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Abstract We consider the principal eigenvalue of generalised Robin boundary
value problems on non-smooth domains, where the zero order coefficient of the
boundary operator is negative or changes sign. We provide conditions so that the
related eigenvalue problem has a principal eigenvalue. We work with the framework
involving measure data on the boundary due to [Arendt & Warma, Potential Anal.
19, 2003, 341–363]. Examples of simple domains with cusps are used to illustrate
all possible phenomena.
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1 Introduction

Consider the parameter dependent elliptic eigenvalue problem

−∆u = λu in Ω,

∂u

∂ν
+ tbu = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain, ν is the outward pointing unit normal to
∂Ω, b ∈ L∞(∂Ω) and t ∈ R a parameter. We are interested in the behaviour
and existence of the first eigenvalue λ1(t) if Ω is non-smooth and b is negative or
changing sign.

If Ω is smooth or even just Lipschitz, then (1.1) has a smallest eigenvalue λ1(t).
That eigenvalue is simple and it is the only eigenvalue with a positive eigenfunction;
see for instance [4,3,30]. The results in [21] show that on a Lipschitz domain (1.1)
can be written in equivalent form such that the new boundary conditions involve
some b̃ > 0 instead of b. Hence for Lipschitz domains there is no difference between
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positive or sign changing b except for a shift of the spectrum. As usual we call λ1(t)
the principal eigenvalue of (1.1).

Even if Ω is not Lipschitz, (1.1) can be solved in a weak sense if b > 0 as done in
[7,17] and further developed in [6,10,11]. However, if b < 0, then [21, Example 3.4]
shows that there is no principal eigenvalue if Ω has a sharp outward pointing cusp.
There are not many results for b < 0 in the literature. The most notable are the
papers by Arendt and ter Elst [5] in connection with the Dirichlet-to-Neumann
operator and Nazarov [34], who looks at domains with cusps, where the trace
operator from H1(Ω) into L2(∂Ω) is not compact. Both papers complement our
results.

In our discussion of (1.1) on general domains we replace b by some class of signed

measures µ on ∂Ω. We introduce the relevant framework in Section 2. Compared
to smooth domains the difference is that the norm induced by the bilinear form
associated with (1.1) may be strictly stronger than the H1-norm if µ, t > 0. This
is a main feature in [7,17]. We discuss that case separately in Section 3.

Section 4 contains the main features in case of indefinite measures. One key
result is that λ1(t) exists if and only if certain trace inequalities holds for u in a
suitable subspace of H1(Ω). As a consequence, under some compactness assump-
tion, the norm induced by the sesqui-linear form associated with (1.1) turns out
to be equivalent to the H1-norm if λ1(t) exists for all t ∈ R and vice versa. Some
specific cases are also studied in [5,36].

In Section 5 we illustrate the behaviour of λ1(t) in the classical case (1.1) for
domains which are smooth except for one or two outward pointing cusps. This
includes examples where λ1(t) = −∞ for all t > 0 or all t < 0 or both. It is
also possible that λ1(t) is finite in a bounded interval. The results also support
a conjecture on a Faber-Krahn inequality for t < 0 as stated in [12], not only on
Lipschitz domains but also on some classes of non-smooth domains.

We then show that for b < 0 the stability of the semigroup generated by the
Laplacian with Robin boundary conditions is very sensitive with respect to small
perturbations of the domain Ω (Section 6). The final section is concerned with
some auxiliary results on the perturbation of forms needed to treat (1.1).

Eigenvalue problems with the weight function on the domain have been studied
extensively before; see for instance [26]. For smooth domains, there are results also
for problems with both types of weights; see [42]. Knowledge about the behaviour of
λ1(t) is useful for dealing with linearisations of problems with nonlinear boundary
conditions arising in population dynamics such as in [40,41]. Knowledge about
λ1(t) also helps to understand principal eigenvalues for weighted Steklov problems
of the form

−∆u = 0 in Ω,
∂u

∂ν
+ tbu = 0 on ∂Ω.

We refer to [34,35] for a treatment of Steklov problems on some classes of non-
smooth domains.

Some of the results and ideas in the specific case of the Hausdorff measure on
∂Ω were announced at the “Workshop on PDEs in Rough Environments” held in
Schmitten, Germany, Dec 1-5, 2003, but never formally published.
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2 General Robin problems

For every t ∈ R the form associated with (1.1) is given by

a(t;u, v) :=

∫
Ω

∇u · ∇v dx+ t

∫
∂Ω

buv dσ

on a suitable domain, where σ is the (N − 1)-dimensional Hausdorff measure. It
is well known that σ coincides with the usual surface measure if ∂Ω is sufficiently
smooth. The form involves a boundary integral with the measure dµ = bdσ which
is absolutely continuous with respect to Hausdorff measure on ∂Ω. As done in
[7] we can look at a more general situation and replace this measure by a Borel
measure µ on ∂Ω. The corresponding form becomes

a(t;u, v) :=

∫
Ω

∇u · ∇v dx+ t

∫
∂Ω

uv dµ.

