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Abstract

We consider the principal eigenvalue of a cooperative system of elliptic boundary
value problems as a parameter tends to infinity. The main aim is to introduce a
new approach to deal with the limit problem by focusing on the resolvent operator
corresponding to the system rather than the eigenvalue problem itself. This allows
the consistent use of elementary properties of bilinear forms and the semi-groups
they induce. At the same time we weaken assumptions in related work.
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1 Introduction

We provide a new approach to deal with the asymptotics of the principal eigenvalue
for a cooperative elliptic system

A1u1 + λm1u1 − d1u2 = µ(λ)u1 in Ω,

A2u2 + λm2u2 − d2u1 = µ(λ)u2 in Ω,

u1 = u2 = 0 on ∂Ω,

(1.1)

on a bounded domain Ω ⊆ RN as λ → ∞. Here, A1, A2 are uniformly strongly
elliptic operators in divergence form with bounded and measurable coefficients,
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m1,m2 ∈ L∞(Ω) are non-negative and d1, d2 ∈ L∞(Ω) are positive. The precise as-
sumptions are listed in Section 2. The problem was originally considered in Álvarez
Caudevilla & López-Gómez [1, 2] under strong regularity assumptions on the do-
main and the coefficients, and was substantially generalised in Dancer [7]. The
results are motivated by applications to non-linear cooperative systems.

The purpose of this paper is to introduce new techniques to simplify the proofs
and at the same time to weaken the assumptions even more. The idea is to make
consistent use of the theory of positive irreducible operators, form methods and test
function arguments. The framework for that is outlined in Section 2.

Contrary to earlier work we focus on the resolvent operator associated with the
linear system corresponding to (1.1) rather than the eigenvalue problem itself. In
Theorem 3.1 we prove the convergence of the resolvent operator in the operator
norm and infer from that the convergence of the eigenvalues and eigenfunctions.
This is quite different from the earlier work in [1, 7] and may be useful for studying
the corresponding semi-linear problem by using the ideas from [8, Section 9.2] for
instance.

As in [1, 7] we show that µ(λ) → µ∞ converges, and that µ∞ is a principal
eigenvalue of some limit problem. It is quite easy to see that the limit problem has
support in Ui, where

Ui = {x ∈ Ω: mi(x) = 0} (i = 1, 2). (1.2)

As shown in [7] the limit problem, at least formally, has the form

A1u1 − d1Pu2 = µ∞u1 in Ω,

A2u2 − d2Pu1 = µ∞u2 in Ω,

ui ∈ H1
0 (Ui) i = 1, 2,

(1.3)

where P is the projection Pu := 1U1∩U2u on L2(Ω). Our aim is to show that

µ∞ ≤ min{µ1, µ2}, (1.4)

where µi is the smallest eigenvalue of Ai on Ui with Dirichlet boundary conditions
(i = 1, 2). We note that Ui could have many components, so we cannot expect
a unique simple principal eigenvalue for the limit problem without making further
assumptions. If m1,m2 are positive everywhere, then µ∞ = ∞ since the limit
problem is zero. To make sure µ∞ <∞ we need to assume that U1 or U2 has non-
empty interior. If m1 = m2 = 0, then the limit problem coincides with the original
problem, and is therefore not very interesting. The precise results are discussed in
Section 4, where we also discuss the case of strict inequality in (1.4). Details are in
Remarks 4.2 and 4.3.

There are strong assumptions on the regularity of Ui in [1], and substantially
weaker ones in [7]. We remove these regularity conditions almost entirely by taking
a different point of view on the limit problem. For non-smooth domains Ui there
are several possible choices for the domain of the Laplace operator and more gen-
erally an elliptic operator in divergence form. The two are extensively discussed in
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[4]. From [7] it is clear that the limit problem as λ → ∞ naturally involves the
Dirichlet problem on the maximal domain and therefore we can work with weaker
assumptions on m1 and m2.

We finally note that the techniques we introduce in this paper could be applied
to a scalar problem of similar structure such as the ones treated in [15, 6, 11], or
the periodic-parabolic case in [10].

