mod 4/, gC

Œm�
is an element of C type and g�

Œm�
is an element

of � type, whereas if m � 2 .mod 4/ and q � 3 .mod 4/, gC
Œm�

is an element � type and g�
Œm�

is an element ofC type.

If f .t/ D t2 � � and � is not a square we essentially repeat the code for type3CompanionO
in the quadratic extension E D kŒt �=.t2 � �/ of k. However, in this case there is no element
of CSp.2n; q/ that conjugates gC to g�.
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type3CompanionOext := function(�, c , flag)
F := PARENT(�) ;
C := MATRIX(F , 2, 2, [0, 1,�, 0]) ; // companion matrix for t2 � �
B := stdJordanBlock (c , F ! 1) ;
X11 := KRONECKERPRODUCT(B , C) ;
X22 := KRONECKERPRODUCT(B�1, C) ;
if flag then

M := IDENTITYMATRIX(F , 2) ;
else

t := POLYNOMIALRING(F ):1;
E<�> := ext< F j t 2 � � > ;
˛ := NONSQUARE(E ) ;
M := MATRIX(F , 2, 2, [ELTSEQ(˛, F ), ELTSEQ(˛��, F )]) ;

end if ;
S := ZEROMATRIX(F , c , c) ;
for i := 1 to c do S[c , i ] := ISODD(i ) select 1 else �1; end for ;
X12 := KRONECKERPRODUCT(S , M ) ;
return BLOCKMATRIX(2, 2, [[X11, X12], [ZEROMATRIX(F , 2�c , 2�c), X22]]) ;

end function ;

The return value of this function is a 4c � 4c matrix g D
�
X11 X12
0 X22

�
, where X22 D �X�111

because C D �C�1. The matrix g preserves the form with multiplier � if and only if
X11ƒX

tr
22 D �ƒ and X11ƒX tr

12 is symmetric. A direct calculation shows that X11ƒX tr
22 D �ƒ

and that the only non-zero entry in X11ƒX tr
12 is the 2 � 2 block ˙Cƒ2M tr at the left end of

the last row. Thus in order to preserve the form, Cƒ2M tr must be symmetric.
If � is the image of t in E, then C is the matrix representing multiplication by � with

respect to the k-space basis 1, � of E. If ˛ D r C s� where a; b 2 k and if M represents

multiplication by ˛, then Cƒ2M tr D

�
r s�

s� r�

�
, which is symmetric, as required.

Thus we may write g D
�
�B ˛S

0 �B�1

�
and then � D g � �g�1 D �

�
R ˛��1U

0 �R

�
, where

R D B�B�1 andU D SCB�1SB . A calculation similar to one above shows thatRc D 0 and
every entry in�2c�1 is 0 except for the last entry in the top row, which is .�1/c�1�2c�222c�1˛.
Since �1 and 2 are both squares in E D GF.q2/ this top row value is a square if and only if ˛
is a square.

We have f .g/ D �2
�
B2 � I ��1˛.BS C SB�1/

0 B�2 � I

�
and consequently, in the notation of

Theorem 3.16, the space bV D V=Vf .g/ has a basis .v1/, .v2/, where v1, v2, . . . is the standard
basis for V D k2c and .v/ denotes the image of v in bV . We have dimE

bV D 1 and from (3.2)

traceE=k..v1/ ı .v1// D ˇ.v1�2c�1; v1/:

Writing .v1/ı .v1/ D a1Ca2� with a1; a2 2 k and using the fact that traceE=k.�/ D 0we have

2a1 D ˇ.v1�
2c�1; v1/ and 2a2� D ˇ.v1�

2c�1; v1g/

and consequently
.v1/ ı .v1/ D .�1/

c22c�2�c�2˛�:

18



This is a square in E if and only if ˛� is a square. Furthermore, � is a square if and only if
q � 3 .mod 4/.

Let gC (resp. g�) be the matrix returned by type3CompanionOext when flag is true (resp.
false), let gC

Œm�
denote the direct sum of m copies of gC and let g�

Œm�
denote the direct sum of

m � 1 copies of gC and a single copy of g�.
For gC

Œm�
the discriminant of the induced inner product on bV is �m .mod k2/ and for g�

Œm�

it is ˛�m .mod k2/. Therefore, ifm is even, gC
Œm�

is an element ofC type and g�
Œm�

is an element
of � type. On the other hand, if m is odd, gC

Œm�
is an element of C type if and only if q � 3

.mod 4/.

