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Abstract

We consider a family of conformal (angle preserving) projections
of the sphere onto the plane. The family is referred to as the Lam-
bert conic conformal projections. Special cases include the Mercator
map and the stereographic projection. The techniques only involve
elementary calculus and trigonometry.

1 Introduction

The starting point for this exposition is the Mercator map designed by
the Flemish/German cartographer Gerardus Mercator in 1569. The map
is probably the most commonly used map of the world; see Figure 1. It
was originally designed for navigation, and is still used for that purpose.
The map is also useful for plotting meteorological or oceanographic data.
We explain why this is the case and discuss a whole family of related maps
which includes the Mercator map and also the stereographic projection as
limit cases.

Figure 1: Mercator map.

On a rectangular map east–west is usually the horizontal and north–
south the vertical direction. Other lines of constant compass bearing (often
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called loxodromes) do not necessarily correspond to straight lines. The
Mercator map is designed such that all lines of equal compass bearing α
from due north on the sphere become straight lines of angle α from the
vertical on the map. Hence, it is very easy to plot or read off directions of
travel, ocean currents, wind, barometric pressure gradients, and other data.
The Mercator map is therefore a special angle preserving or conformal map.
We give a construction in Section 2.

A second, seemingly unrelated projection is the stereographic projection,
not usually to map the earth, but to map the sky. It has been used on
astrolabes to measure and display astronomical observations more than 2000
years ago. Many astrolabe clocks such as the famous one from 1410 on the
clock tower of the old Town Hall in Prague display the movement of the
planets, the sun, and the zodiac. Figure 2 shows the first astrolabe watch.
It was built by the author’s father Richard Daners [8] in 1981 for Gübelin
AG Lucerne, Switzerland.

The stereographic projection is a conformal map as well. In complex
analysis it is used to represent the extended complex plane (see for instance
[2, Chapter I]). The stereographic projection has the property that all cir-
cles on the sphere are mapped onto circles or straight lines on the plane,
and therefore it is easy to map astronomical observations. We include a
construction in Section 3.
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Figure 2: Astrolabe watch.

Up to the late 18th century the Mercator and stereographic projections
were treated as completely unrelated. It was Johann Heinrich Lambert
(1728–77) who, in his seminal work [5] from 1772, changed the way map
projections were approached. He started with desired properties of the map
like conformality and the shape of the projection surface, and then con-
structed whole families of projections. One of the projection surfaces he
considered was a cone. The corresponding maps are now known as Lambert
conic conformal projections. We give a construction of these projections
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in Section 4. Lambert then observed that the Mercator and stereographic
projections are limit cases of these conic projections [5, §49, 50]. The idea
is that the cylinder and plane are limit cases of cones as shown in Figure 3.
This is well known amongst experts in cartography (see [1, 7]). The purpose
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Figure 3: Cone and limit cases corresponding to Mercator and stereographic
projection, respectively.

of this article is to make this nice part of cartography accessible to anyone
knowing only elementary calculus. We consider these limits in Section 5. In
Section 6 we construct conic projections where the lengths of two parallels
are preserved. Finally, we provide more on the history in Section 7.

There are other interesting relationships between Mercator and stereo-
graphic projections. It is shown in [9] that the complex exponential function
acts as a bijection between the two. This has counterparts in hyperbolic ge-
ometry; see [10]. There are many other map projections we do not discuss
here. In particular we do not discuss area preserving maps, the gnomonic
map, which maps all great circles onto straight lines, and many others. We
refer to [3] or the more specialized book [1] on cartography for a wealth of
information.

2 The Mercator projection

As outlined in the introduction, Mercator’s idea was to map the sphere onto
the plane such that the following properties hold:

(i) the north–south direction is the vertical direction;

(ii) the east–west direction is the horizontal direction with the length of
the equator preserved;

(iii) all paths of equal compass bearing on the sphere are straight lines.