2 The eigenvalue problem

We assume that Ai, i = 1, 2, are elliptic operators of the form

Aiu = −div
(
Ai(x)∇u+ ai(x)u

)
+ bi(x) · ∇u+ ci0(x)u

with Ai ∈ L∞(Ω,RN×N ), ai, bi ∈ L∞(Ω,RN ) and c0i ∈ L∞(Ω). The matrix Ai is
uniformly positive definite, that is, there exists α > 0 such that

α|ξ|2 ≤ Re
(
Ai(x)ξ · ξ

)
for all ξ ∈ CN and almost all x ∈ Ω. We then look at the cooperative system

A1u1 + λm1u1 − d1u2 + γu1 = f1 in Ω,

A2u2 + λm2u2 − d2u1 + γu1 = f2 in Ω,

u1 = u2 = 0 on ∂Ω,

(2.1)

where m1,m2 ≥ 0 and d1, d2 ≥ 0 are bounded and measurable and γ ∈ R. We could
replace the Dirichlet boundary conditions by more general variational boundary
conditions such as those in [8, Section 2], but that does not change the main idea.
We define the form associated with Ai by

ai(u, v) =

∫
Ω

(
Ai∇u+ aiu

)
· ∇v +

(
bi · ∇u+ c0iu

)
v dx (2.2)

for all u, v ∈ H1
0 (Ω). For u = (u1, u2) and v = (v1, v2) in H1

0 (Ω,R2) we define the
bilinear form

a(u, v) := a1(u1, v1) + a2(u2, v2)− 〈d1u2, v1〉 − 〈d2u1, v2〉, (2.3)

where 〈· , ·〉 is the inner product in L2(Ω). We also set

〈f, g〉 := 〈f1, g1〉+ 〈f2, g2〉

if f, g ∈ L2(Ω,R2) and define the multiplication operator

Mu :=

[
m1 0
0 m2

] [
u1

u2

]
.

If f ∈ L2(Ω,R2) we say u ∈ H1
0 (Ω,R2) is a weak solution of (2.1) if

a(u, v) + λ〈Mu, v〉 = 〈f, v〉
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for all v ∈ H1
0 (Ω,R2). By using test functions of the form (v1, 0) or (0, v2) and

Green’s identity we easily see that classical solutions are weak solution, and suffi-
ciently smooth weak solutions are classical solutions of (2.1) as in the scalar case.
We define the positive cone in H1

0 (Ω,R2) and L2(Ω,R2) to be the set (f1, f2), where
f1 and f2 are non-negative almost everywhere. It is known that both spaces with
the order defined by this cone are ordered Banach spaces. As usual in ordered
Banach spaces we write u ≥ 0 if u is non-negative and u > 0 if u is non-negative
and non-zero. We note that H1

0 (Ω,R2) as well as L2(Ω,R2) are Banach lattices,
that is u+ := max{u, 0} ∈ H1

0 (Ω,R2) for all u ∈ H1
0 (Ω,R2) (see for instance [12,

Lemma 7.6]).
It is also useful sometimes to work with the adjoint problem associated with the

form
a](u, v) := a(v, u).

The corresponding elliptic operators have the same structure as A1,A2 and the
operator induced is the dual of A (see for instance [8, Section 2.3]).

The eigenvalue problem (1.1) in the weak form consists of finding µ(λ) and a
non-negative non-zero (u1, u2) ∈ H1

0 (Ω,R2) so that

a(u, v) + λ〈Mu, v〉 = µ(λ)〈u, v〉

for all v ∈ H1
0 (Ω,R2). This is equivalent to

a(u, v) + λ〈Mu, v〉+ γ〈u, v〉 = (γ + µ(λ))〈u, v〉,

so for the purpose of finding properties of the principal eigenvalue µ(λ) and its
asymptotic behaviour as λ → ∞ we can replace Ai by Ai + γI. The following
lemma allows us to choose a suitable γ ∈ R.

Lemma 2.1. The form a(· , ·) is bounded on H1
0 (Ω,R2) and there exists γ0 ∈ R

such that
α

2
‖u‖2H1 ≤ a(u, u) + γ‖u‖22 (2.4)

for all γ ≥ γ0 and all u ∈ H1(Ω,R2).