Lemma 3.21 (Britnell [1, Lemma 5.8]). If A is a non-singular symmetric matrix over a finite field
of odd characteristic, then A D BB tr for some matrix B if and only detA is a square.

Proof. The existence of an orthogonal basis for the symmetric form with matrixA is equivalent
to the existence of a matrix P such that PAP tr is diagonal. We may suppose that the diagonal
entries are d1, d2, . . . , dn, where d1, d2, . . . , dm are non-squares and the remaining entries are
squares. If detA is a square, then m is even.

If m > 0, choose r , s and t in the field such that r2 C s2 D d1 and t2 D d2=d1. Then�
r �s

st rt

��
r �s

st rt

�tr

D

�
d1 0

0 d2

�
:

Thus it is clear that there exists B such that A D BB tr. The converse is obvious. �

Let C be the centralizer of g in Endk.W / and let Cm be the centralizer of g in Endk.V /.
The adjoint map on C induces the identity automorphism of E and hence if bA is the matrix
of A 2 Cm acting on bV , the matrix of its adjoint is bAtr.

For A 2 GL.V /, the form ˇ.uA; v/ is alternating if and only if A D A� and in addition it is
preserved by g if and only if A 2 Cm. Therefore, if g preserves and alternating form ˇ.uA; v/,
then bA is symmetric. It follows from the lemma just proved that bA D ˛˛tr for some matrix ˛
if and only if detbA is a square in E. From Theorem 3.12 this is the case if and only if there
exists K 2 Cm such that A D KK� if and only if ˇ.uA; v/ D ˇ.uK; vK/.

The map C ! E is onto and thus there is a matrix Z 2 C such that its image in E is a
non-square. We may assume that the matrix of ˇ restricted to W is the standard alternating
form J .

4 Class representatives in conformal symplectic groups (q odd)

In order to preserve the standard alternating form when forming a direct sum of matrices we
replace the ‘diagonal join’ of matrices with their ‘central join’.

Symplectic direct sums

If A 2 CSp.2m; q/, B 2 CSp.2n; q/ and �.A/ D �.B/ we may write A as the block matrix

A D

�
P Q

R S

�
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and then the ‘central sum’

A ı B D

0@P 0 Q

0 B 0

R 0 S

1A
belongs to CSp.2mC 2n; q/ because

X�1
�
A 0

0 B

�
X D A ı B

where

X D

0@Im 0 0

0 0 Im
0 I2n 0

1A so that X�1 D X tr and X tr
�
Jm 0

0 Jn

�
X D JmCn:

centralJoin := function( A, B )
d := NROWS(A) ;
if d eq 0 then return B ; end if ;
e := NROWS(B) ;
if e eq 0 then return A ; end if ;
assert ISEVEN(d ) ;
m := d div 2;
X := ZEROMATRIX(BASERING(A), d+e, d+e) ;
INSERTBLOCK(�X , SUBMATRIX(A, 1, 1, m, m), 1, 1) ;
INSERTBLOCK(�X , SUBMATRIX(A, 1, m+1, m, m), 1, m+e+1) ;
INSERTBLOCK(�X , SUBMATRIX(A, m+1, 1, m, m), m+e+1, 1) ;
INSERTBLOCK(�X , SUBMATRIX(A, m+1, m+1, m, m), m+e+1, m+e+1) ;
INSERTBLOCK(�X , B , m+1, m+1) ;
return X ;

end function ;

Conjugacy class invariants

If g and g0 are elements of CSp�.V /, which are conjugate in GL.V /, it follows from
Theorem 3.5, Corollary 3.14, Lemma 3.17 and Corollary 3.19 that there is an element of Sp.V /
which conjugates g to g0 if and only if for each primary component of type 2 for g and g0with
the same polynomial f , of degree 1, the signed partitions of f for g and g0 are the same.

The conjugacy class of g in CSp.V / does not split in Sp.V / if and only if g is centralized
by some a 2 CSp�.V /, where � is a non-square. It follows from the previous results that the
centralizer of g does not cover CSp.V /= Sp.V / if and only if g has a component of type 2 with
an associated quadratic space bV , as in Theorem 3.16, corresponding to a term he;mi where
e is even, m is odd and the degree of the polynomial is 1.