We can try to define the domain of a by{
u ∈ H1(Ω) ∩ C(Ω) :

∫
∂Ω

|u|2 dµ <∞
}

(2.1)

and then attempt to take the closure of that form. Unfortunately, as shown in [7],
the form a is not necessarily closable. However, a has a maximal closable part as
shown in [38, Theorem S15, p 373]. To describe the closable part we set

Sµ :=
{
x ∈ ∂Ω : µ

(
B(x, r) ∩ ∂Ω

)
<∞ for some r > 0

}
. (2.2)

It can be shown that there exists a set Γµ ⊂ Sµ such that the form

aµ(t;u, v) :=

∫
Ω

∇u∇v dx+ t

∫
Γµ

uv dµ (2.3)

with domain

D(aµ) :=
{
u ∈ H1(Ω) ∩ C(Ω) :

∫
Γµ

|u|2 dµ <∞
}

(2.4)

is the closable part of a; see [7, Theorem 3.7]. That result is a generalisation and
reinterpretation of [17, Proposition 3.3]. Roughly speaking, the set Γµ ⊆ Sµ is the
part of ∂Ω on which every function in (2.1) has a well defined trace. There is an
example of a domain in [7, Example 4.2] which shows that there can be parts of
the boundary of positive (N−1)-dimensional Hausdorff measure, where there is no
well defined trace. In [7] this phenomenon is characterised by the relative capacity
of Sµ \ Γµ being zero. We comment more on this in Remark 2.1 below.

If we denote the domain of the closure of aµ by Vµ, then Vµ is a Hilbert space
with norm given by

‖u‖Vµ :=
(
‖u‖2H1(Ω) +

∫
Γµ

|u|2 dµ
)1/2

. (2.5)
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Remark 2.1 We can identify D(aµ) with the subspace{
(u, u|Γµ) : u ∈ H1(Ω) ∩ C(Ω),

∫
Γµ

|u|2 dµ <∞
}
⊆ H1(Ω)× L2(Γµ, µ).

The space Vµ can be identified with the closure of that subspace in H1(Ω) ×
L2(Γµ, µ) with respect to the product norm (2.5). Clearly j0 : D(aµ) ↪→ L2(Ω)
is a continuous embedding. That embedding extends uniquely to a linear map
j : Vµ → L2(Ω) and j is injective if and only if the form aµ with domain D(aµ) is
closable as shown in [7, Theorem 3.3]. In particular this means that every u ∈ Vµ
has a well defined trace in L2(Γµ, µ) which is defined as follows. Given u ∈ Vµ we
choose a sequence un ∈ Vµ ∩ C(Ω̄) which converges to u in Vµ. Such a sequence
exists by definition of Vµ. The trace of u is then γ(u) := limn→∞ un|Γµ . This trace
is well defined since the operator j is injective, and so the limit does not depend
on the sequence (un).

Remark 2.2 Consider the special case µ = b dσ with b ∈ L∞(∂Ω) so that b ≥ β for
some constant β > 0. Then the norm

‖u‖V :=
(
‖u‖H1(Ω) +

∫
Γµ

|u|2 dσ
)1/2

is an equivalent norm on D(aµ). By an inequality due to Maz’ja from [31, Theo-
rem 3.6.3] and [7, Section 5] there exists c > 0 only depending on N so that

‖u‖2N/(N−1) ≤ c‖u‖V

for all u ∈ Vµ. Hence we have the natural injection Vµ ↪→ L2N/(N−1)(Ω). This
implies that the injection Vµ ↪→ L2(Ω) is always compact if Ω is any bounded
domain as proved in [31, Corollary 4.11.1/3]. The compactness of the embedding
can alternatively be obtained from a more general very simple criterion as provided
in [18, Lemma 7.1].

Example 2.3 Let Ω be smooth except for finitely many outward pointing cusps.
Denote the set of cusp points by Z := {z0, z1, . . . , zn}. In that particular case it
turns out that

V =
{
u ∈ H1

0 (Ω) : γ(u) ∈ L2(∂Ω)
}
,

where γ : H1(Ω)→ L2,loc(∂Ω\Z) is the trace operator. If the cusp is sharp enough,
then V 6= H1

0 (Ω) and ‖·‖V is stronger than ‖·‖H1 . In any case V ↪→ L2(Ω) is a
compact embedding; see [17].

We next assume that µ is a signed measure, a situation not considered in the
literature before. By a signed measure we mean a Borel measure on ∂Ω taking
values in (−∞,∞] or [−∞,∞). Then we can look at the total variation |µ| of µ.
According to the Hahn decomposition theorem there exist Borel measures µ± such
that µ+ ⊥ µ−, µ = µ+ − µ− and |µ| = µ+ + µ−; see [39, Theorem 6.14]. Since |µ|
is a positive measure we can define

aµ(t;u, v) :=

∫
Ω

∇u∇v dx+ t

∫
Γ|µ|

uv dµ
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for u, v in the domain

D(aµ) := D(a|µ|)

For convenience we let Γµ := Γ|µ| and Vµ := V|µ|. We define

λ1(t) = inf
u∈Vµ\{0}

aµ(t;u, u)

‖u‖22
(2.6)

The map

t 7→ aµ(t;u, u) =

∫
Ω

|∇u|2 dx+ t

∫
Γµ

|u|2 dσ

is an affine function for all u ∈ Vµ. Hence we get the following lemma.