Proof. First observe that∣∣〈d1u2, u1〉+ 〈d2u1, u2〉
∣∣ ≤ (‖d1‖∞ + ‖d2‖∞

)
‖u2‖2‖u1‖2

≤
(
‖d1‖∞ + ‖d2‖∞

)(
‖u1‖22 + ‖u2‖22

)
= ‖d‖∞‖u‖22.

If we let

γ0 :=

2∑
i=1

(
‖c−0i‖∞ +

‖ai + bi‖∞
2α

+ ‖di‖∞
)
,

then the above and [8, Proposition 2.1.6] imply that

a(u, u) + γ‖u‖22 ≥ a1(u1, u1) + a2(u2, u2) + (γ − ‖d‖∞)‖u‖22
≥ α

2
‖u‖2H1 + (γ − γ0)‖u‖22 ≥

α

2
‖u‖2H1
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for all γ ≥ γ0. The boundedness of the form is easy to see and very similar to the
proof of [8, Proposition 2.1.6].

By the above lemma the form a(· , ·) induces an operator

A ∈ L
(
H1

0 (Ω,R2), H−1(Ω,R2))
)

given by
〈Au, v〉 = a(u, v)

for all u, v ∈ H1(Ω,R2), where H−1(Ω,R2) is the dual of H1
0 (Ω,R2). Its part in

L2(Ω,R2) is a closed operator we also denote by A. We use the generalised Beurling-
Deny criterion from [18] to prove that −(A + λM) generates a positive irreducible
semigroup on L2(Ω,R2).

Proposition 2.2. If d1, d2 ≥ 0, then for all λ ≥ 0 the operator −(A + λM)
generates a positive semigroup of compact operators on L2(Ω,R2). If d1, d2 > 0 are
both not identically zero, then e−t(A+λM) is irreducible. Finally, for every γ ≥ γ0

and λ > 0. ∥∥(γ + A + λM)−1f
∥∥
H1 ≤

2

α
‖f‖2 (2.5)

and ∥∥(γ − γ0)(γ + A + λM)−1f
∥∥

2
≤ ‖f‖2. (2.6)

for all f ∈ L2(Ω,R2).

Proof. By a standard result−(A+λM) generates an analytic semigroup on L2(Ω,R2)
(see [9, Proposition XVII.6.3] or [18, Theorem 1.52]). From the definition of the
form a(· , ·) it is obvious that

a(u+, u−) + λ〈Mu+, u−〉 = −〈d1u
+
2 , u

−
1 〉 − 〈d2u

+
1 , u

−
2 〉 ≤ 0

for all u ∈ H1
0 (Ω,R2). Here we use the fact that supp(∇u±) ⊆ supp(u±) (see [12,

Lemma 7.6]). Hence the generalised Beurling-Deny criterion from [18, Theorem 2.2]
with P(u) := u+ and C the positive cone in L2(Ω,R2) applies and the semigroup
e−t(A+λM) is positive. The semigroup is compact since the embeddingH1

0 (Ω,R2) ↪→
L2(Ω,R2) is compact and D(A) ⊆ H1

0 (Ω,R2).
Assuming that (d1, d2) > 0 with both components not identically zero we prove

that e−t(A+λM) is irreducible. This is equivalent to (γI+A+λM)−1 being positive
and irreducible for γ large enough. Let f = (f1, f2) > 0 and fix λ > 0. Assume
that u = (u1, u2) is the unique weak solution of (γI + A + λM)u = f . We know
from what we have already proved that u ≥ 0 and therefore d1u2 and d2u1 are
non-negative. Hence

A1u1 + (γ + λm1)u1 = f1 + d1u2 ≥ 0

A2u2 + (γ + λm2)u2 = f2 + d2u1 ≥ 0.