Such a pair he;mi will be said to be of otype. Furthermore, if h�; � i is an invariant in
which � contains a pair hf; �i where the degree of f is 1 and the partition � has a term of
otype, then h�; � i is also said to be of otype. If the first occurrence of an otype term he;mi in
� has e > 0, it is of positive otype
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An element of CSp.V / whose invariant contains a pair h�; � i of otype is conjugate to the
element corresponding to the invariant obtained by reversing the signs of the otype pairs
he;mi in � . Therefore we retain only those pairs of positive otype.

intrinsic INTERNALCLASSINVARIANTSCSP(d :: RNGINTELT, q :: RNGINTELT) ! SEQENUM

{The conjugacy class invariants for the conformal symplectic

group CSp(d,q), q odd}

require ISODD(q) : “q must be odd” ;
F := GF(q) ;
t := POLYNOMIALRING(F ):1;
polseq := [] ;
mgrp := [ x [1] : x in PHIIRREDUCIBLEPOLYNOMIALS(F , 1) ] ;
X := [PHIIRREDUCIBLEPOLYNOMIALS(F , i ) : i in [1] cat [2: : d by 2] ] ;
for i := 1 to q�1 do polseq[i ] := &cat[x [i ][2] : x in X ] ; end for ;
parts := allPartitions(d ) ;
sparts := signedPartitionsSp(d ) ;
inv := [] ;

A function to check whether � is of otype and if so whether the first occurrence of he;mi
in � with e even and m odd has e > 0.

isOtype := function(�)
for � in � do

e, m := EXPLODE(�) ;
if ISEVEN(e) and ISODD(m) then return true, (e gt 0) ; end if ;

end for ;
return false, _ ;

end function ;

for i := 1 to q � 1 do
� := mgrp[i ] ;
fseq := polseq[i ] ;

The nth term of the sequence „ contains the indexed sets f@ � � � ; hfi ; �i i; � � � @g such
that

P
i deg.fi /j�i j D n and tags[n] is a parallel sequence of boolean values indicating which

pairs hfi ; �i i are of positive otype.

„ := [ [] : n in [1: : d ] ] ;
prevXi := „ ;
prevTags := „ ;
tags := „ ;
for f in fseq do

fparts := ISDIVISIBLEBY(t 2 � �, f ) select sparts else parts ;
deg := DEGREE(f ) ;
for n := 0 to d�1 do

dimleft := d�n ;
if deg le dimleft then

for i := 1 to dimleft div deg do
pol_parts := ((n ne 0) select prevXi [n] else [ f@ @g]) ;
taglist := ((n ne 0) select prevTags[n] else [ false ]) ;
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for j := 1 to #pol_parts do
pol_part := pol_parts[j ] ;
tagged := taglist [j ] ;
for � in fparts[i ] do

accept := true ;
newtag := false ;
if deg eq 1 then

if tagged then
newtag := true ;

else
otype, tag := isOtype(�) ;
if otype then

if tag then newtag := true ; else accept := false ; end if ;
end if ;

end if ;
end if ;

if accept then
APPEND(�„[n+deg�i ], INCLUDE(pol_part ,<f ,�>)) ;
APPEND(�tags[n+deg�i ], newtag) ;

end if ;

end for ;
end for ;

end for ;
end if ;

end for ;
prevXi := „ ;
prevTags := tags ;

end for ;
inv cat := [ <�, �> : � in „[d ] ] ;

end for ;
return inv ;

end intrinsic ;

Conjugacy class representatives

Return a matrix in the conformal symplectic group with a given conjugacy class invariant
inv , where inv is a pair< �, „ >, where � is a non-zero field element and„ is an indexed set
of pairs < f , � >, and where f is a polynomial and � is a partition.

intrinsic INTERNALREPMATRIXCSP(inv :: TUP) ! GRPMATELT

{A representative of the conjugacy class with invariant inv

in the conformal symplectic group}

�, „ := EXPLODE(inv ) ;
F := PARENT(�) ;
q := #F ;
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t := POLYNOMIALRING(F ):1;
X := ZEROMATRIX(F , 0, 0) ;
for polpart in „ do

f , plist := EXPLODE(polpart ) ;

First deal with the type 2 invariants.

if ISDIVISIBLEBY(t 2 � �, f ) then
for term in plist do

e, m := EXPLODE(term) ;

If e is odd, the term is of symplectic type.

if ISODD(e) then
assert ISEVEN(m) ;
for i := 1 to m div 2 do

X := centralJoin(X , type3CompanionS(�, f , e)) ;
end for ;

If e is even, the term is of orthogonal type.