For simplicity we assume the sphere has radius one. The first two conditions
imply that the image of the sphere lies in a strip of width 2π. Moreover, the
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meridians are mapped onto vertical lines and the parallels onto horizontal
lines. Hence we only need to determine the spacing of the parallels. We
parametrize the unit sphere by spherical coordinates

x = cosϕ cos θ, y = sinϕ cos θ, z = sin θ,

where ϕ ∈ [−π, π] is longitude and θ ∈ [−π/2, π/2] is latitude. For math-
ematical purposes it is more convenient to measure latitude and longitude
in radians rather than degrees. On the plane we introduce a rectangular
coordinate system with u = u(ϕ, θ) the horizontal direction and v = v(ϕ, θ)
the vertical direction.

We now consider a line of constant compass bearing on the sphere. As-
sume that the bearing from due north is α. By (ii) we have u = ϕ. Consider
a small rectangle at (ϕ, θ) with ∆ϕ and ∆θ determined by α as shown in Fig-
ure 4. Because the parallel at latitude θ has radius cos θ, the edge along the

α

θ

∆ϕ cos θ∆θ

Figure 4: Small rectangle on the sphere.

parallel has approximate length ∆ϕ cos θ. The edge parallel to the meridian
has length ∆θ (see Figure 4). Hence

cotα ≈ ∆θ

∆ϕ cos θ
.

The image of that path on the map is a straight line with angle α from the
v-axis as shown in Figure 5. To satisfy (iii) we require that

cotα ≈ ∆v

∆u
=

∆v

∆ϕ
.

Equating the two expressions for cotα we get

∆θ

cos θ
= ∆θ sec θ ≈ ∆v.

If we let ∆θ tend to zero we get

dv

dθ
= sec θ. (2.1)
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Figure 5: Grid for the Mercator projection.

Integrating we get
v(θ) = log(tan θ + sec θ) + C

for some constant C. Since we require that v(0) = 0 we get C = 0. This
means that the mapu(ϕ, θ) = ϕ,

v(ϕ, θ) = log(tan θ + sec θ) = log
(

tan
(θ

2
+
π

4

)) (2.2)

has the properties (i)–(iii) required above. An alternative construction is
to make sure that the north–south distortion of length is the same as the
east–west distortion. See for instance [9] or the comments in [7] for that
approach.

3 The stereographic projection

The stereographic projection maps the sphere from one of the poles onto
a plane parallel to the equator. The most common choices are the plane
containing the equator or the plane tangent to the sphere at the pole opposite
to the pole from which we project. For our purpose it is best to project from
the south pole S onto the plane tangent at the north pole N . If P is a point
on the sphere, its projection is the intersection Q of the line through the
south pole and the point P with that plane. A cross section is shown in
Figure 6. To get the coordinates of Q we only need to compute its distance
r = NQ from the north pole as a function of the latitude θ. The triangles
4SPT and 4SQN are similar and therefore, since OT = sin θ, r = NQ,
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Figure 6: Stereographic projection of a point with θ ∈ (0, π/2).

PT = cos θ, and the radius of the sphere is 1,

r

2
=

cos θ

sin θ + 1
=

1

tan θ + sec θ
.

We want to write down the projection in cartesian coordinates, where u
is the horizontal axis and v the vertical axis. The negative v-axis should
represent the null meridian. We measure the longitude ϕ from it in the
counterclockwise direction, so that the origin corresponds to the north pole.
Hence, the stereographic projection is given by

u(ϕ, θ) =
2

tan θ + sec θ
sinϕ,

v(ϕ, θ) = − 2

tan θ + sec θ
cosϕ.

(3.1)

It is not very common to use stereographic projections for maps of the world,
but nevertheless there is one in Figure 7. As expected the distortion gets
huge on the southern hemisphere.

4 A family of conical projections

We now map the sphere onto a cone such as the one in Figure 3. In order
to construct a map the cone is cut open and flattened. We assume that
the meridians correspond to uniformly spaced straight lines from the vertex
of the cone and that the parallel of latitude θ corresponds to an arc of the
circle of radius ρ(θ) centered at (0, ρ0), as shown in Figure 8. We make
the design so that the parallel of latitude θ0 passes through the origin, that
is, ρ(θ0) = ρ0. The opening angle 2πt of the cone is determined by the
parameter t ∈ (0, 1]. Hence the equations are of the form{

u(ϕ, θ) = ρ(θ) sin(tϕ),

v(ϕ, θ) = ρ0 − ρ(θ) cos(tϕ).
(4.1)
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Figure 7: Stereographic projection of the earth.
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Figure 8: A conical projection.