If f1 6= 0, then by properties of the scalar equation u1(x) > 0 for almost every x ∈ Ω.
By our assumption on d1 we have d2u1 ≥ 0 is non-trivial. Hence f2 + d2u1 ≥ 0
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is non-trivial and so by a similar argument as before u2 > 0 almost everywhere.
Hence e−t(A+λM) is irreducible. It is also compact since H1

0 (Ω,R2) is compactly
embedded into L2(Ω,R2).

Let γ ≥ γ0. By the Lax-Milgram theorem u := (γ + A + λM)−1f exists for all
f ∈ L2(Ω,R2). By the coercivity estimate (2.4) we see that

α

2
‖u‖2H1 + (γ − γ0)‖u‖22 ≤ a(u, u) + λ〈Mu, u〉+ γ0‖u‖22

≤ ‖f‖2‖u‖2 ≤ ‖f‖2‖u‖H1 .

Dividing by ‖u‖H1 or ‖u‖2 we get (2.5) and (2.6), respectively.

Amongst other facts we next prove the existence of a unique principal eigenvalue
for (1.1). The results complement earlier results in [7, 16, 21] and others, who
considered operators with more regularity on the coefficients, or operators of a
different structure. Our proof is based on abstract results on the spectral radius
of compact irreducible operators rather than the construction of sub- and super-
solutions.

Theorem 2.3. Suppose that m1,m2 ≥ 0 and that d1, d2 > 0 are both non-zero.
Then the following assertions are true.

(i) If γ ≥ γ0, then (A + λM)−1 is a positive irreducible operator decreasing in
λM .

(ii) The eigenvalue problem (1.1) has a unique principal eigenvalue µ(λ). It is al-
gebraically simple and the corresponding eigenfunction can be chosen positive.

(iii) The adjoint problem has the same principal eigenvalue.

(iv) The eigenvalue µ(λ) is strictly increasing as a function of λM > 0.

Proof. As M is a non-negative multiplication operator, standard perturbation the-
orems show that ∣∣e−t(A+λM)u

∣∣ ≤ e−tA|u| (2.7)

for all u ∈ L2(Ω,R2), and that e−t(A+λM) is decreasing in λM > 0. We can also
see this from the Trotter-Kato formula

e−t(A+λM) = lim
n→∞

(
e−

t
nAe−

t
nλM

)n
(2.8)

which shows that e−t(A+λM) is decreasing in λM since e−tA is a positive semigroup
and e−tλM is obviously decreasing as λM increases. As e−t(A+λM) is positive and
irreducible [17, Theorem 4.2.2] it has a positive spectral radius e−tµ(λ) which is
algebraically simple, and the unique eigenvalue having a positive eigenfunction.
Moreover, the adjoint semigroup has the same spectral radius. Note that µ(λ) is a
principal eigenvalue of (1.1) with the same eigenfunction. As the resolvent inherits
the above properties of the semigroup this proves (i)–(iii).



Eigenvalue problems for a cooperative system with a large parameter 7

To prove (iv) note that by (2.8) the semigroup e−t(A+λM) of positive operators
is decreasing in λM . This means that also its spectral radius e−tµ(λ) is decreasing,
that is, µ(λ) is increasing.

From (2.6) the semigroups e−γ0te−t(A+λM) are mean ergodic for all λ ≥ 0
with spectral radius e−t(γ0+µ(λ)). As the adjoint problem has the same principal
eigenvalue, [3, Theorem 1.3] implies that µ(λ) is strictly increasing in λ and M as
otherwise the semigroups are the same.

3 The limit problem

In this section we determine properties of the limit problem of (1.1) as λ → ∞.
Unlike [1, 7] we do not directly deal with the eigenvalue problem, but get the result
via convergence properties of the resolvent. We let Ui be the set where mi vanishes
as defined in (1.2). It is quite a natural assumption to require Ui to be closed sets
as this is the case for continuous m1,m2. The limit problem as λ → ∞ naturally
involves the spaces