else
flag := SIGN(e) gt 0;
c := ABS(e) div 2;
if DEGREE(f ) eq 1 then
� := � COEFFICIENT(f , 0) ;
X := ((q mod 4 eq 1) or (m mod 4 eq 0))

select centralJoin(X , type3CompanionO(�, c , flag))
else centralJoin(X , type3CompanionO(�, c , not flag)) ;

for i := 2 to m do
X := centralJoin(X , type3CompanionO(�, c , true)) ;

end for ;
else

X := (ISODD(m) and (q mod 4 eq 1))
select centralJoin(X , type3CompanionOext (�, c , not flag))

else centralJoin(X , type3CompanionOext (�, c , flag)) ;
for i := 2 to m do

X := centralJoin(X , type3CompanionOext (�, c , true)) ;
end for ;

end if ;
end if ;

end for ;

Next we have the type 1 invariants.

elif ISIRREDUCIBLE(f ) then
for � in plist do

e, m := EXPLODE(�) ;
for i := 1 to m do X := centralJoin(X , type1Companion(�, f , e)) ; end for ;

end for ;

And finally, the type 3 invariants.
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else
h := FACTORISATION(f )[1][1] ;
assert f eq h�FACTORISATION(f )[2][1] ;
for � in plist do

e, m := EXPLODE(�) ;
for i := 1 to m do X := centralJoin(X , type3Companion(�, h e )) ; end for ;

end for ;
end if ;

end for ;
return CONFORMALSYMPLECTICGROUP(NROWS(X ), F ) ! X ;

end intrinsic ;

Centralizer orders

The centralizer orders of elements of the conformal symplectic group can be computed
using a modification of Wall’s functions A.'�/ and B.'/ from [8].

A_fn := function(�, f , d , m)
q := #BASERING(f ) ;
deg := DEGREE(f ) ;
t := PARENT(f ):1;
if ISIRREDUCIBLE(f ) then

if ISDIVISIBLEBY(t 2 � �, f ) then
if ISODD(d ) then val := ORDERSP(m, q deg ) ;
else

if ISODD(m) then val := ORDERGO(m, q deg ) ;
elif (d lt 0) then val := ORDERGOMINUS(m, q deg ) ;
else val := ORDERGOPLUS(m, q deg ) ; end if ;

end if ;

else val := ORDERGU(m, q (deg div 2)) ; end if ;

else val := ORDERGL(m, q (deg div 2)) ; end if ;
return val ;

end function ;

� := function(�, plist , f )
t := PARENT(f ):1;
val := 0;
for � in plist do

d , m := EXPLODE(�) ;
val +:= (ABS(d )�1)�m 2 ;
if ISDIVISIBLEBY(t 2��, f ) and ISEVEN(d ) then val +:= m ; end if ;

end for ;
r := #plist ;
for i := 1 to r�1 do

d := ABS(plist [i ][1]) ;
m := plist [i ][2] ;
for j := i+1 to r do val +:= 2�d�m�plist [j ][2] ; end for ;

end for ;
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val �:= DEGREE(f ) ;
assert ISEVEN(val ) ;
return val div 2;

end function ;

otype := function(inv )
�, � := EXPLODE(inv ) ;
F := PARENT(�) ;
t := POLYNOMIALRING(F ):1;
q := #F ;
tp := false ;
for pol_part in � do

f , � := EXPLODE(pol_part ) ;
if ISDIVISIBLEBY(t 2 � �, f ) and DEGREE(f ) eq 1 then

for � in � do
e, m := EXPLODE(�) ;
tp or := ISEVEN(e) and ISODD(m) ;

end for ;
end if ;

end for ;
return tp select (q � 1) div 2 else q � 1;

end function ;

Here pol_part has the form hf; Œ � � � ; h�;m� i; � � � �i.

B_fn := function(�, pol_part )
f , partn := EXPLODE(pol_part ) ;
q := #BASERING(f ) ;

return q �(�, partn, f ) � &�[A_fn(�, f ,�[1],�[2]) : � in partn] ;
end function ;

The order of the centralizer of any element in the symplectic group whose conjugacy invariant
is inv .

centraliserOrderCSp := function(inv )
�, � := EXPLODE(inv ) ;
return otype(inv ) � &�[ B_fn(�, pol_part ) : pol_part in � ] ;

end function ;

The conjugacy classes of CSp.d; q/, q odd

Return the sequence of labels as well as the conjugacy classes.

classesCSp := function(d , q)
ord := ORDERCSP(d , q) ;
L := INTERNALCLASSINVARIANTSCSP(d , q) ;
cc := [car<INTEGERS(), INTEGERS(), CSP(d , q)>j
< ORDER(M ), ord div centraliserOrderCSp(�), M > : � in L j true

where M is INTERNALREPMATRIXCSP(�) ] ;
PARALLELSORT(�cc , �L) ;
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return cc , L ;
end function ;