Lemma 2.4 The map λ1(·) : R → [−∞,∞) is concave. If µ is a positive measure,

then λ1(·) is increasing.

Remark 2.5 It is possible that λ1(t) = −∞ for domains with a sufficiently sharp
outward pointing cusp if µ = bdσ and b < 0; see [21, Example 3.4].

Since aµ(t; ·, ·) is a bounded form on Vµ there exists an operator Aµ(t) ∈ L(Vµ, V
′
µ)

such that

aµ(t; ·, ·) = 〈Aµ(t)u, v〉

for all u, v ∈ Vµ, where V ′µ is the dual of Vµ and 〈· , ·〉 is the duality pairing on Vµ.
Clearly, the Hermitian form aµ(t; · , ·) is bounded on Vµ and bounded from below
if and only if λ1(t) > −∞. Clearly |u| ∈ Vµ if u ∈ Vµ, so

aµ(t; |u|, |u|) = aµ(t;u, u)

We can then look at the part of Aµ(t) in L2(Ω) with domain

D(Aµ(t)) := {u ∈ Vµ : Aµ(t)u ∈ L2(Ω)}

From standard results on bilinear forms we then get the following results; see [37,
Corollary 2.18 and 2.11].

Proposition 2.6 Suppose that λ1(t) > −∞. Then Aµ(t) is a closed self-adjoint opera-

tor on L2(Ω) with spectral bound λ1(t). Moreover, −Aµ(t) generates a positive strongly

continuous analytic semigroup on L2(Ω).

If Ω is connected, then that semigroup is irreducible. If the embedding Vµ ↪→ L2(Ω)
is compact, then λ1(t) is a simple eigenvalue of Aµ(t) and the only eigenvalue having

a positive eigenfunction.

The last assertion follows from the fact that the resolvent of Aµ(t) is compact and
irreducible and a version of the Krein-Rutman Theorem; see [33, Theorem 4.2.2].

Remark 2.7 (a) An alternative way for constructing Aµ(t), particularly useful for
degenerate problems is discussed in [6].

(b) If µ = 0, then Vµ = H1(Ω) and we are dealing with the Neumann problem.
Since the spectrum of the Neumann problem on general bounded domains can
be continuous (see [25]) we cannot expect λ1(t) to be an eigenvalue of Aµ(t) in
general.
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3 The eigenvalue problem for positive measures

Throughout this section we assume that µ is a positive Borel measure on ∂Ω and
that Γµ and Vµ are as defined in Section 2. We prove in Section 7 that λ1(t) is
an analytic function of t > 0 and compute λ′(t) in terms of the eigenfunction. For
smooth domains this is folklore and works for all t ∈ R. As the eigenfunction for
t = 0 is constant this leads to a simple expression for λ′(0); see for instance [3,
24]. In the present context we can only expect λ1(t) to be analytic for t > 0 as
our examples in Section 5.2 show. Hence it is not even clear that λ1(t) has a right
derivative at t = 0, and the methods used in the above references do not work
under our weak assumptions. We however recover the same formula for λ′1(0).

Proposition 3.1 Assume that µ is a positive Borel measure on ∂Ω and that Γµ and Vµ
are as in Section 2. Suppose that 1 ∈ Vµ and that Vµ ↪→ L2(Ω) is compact. Then λ1 ∈
C1([0,∞),R) ∩ C∞((0,∞),R) is concave and increasing with λ1(0) = 0. Moreover,

λ′1(0) =
µ(Γµ)

|Ω| .

Finally, 0 ≤ λ1(t) < λD1 for all t ≥ 0, where λD1 is the first eigenvalue of the Dirichlet

Laplacian on Ω.

Proof From the definition (2.6) and since b ≥ 0 it is obvious that λ1(·) is increasing.
By Lemma 2.4 the map is concave. Moreover, since C∞c (Ω) ⊂ Vµ

λ1(t) = inf
u∈Vµ\{0}

aµ(t;u, u)

‖u‖22
≤ inf
u∈C∞

c (Ω)\{0}

‖∇u‖22
‖u‖22

= λD1 .

for all t ≥ 0. Since 1 ∈ Vµ the definition of λ1(t) implies that

0 ≤ λ1(t) ≤ 0 + tµ(Γµ)

|Ω| = t
µ(Γµ)

|Ω| (3.1)

Hence λ1(t)→ 0 as t→ 0. By Corollary 7.2 λ1(t) is an analytic function on (0,∞).
Since λ1(t) is concave λ′1(t) is decreasing for t > 0. Hence limt→0+ λ′(t) exists. The
mean value theorem and (3.1) imply that