The aim is to determine the spacing of the parallels so that the map becomes
conformal. As in the construction of the Mercator map we look at a path
of equal compass bearing of angle α from due north. On that path consider
a small rectangle on the sphere at (ϕ, θ) with side lengths ∆ϕ cos θ and ∆θ
as in Figure 4. Hence, as in Section 2

cotα ≈ ∆θ

∆ϕ cos θ
.

The corresponding rectangle on the map has edges of lengths tρ∆ϕ and
−∆ρ, where

∆ρ = ρ(θ + ∆θ)− ρ(θ)

(shaded in Figure 8). We therefore require

cotα ≈ − ∆ρ

tρ∆ϕ
.
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The minus sign comes from the fact that ρ(θ) decreases as θ increases.
Equating the two we get

∆θ

∆ϕ cos θ
≈ − ∆ρ

tρ∆ϕ
.

This leads to the differential equation

dρ

dθ
= − tρ

cos θ
= −tρ sec θ

with initial condition ρ(θ0) = ρ0. This is a linear differential equation for ρ
and the solution is given by

ρ(θ) = ρ0 exp
(
−t
∫ θ

θ0

sec γ dγ
)

= ρ0 exp
(
−t log

( tan θ + sec θ

tan θ0 + sec θ0

))
= ρ0

(tan θ0 + sec θ0
tan θ + sec θ

)t
.

That solution can be obtained by separation of variables. There are two
parameters we can play with, namely the parallel θ0 and the opening angle
determined by t. We choose t such that the length of the parallel of latitude
θ0 is preserved. That parallel has length 2π cos θ0 on the sphere. Hence we
require that 2π cos θ0 = 2πρ0t, that is,

t =
cos θ0
ρ0

∈ (0, 1]. (4.2)

We say that the parallel of latitude θ0 is a standard parallel. The conical
projection with standard parallel at latitude θ0 is therefore given by

ρ(θ) = ρ0

(tan θ0 + sec θ0
tan θ + sec θ

) cos θ0
ρ0 (4.3)

with the only restriction that ρ0 ≥ cos θ0 as otherwise (4.2) cannot be satis-
fied. One natural choice for ρ0 is such that the cone is tangent to the sphere
at latitude θ0 as in the middle diagram in Figure 3. Another natural choice
for ρ0 is so that the length of a second parallel of latitude θ1 is preserved.
We discuss this in Section 6.

If the cone is tangential to the sphere, then ρ0 = cot θ0 (see Figure 3)
and therefore (4.3) becomes

ρ(θ) = cot θ0

(tan θ0 + sec θ0
tan θ + sec θ

)sin θ0
. (4.4)

If we use (4.2) and (4.1) we get
uθ0(ϕ, θ) = cot θ0

(tan θ0 + sec θ0
tan θ + sec θ

)sin θ0
sin(ϕ sin θ0),

vθ0(ϕ, θ) = cot θ0 − cot θ0

(tan θ0 + sec θ0
tan θ + sec θ

)sin θ0
cos(ϕ sin θ0).

(4.5)
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In the next section we show that by taking the limits θ0 → 0 and θ0 → π/2
we can recover the Mercator and stereographic projections as suggested by
Figure 3.

5 Stereographic and Mercator projection as limit
cases

We first show that the limit case θ0 → π/2− in (4.5) reduces to the stereo-
graphic projection. We start by observing that

1− sin θ0 ≤ cos θ0 ≤ 1

for all θ0 ∈ (0, π/2). By the squeeze law

lim
θ0→π/2−

(cos θ0)
1−sin θ0 = 1

if we use that ss → 1 as s→ 0+ with s = 1− sin θ0. Rearranging (4.4),

ρ(θ) =
(cos θ0)

1−sin θ0

sin θ0

( 1 + sin θ0
tan θ + sec θ

)sin θ0
→ 2

tan θ + sec θ

as θ0 → π/2− because then sin θ0 → 1. Further note that cot θ0 → 0
as θ0 → π/2−. Hence (4.5) reduces to the stereographic projection (3.1).
We can do a similar calculation for θ0 → −π/2+ to get the stereographic
projection from the north pole.