H1
0 (Ui) := {u ∈ H1

0 (Ω): u = 0 almost everywhere on Ω \ Ui}, (3.1)

i = 1, 2. Note that in general, H1
0 (Ui) 6= H1

0 (int(Ui)). If the spaces are equal, then
Ui is said to be stable for the Dirichlet problem. As is clear from [13, 20, 14, 5, 4],
the stability of Ui is a mild regularity assumption on ∂Ui, and is closely related to
properties of harmonic functions. On bad domains there are several possibilities
to define the Dirichlet Laplacian or other elliptic operator. Usually, the minimal
form domain is used to define the operator, namely the closure of the test functions
on the interior of Ui, that is, the space H1

0 (int(Ui)). The alternative is to use the
maximal domain, namely (3.1). The two alternatives are extensively discussed and
compared in [4]. It is really an arbitrary choice which one to work with. In the
context of our limit problem, the maximal domain H1

0 (Ui) is the natural one. More
precisely, the form associated with the limit problem turns out to be the form a(· , ·)
restricted to

H1
0 (U1)×H1

0 (U2) = H1
0 (Ω,R2) ∩ kerM .

We denote the form a(· , ·) restricted to that space by a∞(· , ·). It is given by

a∞(u, v) = a(u, v)

for all u, v ∈ D(a∞) := H1
0 (Ω,R2) ∩ kerM . For now we do not make any as-

sumptions on U1, U2 because in any case a∞(· , ·) is a closed form on L2(U1) ×
L2(U2) ⊆ L2(Ω,R2) with domain D(A∞). We denote the operator a∞(· , ·) induces
on L2(U1)× L2(U2) by A∞. Because a∞(· , ·) is the restriction of a(· , ·) to D(a∞)
Lemma 2.1 implies the coercivity estimate

α

2
‖u‖2H1 ≤ a∞(u, u) + γ‖u‖22

for all u ∈ D(a∞). Note that D(a∞) is a Banach lattice with positive cone induced
by that of H1

0 (Ω,R2).
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Theorem 3.1. Assume that fn ∈ L2(Ω,R2) is such that fn ⇀ f weakly in L2(Ω,R2)
and that λn →∞. If γ ≥ γ0 and un ∈ H1

0 (Ω,R2) is the unique solution of

Aun + λnMun + γun = fn, (3.2)

then the following assertions are true.

(i) ‖un‖H1 ≤ 2

α
‖fn‖2 for all n ∈ N.

(ii) (γ − γ0)‖un‖2 ≤ ‖fn‖2 for all n ∈ N.

(iii) un → u in H1
0 (Ω,R2) and λn〈Mun, un〉 → 0 as n→∞.

(iv) u ∈ D(a∞) = H1
0 (Ω) ∩ kerM .

Moreover, if γ ∈ %(A∞), then for λ large enough, γ ∈ %(A + λM) and

lim
λ→∞

(γI + A + λM)−1 = (γI + A∞)−1

in L
(
L2(Ω,R2), H1

0 (Ω,R2)
)

in the operator norm.

Proof. Assertions (i) and (ii) follow from (2.5) and (2.6), respectively. As the se-
quence (fn) is weakly convergent in L2(Ω,R2) it is bounded in L2(Ω,R2). Hence
by (i) un is bounded in H1

0 (Ω,R2) and therefore a sub-sequence converges weakly
in H1

0 (Ω,R2). If unk
is such a sequence we get from the weak formulation

a(unk
, v) + λnk

〈Munk
, v〉+ γ〈unk

, v〉 = 〈fnk
, v〉 (3.3)

for all v ∈ H1
0 (Ω,R2). As all terms remain bounded we conclude that 〈Munk

, v〉 →
〈Mu, v〉 = 0 for all v ∈ H1

0 (Ω,R2). Hence u ∈ H1
0 (Ω,R2) ∩ kerM . Now if v ∈

H1
0 (Ω,R2), then from (3.3)

a(unk
, v) + γ〈unk

, v〉 = 〈fnk
, v〉

since 〈Munk
, v〉 = 〈Mv, unk

〉 = 0 if v ∈ kerM . Passing to the limit we get

a(u, v) + γ〈u, v〉 = 〈f, v〉.