λ1(t)

t
= λ′1(s) ≤ µ(Γµ)

|Ω|

for some s ∈ (0, t). Hence λ′1(0) = limt→0+ λ′1(t) and so λ1 ∈ C1([0,∞)).
We now compute λ′1(0) from first principles. Denote the eigenfunctions to λ1(t)

by u(t) and normalise them so that u(t) > 0 and ‖u(t)‖2 = 1 for all t > 0. Using
u(t) as a test function∫

Ω

|∇u(t)|2 + t

∫
Γµ

|u(t)|2 dµ = λ1(t)

∫
Ω

|u(t)|2 dx. = λ1(t)

Now λ1(t)→ 0 and so ‖∇u(t)‖2 → 0 as t→ 0. In particular u(t), t > 0, is bounded
in H1(Ω). Using the estimate (3.1)∫

Γµ

|u(t)|2 dµ ≤ λ1(t)

t
≤ µ(Γµ)

|Ω|
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for all t > 0, so u(t) is bounded in Vµ. Hence there exist u0 ∈ Vµ and a sequence
tn > 0 such that tn → 0 and un := u(tn) ⇀ u0 ≥ 0 weakly in Vµ. By the compact
embedding Vµ ↪→ L2(Ω) we know that un → u0 in L2(Ω) and since ‖un(t)‖2 = 1 for
all n ∈ N we have ‖u0‖2 = 1. Moreover, as ∇un ⇀ ∇u0 weakly we have ∇u0 = 0,
so u0 is constant. As u0 is constant and ‖u0‖2 = 1 we get u0 = |Ω|−1. Using 1 ∈ Vµ
as a test function and the fact that un → u0 weakly in Vµ

λ1(tn)

tn
=

∫
Γν

1 · un dµ→
∫
Γµ

1 · u0 dµ =
µ(Γµ)

|Ω| = λ′1(0).

This completes the proof of the proposition.

Remark 3.2 (a) Note that 1 ∈ Vµ means that µ(Γµ) <∞.
(b) If 1 6∈ Vµ, then we cannot expect that λ1(t) → 0 as t → 0. In the extreme

case of a domain with fractal boundary and µ = σ the (N − 1)-dimensional Haus-
dorff measure, the Robin problem is the same as the Dirichlet problem; see [17,
Remark 3.5(d)]. Hence λ1(t) = λD1 > 0 for all t > 0. If only part of the boundary
is fractal, then limt→0 λ1(t) > 0, but λ1(t) is non-constant. The argument in the
above proof still shows that limt→0+ λ′1(t) exists, but we do not know whether the
limit coincides with λ′(0).

4 General weights

In this section we consider (1.1) with b ∈ L∞(∂Ω) without any restrictions on
the sign, or more generally the principal eigenvalue λ1(t) of Aµ(t) with a signed
measure as defined in Section 2. To deal with the problem we use the Hahn de-
composition µ = µ+−µ− of µ. Before we to go into any details we provide a guide
to the main results in this section:

1. If µ− is non-trivial, then always λ1(t)→ −∞ as t→∞; see Lemma 4.1.
2. A necessary condition for λ1(t) to be finite for some t > 0 is that a trace opera-

tor from Vµ into L2(Γµ, µ
−) with sufficiently small norm exists; see Lemma 4.2.

3. Assuming that the trace operator from Vµ into L2(Γµ, µ
−) is compact we prove

the existence of λ1(t) for all t > 0; see Theorem 4.4. Further discussion is
concerned with equivalent norms on Vµ. In particular we show that the Vµ norm
is equivalent to the H1 norm if both trace operators from Vµ into L2(Γµ, µ

−)
and L2(Γµ, µ

+) are compact; see Corollary 4.7.
4. We then look at some converse of the above. Assuming that one of the trace

operators is compact, and λ1(t) exists for all t ∈ R we show that the other
trace operator is compact, and the norm in Vµ is equivalent to the H1-norm;
see Theorem 4.10

5. We finally give a criterion for the compactness of the trace operator; see Propo-
sition 4.11.

Throughout we assume that that µ− is non-trivial, that is,

µ−(Γµ) > 0. (4.1)

The case of µ− = 0 means µ ≥ 0 and is treated in the previous section.
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Lemma 4.1 Suppose that µ is a signed Borel measure on ∂Ω such that (4.1) holds.

Then λ1(t)→ −∞ as t→∞.

Proof We know that Γµ ⊂ S|µ|, where S|µ| is defined by (2.2). The set S|µ| is open
and by definition µ(K) is finite for all compact sets K ⊂ Sµ. By assumption (4.1)
there exists a compact set K ⊂ S|µ| such that

∫
Γµ

1K dµ < 0. Hence there exists

v0 ∈ Cc(S|µ|) such that
∫
Γµ
v2
0 dµ < 0. By the Tietze extension theorem v0 has an

extension v1 ∈ Cc(RN ). We can then find v ∈ C∞c (RN ) with supp v ∩ ∂Ω ⊂ S|µ|
and

∫
Γµ
v2 dµ < 0. Hence v ∈ D(aµ) and

λ1(t) ≤

∫
Ω
|∇v|2 dx+ t

∫
Γµ
v2 dµ

‖v‖22
< 0

for t large enough. In particular λ1(t)→ −∞ as t→∞.

