A short elementary proof of $\sum 1 / k^{2}=\pi^{2} / 6$

Daniel Daners*
The University of Sydney, NSW 2006, Australia
daniel.daners@sydney.edu.au

Revised version, May 24, 2012

Abstract

We give a short elementary proof of the well known identity $\zeta(2)=$ $\sum_{k=1}^{\infty} 1 / k^{2}=\pi^{2} / 6$. The idea is to write the partial sums of the series as a telescoping sum and to estimate the error term. The proof is based on recursion relations between integrals obtained by integration by parts, and simple estimates.

Introduction

The aim of this note is to give a truly elementary proof of the identity

$$
\begin{equation*}
\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

which can be appreciated by anyone who understands elementary calculus. The identity (1) is often referred to as the "Basel Problem" and was solved by Euler around 1735 . More on the interesting history can be found in [5, 15].

The idea in this paper is to derive an explicit formula for the partial sums of (1) by rewriting it as a telescoping sum. For that we exploit recursion relations between the integrals

$$
A_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x \quad \text { and } \quad B_{n}=\int_{0}^{\frac{\pi}{2}} x^{2} \cos ^{2 n} x d x
$$

for $n \geq 0$. In particular we derive the explicit estimate

$$
\begin{equation*}
0 \leq \frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}=2 \frac{B_{n}}{A_{n}} \leq \frac{\pi^{2}}{4(n+1)} \tag{2}
\end{equation*}
$$

from which (1) follows by letting $n \rightarrow \infty$. The idea is similar to the one by Masuoka [13], but the estimate of the remainder term is even simpler. An alternative way to write (1) as a telescoping sum is given in [2].

[^0]There are many short proofs of (1), but most rely on additional knowledge. A nice collection is given in [3]. One proof commonly used is based on non-trivial theorems on the pointwise convergence of Fourier series. A second approach is based on the Euler-MacLaurin summation formula (see [6, Section II.10] or [4]). Other proofs rely on the product formula for $\sin x$ such a Euler's original proof (see [6, pp 62-67] or [5, 15]). Yet other proofs involve complex analysis such as the one in [12] or double integrals and Fubini's theorem [1, 7, 8, 10]. Without attempting to provide a complete list there are proofs in $[4,9,11,14]$ and references therein.

Derivation of the result

We start by proving the well known recursion relations between A_{n} and A_{n-1}. Using integration by parts and the identity $\sin ^{2} x=1-\cos ^{2} x$

$$
\begin{aligned}
A_{n}= & \int_{0}^{\frac{\pi}{2}} \cos x \cos ^{2 n-1} x d x=(2 n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2(n-1)} x d x \\
& =(2 n-1) \int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2} x\right) \cos ^{2(n-1)} x d x=(2 n-1)\left(A_{n-1}-A_{n}\right)
\end{aligned}
$$

Hence for $n \geq 1$

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2(n-1)} x d x=\frac{A_{n}}{2 n-1}=\frac{A_{n-1}}{2 n} \tag{3}
\end{equation*}
$$

Next we rewrite A_{n} in terms of B_{n} and B_{n-1}. The idea is to use integration by parts twice, introducing the factors x, and then x^{2}. Using integration by parts a first time we get

$$
A_{n}=\int_{0}^{\frac{\pi}{2}} 1 \times \cos ^{2 n} x d x=2 n \int_{0}^{\frac{\pi}{2}} x \sin x \cos ^{2 n-1} x d x
$$

Using integration by parts a second time we get

$$
\begin{aligned}
A_{n} & =-n \int_{0}^{\frac{\pi}{2}} x^{2}\left(\cos x \cos ^{2 n-1} x-(2 n-1) \sin ^{2} x \cos ^{2 n-2} x\right) d x \\
& =-n B_{n}+n(2 n-1) \int_{0}^{\frac{\pi}{2}} x^{2}\left(1-\cos ^{2} x\right) \cos ^{2(n-1)} d x \\
& =(2 n-1) n B_{n-1}-2 n^{2} B_{n} .
\end{aligned}
$$

Hence for all $n \geq 1$ we have

$$
\begin{equation*}
A_{n}=(2 n-1) n B_{n-1}-2 n^{2} B_{n} . \tag{4}
\end{equation*}
$$