5 The class invariant of a conformal symplectic matrix

Guided by Theorem 3.7 we shall define a function homocyclicSplit designed to be applied to
a matrix g acting on a primary component V.f /, where f .t/ is irreducible and �-symmetric.
But first we need a function that returns the row indices for the homocyclic components of
the rational canonical form of the matrix g restricted to V.f /.

getSubIndices := function(pFACT)
f := pFACT[1][1] ;
error if existsf p : p in pFACT j p[1] ne f g,

“the component is not homocyclic” ;
d := DEGREE(f ) ;
ndx := 0;
base := [] ;
last := 0;
rng := [] ;
for j := 1 to #pFACT do

if j gt 1 and pFACT[j ][2] ne last then
APPEND(�base, rng) ;
rng := [] ;

end if ;
last := pFACT[j ][2] ;
n := last�d ;
rng cat := [ndx+i : i in [1: : n]] ;
ndx +:= n ;

end for ;
APPEND(�base, rng) ;
return base ;

end function ;

We shall need the restriction of a linear transformation (defined by a matrixM ) to an invariant
subspace; S is either the basis matrix for the subspace or a sequence of basis vectors. (There
is no check that the subspace is invariant.)

restriction := func< M , S j SOLUTION(T , T�M ) where T is MATRIX(S) > ;

In the following function W represents a primary component of g. The return value is the
sequence of mutually orthogonal homocyclic components of W .

homocyclicSplit := function(g , W )
U := UNIVERSE([ W , sub<W j> ]) ;
_, T , pFACT := PRIMARYRATIONALFORM(g) ;
baseNdx := getSubIndices(pFACT) ;
W0 := sub< W j [T [i ] : i in baseNdx [#baseNdx ]] > ;
D := [U j W0 ] ;
while W ne W0 do
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W0p := ORTHOGONALCOMPLEMENT(W , W0) ;
gp := restriction(g , BASISMATRIX(W0p)) ;
_, T , pFACT := PRIMARYRATIONALFORM(gp) ;
baseNdx := getSubIndices(pFACT) ;
W1 := sub< W j [T [i ]�BASISMATRIX(W0p) : i in baseNdx [#baseNdx ]] > ;
APPEND(�D , W1) ;
W0 := sub< W j W0, W1 > ;

end while ;
return REVERSE(D) ;

end function ;

In the following function D is the subspace Di obtained from homocyclicSplit , g is the
matrix acting on the generic space of D, f is the polynomial t C 1 or t � 1 and � is the pair
hdi ; mi i.

The matrix B represents the symmetric form .u/ � .v/ on Di . There are two versions of
the function that attaches a sign to a partition list term � D he;mi. The first one is used for
polynomials of degree 1, the second is used for polynomials of degree 2.

attachSign1 := function(D , g , f , e, m)
F := BASERING(g) ;
� := EVALUATE(f , 0) ;
A := g + SCALARMATRIX(F , NROWS(g),�) ;
D0 := sub< D j [v�A : v in BASIS(D)] > ;
E := [v : v in EXTENDBASIS(D0, D) j v notin D0] ;

ı := (g � � 2�g�1)(e�1) ;
B := MATRIX(F , #E , #E , [DOTPRODUCT(D ! (u�ı), v ) : u , v in E ]) ;
assert DETERMINANT(B) ne 0;
sq , _ := ISSQUARE(DETERMINANT(B)) ;

If m � 0 .mod 4/ or q � 1 .mod 4/, the quadratic space defined by B has maximal Witt
index if and only if the determinant of B is a square. Conversely ifm � 2 .mod 4/ and q � 3
.mod 4/, the Witt index is maximal if and only if the determinant of B is not a square.

if (#F mod 4 eq 3) and (m mod 4 eq 2) then sq := not sq ; end if ;
return sq select e else �e ;

end function ;

attachSign2 := function(D , g , f , e, m)
F := BASERING(g) ;
� := �EVALUATE(f , 0) ;
A := g�g � SCALARMATRIX(F , NROWS(g),�) ;
D0 := sub< D j [v�A : v in BASIS(D)] > ;
L := [v : v in EXTENDBASIS(D0, D) j v notin D0] ;
L2 := [L[i ] : i in [1::#L by 2]] ;

ı := (g � ��g�1)(e�1) ;
E<�> := ext< F j f > ;