As [21, Example 3.4] shows it is possible that λ1(t) = −∞ for all t > 0. We want
to discuss conditions so that this does not happen. We start with a simple lemma
regarding the existence of λ1(t).

Lemma 4.2 Suppose that µ is a measure as above and t > 0. Then λ1(t) > −∞ if

and only if there exists a constant ct > 0 such that∫
Γµ

|u|2 dµ− ≤ 1

t
‖∇u‖22 + ct‖u‖22 +

∫
Γµ

|u|2 dµ+ (4.2)

for all u ∈ Vµ.

Proof If λ1(t) > −∞, then by (2.6)

λ1(t)‖u‖22 ≤ ‖∇u‖22 + t

∫
Γµ

|u|2 dµ ≤ ‖∇u‖22 + t

∫
Γµ

|u|2 dµ+ − t
∫
Γµ

|u|2 dµ−

for all u ∈ Vµ. Rearranging we get (4.2) with ct = −λ1(t)/t. Conversely, if (4.2)
holds, then from (2.6) we get λ1(t) ≥ ctt > −∞.

Remark 4.3 The above lemma tells us that for aµ to be bounded from below, the
perturbation involving µ− must be of lower order. In particular, the norms on Vµ
given by(

‖u‖2H1(Ω) +

∫
Γµ

|u|2 d|µ|
)1/2

and
(
‖u‖2H1(Ω) +

∫
Γµ

|u|2 dµ+
)1/2

must be equivalent.

A convenient condition implying (4.2) is the compactness of the trace operator
from Vµ into L2(Γµ, µ

−). We know from Remark 2.1 that there is a well defined
trace operator γ : Vµ → L2(Γµ). However, γ does not need to be compact. In fact,
the part of the norm in Vµ involving µ− cannot contribute to the compactness
of the trace operator, so it must come from the other parts of the norm. This is
evident when identifying Vµ with a subspace of

H1(Ω)× L2(Γµ, µ) = H1(Ω)× L2(Γµ, µ
+)× L2(Γµ, µ

−)

as done in Remark 2.1.
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Theorem 4.4 Suppose that the trace operator γ : Vµ → L2(Γµ, µ
−) is compact. Then

λD1 ≥ λ1(t) > −∞ for all t > 0. Moreover, there exists a constant c ≥ 0 such that

λ1(t) ≥ −ct for all t ∈ (0, 1).

Proof By Remark 4.3, for every t > 0, the norm(
‖u‖2H1(Ω) + t

∫
Γµ

|u|2 dµ+
)1/2

is an equivalent norm on Vµ. Since the trace operator into L2(Γµ, µ
−) is compact,

by Lemma 7.3 for every t > 0 there exists ct > 0 such that∫
Γµ

|u|2 dµ− ≤ 1

t
‖∇u‖22 +

∫
Γµ

|u|2 dµ+ + ct‖u‖22

for all u ∈ Vµ if we set b(u, v) :=
∫
Γµ
uv dµ−. Hence we get

aµ(t;u, u) = t
(1

t
‖∇u‖22 +

∫
Γµ

|u|2 dµ+ −
∫
Γµ

|u|2 dµ−
)
≥ −tct‖u‖22

for all u ∈ Vµ. By (2.6) it follows that λ1(t) ≥ −tct for all t > 0. Note that for
t ∈ (0, 1) we can choose c := c1, that is the value of ct for t = 1, proving the last
assertion of the theorem.

Corollary 4.5 Under the assumptions of the above theorem limt→0+ λ1(t) exists.

Moreover, if 1 ∈ Vµ, then limt→0+ λ1(t) = 0.

Proof By the concavity λ1 : (0,∞) → R is either increasing or decreasing in a
neighbourhood of zero. By the above theorem λ1 is bounded from below near
zero, and so limt→0 λ1(t) exists. If 1 ∈ Vµ, then

−ct ≤ λ1(t) ≤ tµ(Γµ)

|Ω| ,

for all t ∈ (0, 1), where the upper estimate comes from (2.6) with u = 1. Hence
λ1(t)→ 0 as t→ 0+.

Remark 4.6 The estimate λ1(t) > −ct can only be valid for small t > 0 in general.
If dµ = −b dσ for some constant b > 0 it is shown in [28,30] that λ1(t)/t2 → 1 as
t → ∞ for a domain of class C1. The same asymptotic behaviour stays valid for
the higher eigenvalues; see [23]. For domains admitting the divergence theorem it
is still true that λ1(t) ≤ −t2 for all t > 0 (see [23, Lemma 2.1]), but the precise
asymptotic can change; see [28,29].

If we assume that the negative and the positive parts have the same property, then
λ1(t) is defined for all t ∈ R and the Vµ-norm is equivalent to the H1-norm.

Corollary 4.7 Suppose that the trace operators γ : Vµ → L2(Γµ, µ
±) are compact.