As a(u, v) and 〈f, v〉 are finite for all v ∈ H1
0 (Ω,R2) we conclude that

0 = lim
k→∞

〈Munk
, v〉 = 〈Mu, v〉

for all v ∈ H1
0 (Ω,R2)∩kerM . Hence Mu = 0 and so u ∈ D(a∞) = H1

0 (Ω)∩kerM ,
proving (iv). We also conclude that u = (γI −A∞)−1f is the unique limit point of
the sequence (un). Hence the whole sequence converges, that is, un → u weakly in
H1

0 (Ω,R2) and strongly in L2(Ω,R2). To prove strong convergence in H1
0 (Ω) note

that

a(un − u, un − u) = a(un, un)− a(un, u)− a(u, un − u)

= 〈fn, un〉 − λn〈Mun, un〉 − γ‖un‖22 − a(un, u)− a(u, un − u)

≤ 〈fn, un〉 − γ‖un‖22 + a(un, u)− a(u, un − u)
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for all n ∈ N. Recall that a(u, u) + γ‖u‖22 = 〈f, u〉. As un → u weakly in H1
0 (Ω,R2)

and strongly in L2(Ω,R2) we conclude that

lim sup
n→∞

a(un − u, un − u) ≤ 〈f, u〉 −
(
a(u, u) + γ‖u‖22

)
= 0.

Now (2.4) implies

0 ≤ α

2
lim sup
n→∞

‖un − u‖2H1 ≤ lim sup
n→∞

(
a(un − u, un − u) + γ‖un − u‖22

)
≤ 0

and therefore un → u in H1
0 (Ω,R2). In particular,

λn〈Mun, un〉 = 〈fn, un〉 − γ‖un‖22 − a(un, un)
n→∞−−−−→ 〈f, u〉 − γ‖u‖22 − a(u, u) = 0.

Hence (iii) follows. The assertion on the convergence of the resolvents in the oper-
ator norm now follows from [8, Proposition 4.1.1 and Theorem 4.3.1].

From the above we immediately get the following consequence.

Corollary 3.2. Suppose that γ ≥ γ0, that p > N/2 and that f ∈ Lp(Ω) is non-
negative. If uλ is the solution of (2.1), then uλ ↓ u converges monotonically as
λ ↑ ∞ increases. Moreover, the components of uλ converge to zero uniformly on
every compact subset of int(U c1 ) ∪ int(U1) and int(U c2 ) ∪ int(U2), and respectively.

Proof. By standard regularity theory uλ ∈ C(Ω) if f ∈ Lp(Ω,R2) with p > N/2,
and therefore looking at pointwise properties makes sense. By Theorem 3.1 we
know that the components of u = (u1, u2) are zero on U c1 and U c2 . Moreover u1 are
bounded solutions of −A1u1 + d1Pu2 + γu1 = f1 and similarly for u2, where P is
the projection introduced just after (1.3). The boundedness is comes from the fact
that 0 ≤ u ≤ uλ and uλ is bounded for all λ ≥ 0. By standar regularity theory ui is
continuous in int(Ui). Since the convergence is monotone and the limit function u
continuous, Dini’s theorem (see for instance [19, Proposition 9.2.11]) implies uniform
convergence on compact subsets on every compact subset of int(U c1 ) ∪ int(U1) and
int(U c2 ) ∪ int(U2), respectively.

Note that if the limit function u in the above corollary is continuous on Ω̄, then
the convergence is uniform on Ω̄.

4 Eigenvalue estimates for the limit problem

We can now prove the main estimate (1.4). The idea to obtain (1.4) is to apply the
comparison results from Theorem 2.3 to various modifications of M . We note that
µ(λ) is increasing in λ, so µ(λ)→ µ∞. In the extreme case m1 and m2 are strictly
positive on Ω. Then the limit problem is trivial and therefore µ∞ = ∞. To avoid
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this situation we need to make some assumption on m1 and m2. As in (1.2) we let
U1 and U2 be the set where m1 and m2 vanish. As in (3.1), for i = 1, 2, we let

Vi := {u ∈ H1
0 (Ω): miu = 0}.