At this pointE is the field kŒt �=.f .t//where f D t2�� and if � D tC .f .t//, then �qC � D 0.
Therefore, if y D a C b� , traceE=k.y/ D 2a and traceE=k.y�/ D 2b� for all a; b 2 k. The
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induced inner product .u/ ı .v/ on D=D0 satisfies

traceE=k..u/ ı .v// D ˇ.u�e�1; v/

where � D g � �g�1. Therefore we have .u/ ı .v/ D a C b� where a D 1
2
ˇ.u�e�1; v/ and

b D 1
2
��1ˇ.u�e�1; vg/ because ˇ.ug; v/ D ˇ.u; vg/ for all u; v 2 D. Since 2 is always a

square in GF.q2/ we may ignore the factors of 1
2

.

dotprod := function(u , v )
w := D ! (u�ı) ;
a := DOTPRODUCT(w , v ) ;
b := ��1�DOTPRODUCT(w , D ! (v�g)) ;
return E ! [a, b] ;

end function ;

B := MATRIX(E , #L2, #L2, [dotprod (u , v ) : u , v in L2 ]) ;
assert DETERMINANT(B) ne 0;
sq , _ := ISSQUARE(DETERMINANT(B)) ;

Since it is always the case that q2 � 1 .mod 4/, the quadratic space defined by B , when m is
even, has maximal Witt index if and only if the determinant of B is a square.

return sq select e else �e ;
end function ;

If the class of g does not split in Sp.V /, then g has a component of type 2 with an associated
quadratic space bV corresponding to a term he;miwhere e is even,m is odd and the degree of
the polynomial is 1. Our convention is to use only those class invariants for polynomials of
degree 1 for which the first signed term of the form he;miwith e even and m odd has e > 0.

intrinsic INTERNALCONJUGACYINVARIANTCSP(g :: GRPMATELT) ! TUP

{The conjugacy class invariant of the conformal symplectic

matrix g}

F := BASERING(g) ;
t := POLYNOMIALRING(F ):1;
n := NROWS(g) ;
std := STANDARDALTERNATINGFORM(n, F ) ;
stdg := g�std�TRANSPOSE(g) ;
� := stdg[1, n] ;
require stdg eq ��std :

“matrix is not in the standard conformal symplectic group” ;
_, T , pFACT := PRIMARYRATIONALFORM(g) ;
V := SYMPLECTICSPACE(std ) ;
pols, parts, bases := primaryPhiParts(�, pFACT) ;
inv := f@ @g ;

While scanning is true we look for the first instance of a term he;mi with e even and m odd
for a polynomial of degree 1. If e < 0 we switch invert to true.

scanning := true ;
invert := false ;
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for i := 1 to #pols do
plist := convert (parts[i ]) ;
f := pols[i ] ;
if ISDIVISIBLEBY(t 2 � �, f ) then

base := bases[i ] ;

Extract the f -primary component W as a symplectic space with the g-action given by gg .

gg := restriction(g , [T [j ] : j in base]) ;
d := #base ;
B := MATRIX(F , d , d , [DOTPRODUCT(V ! T [r ], V ! T [s]) : r , s in base]) ;
W := SYMPLECTICSPACE(B) ;
D := homocyclicSplit (gg , W ) ;

Run through the homocyclic components looking for quadratic spaces.

for j := 1 to #plist do
e, m := EXPLODE(plist [j ]) ;
if ISEVEN(e) then

if DEGREE(f ) eq 1 then
e := attachSign1(D[j ], gg , f , e, m) ;

If we encounter a class that does not split in Sp.V / we may need to replace the invariant by
an equivalent one with signs inverted.

if ISODD(m) then
if scanning then scanning := false ; invert := e lt 0; end if ;
if invert then e := �e ; end if ;

end if ;
else

e := attachSign2(D[j ], gg , f , e, m) ;
end if ;
plist [j ] := <e, m> ;

end if ;
end for ;

end if ;
INCLUDE(�inv , <f , plist>) ;

end for ;
return <�, inv> ;

end intrinsic ;

6 Extended symplectic groups

A group G such that Sp.n; q/ � G � CSp.n; q/ will be designated an extended symplectic
group of index m, where m D jG W Sp.n; q/j.