Then λ1(t) > −∞ for all t ∈ R and the Vµ-norm is equivalent to the H1-norm, that

is, Vµ is a closed subspace of H1(Ω).
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Proof From the assumptions it follows that the trace operator from Vµ into L2(Γµ, |µ|)
is compact. Clearly the form

b(u, v) :=

∫
Γµ

uv d|µ|

is bounded and by the compactness of the trace operator b(un, un)→ 0 whenever
un ⇀ 0 weakly in Vµ. Hence by Lemma 7.3 there exists a constant c > 0 such that∫

Γµ

|u|2 d|µ| ≤ ‖∇u‖22 + c‖u‖22

for all u ∈ Vµ. Hence

‖u‖2H1(Ω) ≤ ‖u‖
2
Vµ = ‖u‖2H1(Ω) +

∫
Γµ

|u|2 d|µ| ≤ max{2, c}‖u‖2H1(Ω)

for all u ∈ Vµ. This completes the proof of the corollary.

Remark 4.8 If Vµ is a closed subspace of H1(Ω), then clearly there exists a constant
c > 0 such that ‖u‖L2(Γµ,|µ|) ≤ c‖u‖H1(Ω). Hence by Lemma 4.2 we must have
λ1(t) > −∞ for at least t in a neighbourhood of zero. The inequality (4.2) requires
“almost” compactness of the trace operator to be able to get the factor 1/t in
front of ‖∇u‖22 for large t as in case of an Ehrling type lemma. There are examples
where a trace operator exists, but is not compact, namely [5, Example 9.5] and
[35,36]. In both cases (4.2) only holds for t in a bounded interval, and λ1(t) = −∞
otherwise.

Remark 4.9 Suppose that µ ≥ 0 or µ ≤ 0. Then λ1(t) > −∞ for all t ≥ 0 implies
that Vµ is a closed subspace of H1(Ω). To see this use Lemma 4.2.

It seems likely that the Vµ norm is equivalent to the H1-norm if λ1(t) > −∞ for all
t ∈ R in general. In that situation we know from Lemma 4.2 that for every t > 0
there exists c > 1 such that∫

Γµ

|u|2 dµ− ≤ 1

t
‖∇u‖22 + c‖u‖22 +

∫
Γµ

|u|2 dµ+

and ∫
Γµ

|u|2 dµ+ ≤ 1

t
‖∇u‖22 + c‖u‖22 +

∫
Γµ

|u|2 dµ− (4.3)

for all u ∈ Vµ and all t > 0, and hence the square root of the right hand side
of both inequalities define equivalent norms on H1(Ω). Since µ+ and µ− have
disjoint supports we might expect that we can control the boundary integrals by
the H1-norm only. We cannot prove this, but have to assume that at least one of
the trace operators from Vµ into L2(Γµ, µ

+) or L2(Γµ, µ
−) is compact.

Theorem 4.10 Suppose that λ1(t) > −∞ for all t ∈ R and that at least one of the

trace operators from Vµ into L2(Γµ, µ
+) or into L2(Γµ, µ

−) is compact. Then Vµ is

a closed subspace of H1(Ω). Moreover, if Vµ ↪→ L2(Ω) is compact, then t → λ1(t) is

analytic on R. Finally, if 1 ∈ Vµ, then λ1(0) = 0 and

λ′1(0) =
µ(Γµ)

|Ω| .
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Proof Assume that the trace operator from Vµ into L2(Γµ, µ
−) is compact, the

other case is similar. We have seen above that(
‖u‖2H1(Ω) +

∫
Γµ

|u|2 dµ±
)1/2

are equivalent norms on Vµ. By the compactness of the trace operator
∫
Γµ
u2
n dµ

− →
0 whenever un ⇀ 0 weakly in Vµ. Applying Lemma 7.3 there exists a constant
C ≥ 1 such that∫

Γµ

|u|2 dµ− ≤ 1

2
‖u‖2H1(Ω) +

1

2

∫
Γµ

|u|2 dµ+ + C‖u‖22

for all u ∈ Vµ. Hence we get from (4.2) with t = 1∫
Γµ

|u|2 dµ− ≤ (C + 1)‖u‖2H1(Ω) +
1

2

∫
Γµ

|u|2 dµ+

≤ (C + 1)‖u‖2H1(Ω) +
c

2
‖u‖2H1(Ω) +

1

2

∫
Γµ

|u|2 dµ−.

Subtracting the boundary integral on the right hand side we get the existence of
a constant C0 such that

1

2

∫
Γµ

|u|2 dµ− ≤ C0‖u‖2H1(Ω)

for all u ∈ Vµ. This completes the proof since
(
‖u‖2H1(Ω) +

∫
Γµ
|u|2 dµ−

)1/2
is an

equivalent norm on Vµ.

Next assume that Vµ ↪→ L2(Ω) is compact. Then Proposition 2.6 implies that
λ1(t) is a simple eigenvalue of Aµ(t) for all t > 0. As Vµ is a closed subspace of
H1(Ω) the form aµ(t; · , ·) is closed with domain Vµ for all t ∈ R, including t = 0.
Hence Corollary 7.2 applies and λ1(t) is an analytic function of t ∈ R. If 1 ∈ Vµ,
then the eigenfunction for t = 0 is constant and so the formula for λ′1(0) follows
from Corollary 7.2.