Then V1×V2 = H1
0 (Ω,R2)∩kerM is the domain D(a∞) introduced in the previous

section. Clearly ai(· , ·) defined in (2.2) is a closed form on L2(Ui) with domain Vi
for i = 1, 2 (see for instance [8, Proposition 2.1.6]). We could also consider it as a
closed form on L2(Ω) with non-dense domain. In any case the operator associated
with ai(· , ·) has a smallest principal eigenvalue we denote by µi. If Vi = {0} we set
µi =∞. With these definitions of µ1, µ2, our precise result is the estimate (1.4).

In case Ui is the closure of its interior then µi is associated with the eigenvalue
problem

Aiϕ = µ1ϕ in int(Ui),

ϕ = 0 on ∂Ui

on a maximal domain. As said in the introduction, if Ui is stable for the Dirichlet
problem, then the above is the usual eigenvalue problem with the domain of the
form ai(· , ·) being Vi = H1

0 (int(Ui)). For less regular domains our form approach
still gives a well defined limit problem having a principal eigenvalue in Vi.

If Ui has non-empty interior we could work with the minimal domain since
H1

0 (int(Ui)) is an ideal of Vi. This means that u ∈ Vi is such that if u ∈ Vi and
|u| ≤ |v| for some v ∈ H1

0 (int(Ui)), then u ∈ H1
0 (int(Ui)). If µ̄1 is the corresponding

principal eigenvalue for Ai on the minimal domain, then the domination results [18,
Corollary 2.22] imply that µ1 ≤ µ̄1. Hence (1.4) always implies the possibly weaker
result

µ∞ ≤ min{µ̄1, µ̄2}.
We now state and prove one of our main results.

Theorem 4.1. Suppose that M > 0, and that U1 or U2 has non-empty interior.
Under the above assumptions

µ∞ ≤ min{µ1, µ2} <∞.

Moreover, µ∞ is the smallest eigenvalue of A∞ and µ∞ has a positive eigenfunction.

Proof. We know from Theorem 2.3 that µ(λ) is increasing in λ and therefore con-
verges to µ∞ ≤ ∞. We furthermore know from Theorem 3.1 that (A + λM +
γ0I)−1 → (A∞ + γ0I)−1 in the operator norm. Hence by [8, Theorem 4.3.1] µ∞ is
the smallest eigenvalue of A∞. Assuming that U1 has non-empty interior we can
choose an open ball B ⊆ U1. If we define

M̃ :=

[
1Bc(1 +m1) 0

0 1 +m2

]
,

then M ≤ M̃ and therefore by the monotonicity of the principal eigenvalue (The-
orem 2.3) we get

µ(λ) ≤ µ̃(λ)
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for all λ > 0. Here µ̃(λ) is the principal eigenvalue of A + λM̃ . According to
Theorem 3.1 the limit problem as λ→∞ is associated with the form a(· , ·) on the
domain H1

0 (Ω,R2) ∩ kerM̃ . From the definition of M̃ we have

H1
0 (Ω,R2) ∩ kerM̃ = H1

0 (B)× {0}.

Here we also use that a ball is a stable set for the Dirichlet problem as discussed in
Section 3, that is, H1

0 (B̄) = H1
0 (B). The form (2.3) reduces to

a(u, v) = a1(u1, v1)

for all u = (u1, 0) and v = (v1, 0) in H1
0 (B) × {0}. This means that µ̃(λ) → µ̃1,

where µ1 is the principal eigenvalue of A1 on B with Dirichlet boundary conditions.
In particular

µ∞ = lim
λ→∞

µ(λ) ≤ lim
λ→∞

µ̃(λ) = µ̃1 <∞.