We next show that (4.5) reduces to the Mercator projection (2.2) if
θ0 → 0. Rewriting (4.5) we get

uθ0(ϕ, θ) = ϕ(cos θ0)
1−sin θ0

( 1 + sin θ0
tan θ + sec θ

)sin θ0 sin(ϕ sin θ0)

ϕ sin θ0
→ ϕ

as θ0 → 0 if we use that sin(s)/s→ 1 as s→ 0 with s = ϕ sin θ0. As the limit
does not depend on the latitude θ, the meridians become vertical lines as
θ0 → 0. Note next that ρ0 = cot θ0 →∞ as θ0 → 0. This in particular means
that the circular arcs representing the parallels in the conical projection will
approach horizontal straight lines.

To simplify the calculations we introduce the function

g(θ) := log(tan θ + sec θ),

which appears in the Mercator projection (2.2). Then we can rewrite (4.5)
in the form

vθ0(ϕ, θ) =
1− e(g(θ0)−g(θ)) sin θ0 cos(ϕ sin θ0)

tan θ0
. (5.1)
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The limit as θ0 → 0 can be computed by L’Hôpital’s rule since numerator
and denominator converge to zero. We observe that g′(θ) = sec θ and so

d

dθ0

(
g(θ0) sin θ0

)
= g(θ0) cos θ0 + sin θ0 sec θ0 = g(θ0) cos θ0 + tan θ0.

Note that we have used g′(θ) = sec θ already by solving (2.1) to construct
the Mercator projection.

We first deal with the case ϕ = 0. Using that g(θ0)→ 0 and l’Hôpital’s
rule we get

lim
θ0→0

vθ0(0, θ) = lim
θ0→0

(g(θ0)− g(θ)) cos θ0 + tan θ0
sec2 θ0

e(g(θ0)−g(θ)) sin θ0

= g(θ) = log(tan θ + sec θ).

For the general case note that (5.1) can be written as

vθ0(ϕ, θ) = vθ0(0, θ) cos(ϕ sin θ0) +
1− cos(ϕ sin θ0)

tan θ0
.

Applying L’Hôpital’s rule we get

lim
θ0→0

1− cos(ϕ sin θ0)

tan θ0
= lim

θ0→0

sin(ϕ sin θ0)ϕ cos θ0
sec2 θ0

= 0.

Combining everything we conclude that vθ0(ϕ, θ)→ g(θ) = log(tan θ+sec θ)
as θ0 → 0. Hence u and v are exactly as in the Mercator projection (2.2).
Figure 9 illustrates the continuous deformation of maps from the Mercator
to the stereographic map as θ0 increases from 0 to π/2.

Figure 9: From Mercator to stereographic map via conic conformal maps.
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6 Projections with two standard parallels

To derive (4.3) we made sure that the length of the parallel of latitude θ0 was
preserved. There is still one free parameter, namely ρ0. We show that we
can choose ρ0 so that there is a second standard parallel, that is, a parallel of
latitude θ1 whose length is preserved. The advantage of having two standard
parallels is that we can construct a conformal map with minimal distortion
of area and length over a moderately large area as is frequently done for
maps of the USA, Europe, or Australia. This is already emphasized by
Lambert [5, §52]. Figure 10 shows a map of Europe with standard parallels
at 40◦ and 60◦ north.

40
°

60
°

Figure 10: A conic conformal map of Europe with standard parallels at 40◦

and 60◦ north.

To make sure θ1 is a standard parallel we need to choose ρ0 such that

t =
cos θ0
ρ0

=
cos θ1
ρ(θ1)

,

so that the opening angle of the cone in Figure 8 defined by the two parallels
is the same. Hence

ρ0 = ρ(θ0) =
cos θ0
cos θ1

ρ(θ1), (6.1)

and so from (4.3)

ρ(θ1) = ρ0

(tan θ0 + sec θ0
tan θ1 + sec θ1

) cos θ0
ρ0 = ρ(θ1)

cos θ0
cos θ1

(tan θ0 + sec θ0
tan θ1 + sec θ1

) cos θ0
ρ0 .