We next provide some sufficient conditions for the trace operator to be compact.

Proposition 4.11 Suppose that λ1(t) > −∞ for all t ∈ R, that Vµ ↪→ L2(Ω) is

compact and that one of the following conditions is satisfied:

(i) The trace operator Vµ into L2(Γµ, µ
+) is compact.

(ii) There exists a function ϕ ∈ C1(Ω̄) such that∫
Γµ

|ϕu|2 dµ+ =

∫
Γµ

|(1− ϕ)u|2 dµ− = 0

for all u ∈ Vµ.

Then the trace operators from Vµ into L2(Γµ, µ
±) are compact.



12 Daniel Daners

Proof (i) Suppose that un ∈ Vµ with un ⇀ 0 weakly in Vµ. Then there exists M > 0
such that ‖∇un‖22 ≤ ‖un‖Vµ ≤ M for all n ∈ N. Fix ε > 0 and choose t > 0 such
that ε < M/2t. By Lemma 4.2 we have∫
Γµ

|un|2 dµ− ≤
1

t
‖∇un‖22 + ct‖u‖22 +

∫
Γµ

|un|2 dµ+ ≤ ε

2
+ ct‖u‖22 +

∫
Γµ

|un|2 dµ+

for all n ∈ N. By the compact embeddings un → 0 in L2(Ω) and in L2(Γµ, µ
+).

Hence there exists n0 ∈ N such that∫
Γµ

|un|2 dµ− ≤
ε

2
+
ε

2
= ε

for all n > n0. This implies the compactness of the trace operator from Vµ to
L2(Γµ, µ

−).
(ii) We proceed similarly as above and assume that un ∈ Vµ with un ⇀ 0

weakly in Vµ. As in the proof of (i), given ε > 0 we can choose t > 0 such that∫
Γµ

|ϕun|2 d|µ| =
∫
Γµ

|ϕun|2 dµ− ≤
ε

2
+ ct‖ϕu‖22 +

∫
Γµ

|ϕun|2 dµ+ =
ε

2
+ ct‖ϕu‖22

for all n ∈ N. Here we also used (ii) to omit the boundary integral. By the compact
embedding un → 0 in L2(Ω). Hence the same is true for ϕun and so there exists
n0 ∈ N such that ∫

Γµ

|ϕun|2 d|µ| ≤
ε

2
+
ε

2
= ε

for all n > n0. This implies that ϕun → 0 in L2(Γµ, |µ|). Applying a similar
argument with ϕ replaced by 1 − ϕ and the rôles of µ+ and µ− interchanged we
conclude that (1 − ϕ)un → 0 in L2(Γµ, |µ|). Hence un = ϕun + (1 − ϕ)un → 0 in
L2(Γµ, |µ|) as claimed.

Note that the proposition above also generalises [5, Proposition 8.1], where condi-
tion (ii) is trivially satisfied by choosing ϕ = 1.

Remark 4.12 Assume that the trace operators γ : Vµ → L2(Γµ, µ
±) are compact.

Further assume that µ+(Γµ) > 0 and µ−(Γµ) > 0. Then according to Lemma 4.1
we have λ1(t)→ −∞ as t→∞ and t→ −∞. If 1 ∈ Vµ, Theorem 4.10 implies that
λ1(0) = 0 and the graph of λ1(t) looks like one of those in Figure 4.1 depending
on the sign of µ(Γµ) which determines the sign of λ′1(0). The possible graphs are
shown in Figure 4.1. This generalises the results in [3] to non-smooth domains and
more general boundary conditions.

5 Examples involving surface measure

In this section we assume that dµ = bdσ, where σ is the (N − 1)-dimensional
Hausdorff measure on ∂Ω and b ∈ L∞(∂Ω). This means we look at the classical
boundary value problem (1.1). We have discussed the case of b ≥ 0 already in
Remark 3.2, so we concentrate on b negative or indefinite. Most examples we give
are domains which are smooth except for finitely many points. In that case the
set Γµ introduced in Section 2 coincides with ∂Ω because there is a local trace
inequality at all points where ∂Ω is smooth.
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t

λ1

µ(Γµ) > 0

t

λ1

µ(Γµ) = 0

t

λ1

µ(Γµ) < 0

Fig. 4.1 λ1(t) in the case of a compact trace operator depending on the sign of µ(Γµ).

5.1 Regular domains and domains with weak cusps

If Ω is a bounded Lipschitz domain, then the trace operator γ : H1(Ω)→ L2(∂Ω)
and the embedding H1(Ω) ↪→ L2(Ω) are compact. It is shown in [21] that for a
Lipschitz domains we can write down an equivalent problem with b ≥ 0, so all
the general theory on b ≥ 0 applies. In the above exposition we only used that
the trace operator γ and the embedding H1(Ω) ↪→ L2(Ω) are compact. There are
other domains which have the same property:

1. If Ω satisfies an interior cone property, then Vµ is the closure of Cc(Ω̄)∩H1(Ω)
in H1(Ω), and the trace operator is well defined. Indeed, due to [2, Theorem 4.8]
such a domain can be written as a finite union of Lipschitz domains. Each of
them admits a well defined compact trace operator. By definition of Vµ the trace
operator γ : Vµ → L2(Ω) is well defined and compact.