intrinsic EXTENDEDSP(n :: RNGINTELT, q :: RNGINTELT, m :: RNGINTELT)
! GRPMAT

{The subgroup of CSp(n,q) that contains Sp(n,q) as a subgroup

of index m}

require ISEVEN(n) : “invalid dimension---should be even” ;
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require m gt 0 : “the index should be positive” ;
divides, r := ISDIVISIBLEBY(q � 1, m) ;
require divides : “the index should divide q - 1” ;
if m eq 1 then G := SP(n, q) ;
elif m eq q � 1 then G := CSP(n, q) ;
else

F := GF(q) ;
� := PRIMITIVEELEMENT(F ) r ;
A := IDENTITYMATRIX(F , n) ;
for i := 1 to n div 2 do A[i , i ] := � ; end for ;
G := sub< CSP(n, q) j SP(n, q), A > ;
G`ORDER := ORDERSP(n, q) � m ;

end if ;
return G ;

end intrinsic ;

intrinsic INDEXOFSP(G :: GRPMAT) ! RNGINTELT

{The index of the symplectic group in G}

F := BASERING(G) ;
require ISA(TYPE(F ), FLDFIN) : “the base field should be finite” ;
msg := “G should contain the symplectic
group and be a subgroup of the conformal symplectic group” ;
count := 0;
repeat // at most 4 times

flag := RECOGNIZECLASSICAL(G) ;
count +:= 1;

until flag or count gt 3;
require flag and CLASSICALTYPE(G) eq “symplectic” : msg ;
n := DIMENSION(G) ;
std := STANDARDALTERNATINGFORM(n, F ) ;
ndx := [] ;
for g in GENERATORS(G) do

stdg := g�std�TRANSPOSE(g) ;
� := stdg[1, n] ;
require stdg eq ��std : msg ;
APPEND(�ndx , ORDER(�)) ;

end for ;
return LCM(ndx ) ;

end intrinsic ;

Given an extended symplectic groupG of indexm over GF.q/ there are two cases to consider
when constructing conjugacy class representatives.

On the one hand, if .q � 1/=m is even and 2ms D q � 1, we have G D Sp.n; q/D,
where D D f �I j �s D 1 g. In this case representatives of the conjugacy classes of G can
be constructed from the conjugacy classes of Sp.n; q/ by multiplying by scalar matrices.
In particular, if g 2 Sp.n; q/ and z 2 D, then CG.zg/ D CSp.n;q/.g/D. Thus, if the index
of ExtSp.n; q;m/ in CSp.n; q/ is even there are elements g; h 2 ExtSp.n; q;m/ that are not
conjugate in ExtSp.n; q;m/ but are conjugate in CSp.n; q/.
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On the other hand, if .q � 1/=m is odd, elements of G are conjugate in G if and only of
they are conjugate in CSp.n; q/.

To deal with the first case we need a function that transforms an invariant for g 2 Sp.n; q/
to an invariant for �g, where � 2 GF.q/.

Lemma 6.1. Given a polynomial f .t/ of degree d and a non-zero element � 2 k, let Qf .t/ D
�df .��1t /. If f .t/ is �-symmetric, then Qf .t/ is �2�-symmetric.

Proof. Suppose that f Œ��.t/ D f .t/. Then

Qf Œ�
2��
D Qf .0/�1td Qf .�2�t�1/ D f .0/�1tdf .��t�1/

D �df Œ��.��1t / D �df .��1t /

D Qf .t/: �

In the notation of this lemma, the following function replaces every polynomial f .t/ in
inv by Qf .t/.

extendByScalar := function(inv , �)
F := PARENT(�) ;
P<t> := POLYNOMIALRING(F ) ;
if � eq F ! 1 then return < F ! 1, inv > ; end if ;
newinv := f@ @g ;
for polpart in inv do

f , � := EXPLODE(polpart ) ;

ff := �DEGREE(f )�EVALUATE(f , ��1�t ) ;
INCLUDE(�newinv ,<ff ,�>) ;

end for ;
return newinv ;

end function ;

intrinsic INTERNALCLASSINVARIANTSEXTSP(d :: RNGINTELT, q :: RNGINTELT,
m :: RNGINTELT) ! SEQENUM

{The conjugacy class invariants for the extended symplectic

group ExtendedSp(d,q,m) of index m, q odd}

if m eq q � 1 then return INTERNALCLASSINVARIANTSCSP(d , q) ; end if ;
if m eq 1 then return INTERNALCLASSINVARIANTSSP(d , q) ; end if ;
require ISODD(q) : “q must be odd” ;
require m gt 0 : “the index should be positive” ;
divides, r := ISDIVISIBLEBY(q � 1, m) ;
require divides : “the index should divide q - 1” ;