Therefore

1 =
cos θ0
cos θ1

(tan θ0 + sec θ0
tan θ1 + sec θ1

) cos θ0
ρ0
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and taking logarithms on both sides

0 = log
(cos θ0

cos θ1

)
+

cos θ0
ρ0

log
(tan θ0 + sec θ0

tan θ1 + sec θ1

)
.

Solving the equation for ρ0 we get

ρ0 = ρ(θ0) = − cos θ0
log
(
tan θ0+sec θ0
tan θ1+sec θ1

)
log
(
cos θ0
cos θ1

) . (6.2)

By using the relationship between cos θ0 and cos θ1 from (6.1) we get

ρ(θ1) = − cos θ1
log
(
tan θ0+sec θ0
tan θ1+sec θ1

)
log
(
cos θ0
cos θ1

) = − cos θ1
log
(
tan θ1+sec θ1
tan θ0+sec θ0

)
log
(
cos θ1
cos θ0

) ,

so the formulas for ρ(θ0) and ρ(θ1) are symmetric in θ0 and θ1.
We can view θ0 and θ1 as parameters and consider limit cases. In partic-

ular, if θ0 6= 0, then L’Hôpital’s rule shows that ρ(θ1) → cot θ0 as θ1 → θ0,
which is consistent with (4.4). We can also let θ0 and θ1 go to 0 one after
the other or simultaneously. The limit is again the Mercator projection, but
more effort is required to compute it. Similarly, if θ0 and θ1 approach π/2
(or −π/2), then the limit is the stereographic projection from the south pole
(or the north pole).

7 Historical Comments

Gerardus Mercator (1512–1594) was born in Belgium from German parents.
He later moved to Germany to escape the religious conflict between catholics
and protestants in Belgium. His original map was a rather large wall map
(202 by 124 cm or 80 by 49 inches). Quite a good facsimile can be seen
at [4]. Mercator designed his map long before calculus even existed. Later
the mathematician Edward Wright derived, in a purely graphical manner, a
table of the spacing of the parallels in his book Certaine Errors in Navigation
in 1599. This was done by graphically integrating sec θ to make sure that
the north–south distortion on the rectangular grid is the same as the east–
west distortion (see [7, pp. 63–67]). The table is very accurate; see the
10◦ intervals listed in [7, p. 68]. Another English mathematician, Thomas
Harriot, looked at the problem in a cleaner fashion but did not publish his
results. His findings anticipated a discovery of Henry Bond, who noticed
a striking similarity between Wright’s table and a table of logarithms of
tangents, namely

log
(

tan
(θ

2
+
π

4

))
,

which happens to be the correct formula (2.2). This opened a much more
precise way for computing the spacing of the parallels.
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Finally, Johann Heinrich Lambert (1728–77), born in Alsace, and a mem-
ber of the Prussian Academy of Sciences during the time of Frederick the
Great, took a different point of view in his 1772 exposition [5] (re-edited
in 1894 with illustrations, historical comments, and an appendix in [6]).
Rather than treating each projection (Mercator, stereographic, and others)
separately, he unified the approach to include them as special cases of a
larger family of maps. His point of view was to prescribe properties like
conformality and the projection surface, and then to use calculus to de-
rive the formulas. This includes the family of projections we discuss in the
present article and our approach is not that far from his. Lambert further
generalized the approach. Rather than looking at conical projections on
which the meridians are straight lines passing through one point (the vertex
of the cone), Lambert also looked at conformal maps where the meridians
are circles passing through two points (the poles) and the parallels are circles
perpendicular to the meridians. He provided tables suitable to display the
continents, in particular for Europe, North and South America, and Asia.
Furthermore, Lambert treated area preserving maps in the same way. More
details of the interesting history of these map projections, and in particular
the Mercator projection, can be found in [7].
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