This allows us to derive a simple expression for the partial sums of (1). Dividing the identity in (4) by $n^{2} A_{n}$ and then using (3)

$$
\frac{1}{n^{2}}=\frac{(2 n-1) B_{n-1}}{n A_{n}}-\frac{2 B_{n}}{A_{n}}=\frac{2 B_{n-1}}{A_{n-1}}-\frac{2 B_{n}}{A_{n}}
$$

for all $n \geq 1$. Hence we have the telescoping sum

$$
\sum_{k=1}^{n} \frac{1}{k^{2}}=\sum_{k=1}^{n}\left(\frac{2 B_{k-1}}{A_{k-1}}-\frac{2 B_{k}}{A_{k}}\right)=\frac{2 B_{0}}{A_{0}}-\frac{2 B_{n}}{A_{n}}
$$

for all $n \geq 1$. Now

$$
A_{0}=\int_{0}^{\frac{\pi}{2}} 1 d x=\frac{\pi}{2} \quad \text { and } \quad B_{0}=\int_{0}^{\frac{\pi}{2}} x^{2} d x=\frac{\pi^{3}}{3 \times 8}
$$

and so

$$
\frac{2 B_{0}}{A_{0}}=\frac{\pi^{2}}{6}
$$

Hence for all $n \geq 1$ we have

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}-2 \frac{B_{n}}{A_{n}} \tag{5}
\end{equation*}
$$

We now estimate B_{n} in terms of A_{n} to get a bound for B_{n} / A_{n}. The linear function $2 x / \pi$ coincides with $\sin x$ for $x=0$ and for $x=\pi / 2$. Because $\sin x$ is concave on $[0, \pi / 2]$ we get $\sin x \geq 2 x / \pi$ for all $x \in[0, \pi / 2]$ as illustrated below.

Using the recursion relation (3) with n replaced by $n+1$ we get

$$
B_{n}=\int_{0}^{\frac{\pi}{2}} x^{2} \cos ^{2 n} x d x \leq\left(\frac{\pi}{2}\right)^{2} \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2 n} x d x=\frac{\pi^{2}}{4} \frac{A_{n}}{2(n+1)}
$$

Combining the above with (5) we arrive at (2) as required.
We finally note that an induction using (3) and (5) gives Masuoka's representation from [13], namely

$$
\sum_{k=1}^{n-1} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}-\frac{\pi}{4} \frac{(2 n)!!}{(2 n-1)!!} B_{n}
$$

but we have dealt with the error term rather more directly.
Acknowledgement This work is derived from work done for the Board of Studies of NSW, Australia.

References

[1] T. M. Apostol, A proof that Euler missed: evaluating $\zeta(2)$ the easy way, Math. Intelligencer 5 (1983), 59-60. doi:10.1007/BF03026576
[2] D. Benko, The Basel Problem as a telescoping series, The College Mathematics Journal 43 (2012), 244-250. doi:10.4169/college.math.j.43.3.244
[3] R. Chapman, Evaluating $\zeta(2)$, http://empslocal.ex.ac.uk/people/ staff/rjchapma/etc/zeta2.pdf, 1999/2003, viewed 16 June 2011.
[4] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, Another proof of Euler's formula for $\zeta(2 k)$, Proc. Amer. Math. Soc. 139 (2011), 1441-1444. doi:10.1090/S0002-9939-2010-10565-8
[5] W. Dunham, When Euler met l'Hôpital, Math. Mag. 82 (2009), 16-25. doi:10.4169/193009809X469002
[6] E. Hairer and G. Wanner, Analysis by its history, Springer, New York, 2008. doi:10.1007/978-0-387-77036-9
[7] J. D. Harper, Another simple proof of $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$, Amer. Math. Monthly 110 (2003), 540-541. doi:10.2307/3647912
[8] M. D. Hirschhorn, A simple proof that $\zeta(2)=\frac{\pi^{2}}{6}$, The Mathematical Intelligencer 33 (2011), 81-82. doi:10.1007/s00283-011-9217-4
[9] J. Hofbauer, A simple proof of $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$ and related identities, Amer. Math. Monthly 109 (2002), 196-200. doi:10.2307/2695334
[10] M. Ivan, A simple solution to Basel problem, Gen. Math. 16 (2008), 111113.
[11] D. Kalman, Six ways to sum a series, College Math. J. 24 (1993), 402-421. doi:10.2307/2687013
[12] T. Marshall, A short proof of $\zeta(2)=\pi^{2} / 6$, Amer. Math. Monthly 117 (2010), 352-353. doi:10.4169/000298910X480810
[13] Y. Matsuoka, An elementary proof of the formula $\sum_{k=1}^{\infty} 1 / k^{2}=\pi^{2} / 6$, Amer. Math. Monthly 68 (1961), 485-487. doi:10.2307/2311110
[14] M. Passare, How to compute $\sum 1 / n^{2}$ by solving triangles, Amer. Math. Monthly 115 (2008), 745-752.
[15] C. E. Sandifer, Euler's solution of the Basel problem-the longer story, Euler at 300, MAA Spectrum, Math. Assoc. America, Washington, 2007, pp. 105-117.

[^0]: ${ }^{*}$ The original publication appears in Mathematics Magazine 85(5) (2012), 361-364, doi:10.4169/math.mag.85.5.361