F := GF(q) ;
� := PRIMITIVEELEMENT(F ) ;
if ISEVEN(r ) then

s := r div 2;
X := INTERNALCLASSINVARIANTSSP(d , q) ;
invList := [] ;
for i := 1 to m do
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� := � (s�i ) ;
for inv in X do

APPEND(�invList , < � 2, extendByScalar (inv , �)>) ;
end for ;

end for ;
else

mgrp := f � (r�i ) : i in [1: :m] g ;
invList := [ � : � in INTERNALCLASSINVARIANTSCSP(d , q) j �[1] in mgrp ] ;

end if ;
return invList ;

end intrinsic ;

The conjugacy classes of ExtSp.d; q/, q odd

The conjugacy classes of EXTENDEDSP(d , q , m).

classesExtSp := function(d , q , m)
if m eq q � 1 then return classesCSp(d , q) ; end if ;
if m eq 1 then return classesSp(d , q) ; end if ;
divides, r := ISDIVISIBLEBY(q � 1, m) ;
assert divides ;

� := PRIMITIVEELEMENT(GF(q)) ;
cc := [car<INTEGERS(), INTEGERS(), EXTENDEDSP(d , q , m)>j ] ;
L := [] ;
if ISEVEN(r ) then

˛ := � (r div 2) ;
X := INTERNALCLASSINVARIANTSSP(d , q) ;
ord := ORDERSP(d , q) ;
invList := [] ;
for i := 1 to m do
� := ˛ i ;
for inv in X do
� := extendByScalar (inv , �) ;
tag := <� 2,�> ;
g := INTERNALREPMATRIXCSP(tag) ;
APPEND(�cc , < ORDER(g), ord div centraliserOrderSp(inv ), g >) ;
APPEND(�L, tag) ;

end for ;
end for ;

else
ord := ORDERCSP(d , q) ;

mgrp := f � (r�i ) : i in [1: :m] g ;
X := INTERNALCLASSINVARIANTSCSP(d , q) ;
for inv in X do

if inv [1] in mgrp then
g := INTERNALREPMATRIXCSP(inv ) ;
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APPEND(�cc , < ORDER(g), ord div centraliserOrderCSp(inv ), g >) ;
APPEND(�L, inv ) ;

end if ;
end for ;

end if ;
PARALLELSORT(�cc , �L) ;
return cc , L ;

end function ;

The following intrinsic is called by INTERNALCLASSESCLASSICAL which itself is called by the
C code matg/access.c/matg_ensure_classes.

intrinsic INTERNALCLASSESEXTENDEDSP(G :: GRPMAT) ! BOOLELT

{Internal function: attempt to assign the conjugacy classes

of the extended symplectic group. Return true if successful}

/*

It is assumed that this function is called only when it is known

that G is a finite symplectic group.

*/

F := BASERING(G) ;
n := DIMENSION(G) ;
M := STANDARDALTERNATINGFORM(n, F ) ;
if forallf g : g in GENERATORS(G) j g�M�TRANSPOSE(g) eq M g then

m := 1;
std := true ;

else
forms := SEMIINVARIANTBILINEARFORMS(G) ;
if not exists(alt )f t : t in forms j not ISEMPTY(t [3]) g then

vprint CLASSES: “no (semi-)invariant alternating form” ;
return false ;

end if ;
J := alt [3][1] ;
X := TRANSFORMFORM(J , “symplectic”) ; assert TYPE(X ) ne BOOLELT ;
m := LCM([ ORDER(g) : g in alt [1] ]) ;
std := J eq M ;

end if ;
vprint CLASSES: “Standard copy:”, std ;
L := [ ] ;
q := #F ;
if ISEVEN(q) then

if m eq 1 then
cc , L := CLASSICALCONJUGACYCLASSES(“Sp”, n, q) ;
G`LABELS_A := L ;

else
vprint CLASSES: “extended symplectic group in characteristic 2” ;
return false ;

end if ;
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else
cc , L := classesExtSp(n, q , m) ;
G`LABELS_S := f@ x : x in L @g ;

end if ;
if m eq 1 then

G`CLASSICALTYPE := “Sp” ;
elif m eq q�1 then

G`CLASSICALTYPE := “CSp” ;
else

G`CLASSICALTYPE := “ExtSp” ;
end if ;
if not std then

cc := [ < t [1], t [2], X�t [3]�X �1 > : t in cc ] ;
end if ;
vprint CLASSES: “assigning symplectic classes” ;
G`CLASSES := cc ;
return true ;

end intrinsic ;
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