Clearly we can apply a similar argument if U2 has a non-empty interior and show
that µ∞ is finite. To prove (1.4) we use a similar argument. We let

M1 :=

[
m1 0
0 1 +m2

]
and M2 :=

[
1 +m1 0

0 m2

]
,

then clearly M < M i for i = 1, 2. If we denote the principal eigenvalue of (Aλ +
M i) by µi(λ), then the monotonicity results from Theorem 3.1 imply that µi(λ) <
µ(λ) for all λ > 0. Clearly the form domain of the limit problem involving M1 is
V1 × {0} and that for M2 is {0} × V2. The corresponding forms are a1(· , ·) and
a2(· , ·), respectively, so by the convergence results from the first part of this proof

µi = lim
λ→∞

µi(λ) ≤ lim
λ→∞

µ(λ) = µ∞.

for i = 1, 2. This proves (1.4). We finally want to show that µ∞ has a positive
eigenfunction. Since A∞ has compact resolvent, µ∞ is an eigenvalue. If Ui has
many connected components µ∞ does not need to be simple, so could have several
eigenfunctions. Let λn → ∞ and ϕn a positive eigenfunction to µ(λn) normalised
such that ‖ϕn‖2 = 1. Then

(A + λnM + γ0I)ϕn = fn :=
(
µ(λn) + γ0

)
ϕn

As
(
µ(λn) + γ0

)
ϕn is bounded in L2(Ω,R2) Proposition 2.2 implies that (ϕn)

is bounded in H1
0 (Ω,R2). By Rellich’s compactness theorem there exists a sub-

sequence (ϕnk
) converging to some ϕ in L2(Ω,R2). In particular, ‖ϕ‖2 = 1 and

ϕ ≥ 0. By Theorem 3.1 applied with fn :=
(
µ(λn) + γ0

)
ϕn we conclude that

ϕnk
→ ϕ in H1

0 (Ω,R2), and that ϕ is a positive eigenfunction to µ∞.

We have not said anything about equality in (1.4). In general this is a difficult
question depending on whether or not U1 and U2 intersect and the number and
nature of their components. We look at one case of equality and one for strict
inequality. The arguments are largely taken from [7].
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Remark 4.2. First of all, as noted in [7], if U1 ∩U2 = ∅, then there is equality. This
is because then for u, v ∈ V1 × V2, from the definition of the form (2.3), we have

a∞(u, v) = a1(u1, v1) + a2(u2, v2).

Hence the limit problem is completely discoupled and µ∞ is equal to the minimum
of µ1 and µ2.

We finally consider a case of strict inequality in (1.4).

Remark 4.3. Another case considered in [7] is where U1 and U2 consist of one
connected component and d1, d2 are strictly positive on U1 ∩ U2. We assume that
U1 ∩ U2 have non-empty interior. Let ϕ = (ϕ1, ϕ2) be a positive eigenfunction to
µ∞. Using test functions of the form (v1, 0) and (0, v2) we note that

a1(ϕ1, v1) = µ∞〈ϕ1, v1〉+ 〈d1ϕ2, v1〉,
a2(ϕ2, v2) = µ∞〈ϕ2, v2〉+ 〈d2ϕ1, v2〉

(4.1)

for all v1 ∈ V1 and v2 ∈ V2. Due to the Harnack inequality (see for instance [12,
Theorem 8.18]) at least one of ϕ1 or ϕ2 is either strictly positive or identically zero
in the interior of U1 and U2, respectively. We note that there are no assumptions on
the regularity of the sets in Harnack’s inequality. The inequality works for any non-
negative solution on an open set. Assume ϕ1 is strictly positive and that ϕ2 = 0.
Then from the above a1(ϕ1, v1) = µ∞〈ϕ1, v1〉 for all v1 ∈ V1 and 0 = a2(0, v2) =
〈d2ϕ1, v2〉 > 0 for a suitable choice of v2 ∈ V2 by assumption on d2 and ϕ1. As this
is a contradiction ϕ1 and ϕ2 must both be strictly positive. The adjoint problem
induced by the form a]i(u, v) := ai(v, u) on Vi has the same principal eigenvalue. Let

ψ]i be a positive eigenfunction corresponding to µi to the adjoint problem. Using it
as a test function in (4.1) we get for i, j = 1, 2, i 6= j,

µi〈ψ]i , ϕi〉 = ai(ϕi, ψ
]
i ) = µ∞〈ϕi, ψ]i 〉+ 〈diϕj , ψ]i 〉.

As di, ϕi and ψ]i are positive on U1 ∩ U2 we conclude that µi 6= µ∞ for i = 1, 2, so
there is strict inequality in (1.4).
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