2. Domains with weak cusps such as those in Figure 5.1, that is, cusps of
order less than quadratic. The trace space for such domains in R2 is characterised
in [32, Section 7.2]. Using this characterisation one can show that domains with
cusps weaker than quadratic have a compact trace operator, and those stronger
than quadratic do not have a trace in L2(∂Ω); see [1,43] and more generally in
higher dimensions [35].

z0 z1 z2

Fig. 5.1 Domains with one or two cusps of appropriate sharpness

3. Some classes of extension domains also have the same property. Note that
domains with cusps are not extension domains.

In all cases discussed above, for a sign changing b, the graph of λ1(t) looks like
the ones in Figure 4.1 depending on the sign of

µ(∂Ω) =

∫
∂Ω

b dσ.

5.2 Domains with sharp cusps

As seen above, the eigenvalue problem (1.1) behaves well if the domain is smooth
except for a finite number of weak cusps. To illustrate our theory we consider
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domains of the general shape as those in Figure 5.1 with one or two cusps. Then
every function in H1(Ω) still has a well defined trace, but that trace is not neces-
sarily in L2(∂Ω) if the cusp is sharper than quadratic as shown in [1, Example 2.1]
and a rather greater generality in [35,34,36]. In such a case the boundary integral∫

∂Ω

|u|2 dσ

is not of lower order, and so the Vµ-norm is strictly stronger than the H1-norm;
see also [17, Remark 3.5(f)].

Assume that Ω has one cusp point z0 as in Figure 5.1 and that b ≥ β for some
constant β > 0 in a neighbourhood of z0. If that cusp is sharper than quadratic,
then by Lemma 4.2 we have λ1(t) = −∞ if t < 0. If in addition b < 0 on some part
of ∂Ω, then by Lemma 4.1 we have λ1(t) → −∞ as t → ∞ as illustrated in the
first two graphs in Figure 5.2.

t

λ1

−∞

t

λ1

−∞

t

λ1

−∞

Fig. 5.2 Possible behaviour of λ1(t) for Ω with one or two sharp cusps and indefinite weight.

Finally suppose that Ω has two cusps z1, z2 as in the domain shown in Fig-
ure 5.1. We assume that these cusps are sharper than quadratic and that there
exists a constant β > 0 such that b > β in a neighbourhood of z1 and b < −β in a
neighbourhood of z1. Since there is no trace inequality near z1 and z2, Lemma 4.2
implies that λ1(t) = −∞ for all t 6= 0 as depicted in the third graph in Figure 5.2.

5.3 Domains with a non-compact trace operator

There are domains for which the trace operator γ : H1(Ω)→ L2(∂Ω) exists but is
not compact. In these examples an inequality of the form (4.2), that is,∫

Γµ

b−|u|2 dσ ≤ 1

t
‖∇u‖22 + ct‖u‖22 +

∫
Γµ

b+|u|2 dσ

only holds for t ∈ [0, t0). Hence λ1(t) > −∞ if t ∈ [0, t0) and λ1(t) = −∞ for t > t0.
In general it is not clear what happens at t0. An explicit example is in [36]: Let
U ⊆ RN−1 be a bounded Lipschitz domain. Assume that Ω is such that

{x = (y, z) ∈ RN−1 ×R : z ∈ (0, δ), yz−2 ∈ U} = Ω ∩B(0, δ),

that is, Ω has a quadratic cusp at zero. We assume that Ω is smooth otherwise.
It is shown in [36] that for every ε > 0 there exists a constant Mε such that∫

Γµ

|u|2 dσ ≤ (mN (U)− ε)−1‖∇u‖22 +Mε‖u‖22,
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where

mN (U) =
(
N − 3

2

)2 |U |
|∂U |

and Mε →∞ as ε→ 0. Here |U | is the volume of U in RN−1 and |∂U | the (N − 2)-
dimensional surface measure of ∂U . Hence if b > β > 0 for some constant β > 0
we have that λ1(t) > −∞ if and only if t > t0 := mN (U)/β. In this example
λ1(t0) = −∞. In [5, Example 9.4] it is left open whether or not λ1(t0) > −∞, so
the example given here is more precise, and shows that λ1(t0) = −∞ is possible.
Using Proposition 4.11 we see that it is impossible for λ1(t) > −∞ for all t ∈ R
if the trace operator is non-compact, because otherwise that proposition implies
that the trace operator is compact.

The phenomenon is clearly local, so we can assume that b ≥ β in a neighbour-
hood of the cusp point. We can then assume that Ω has two cusp points of the
same nature, where b is positive in a neighbourhood of one, and negative in a
neighbourhood of the other. For such a domain λ1(t) has the behaviour as shown
in Figure 5.3 on the left. If one cusp is sharper, so that it does not admit a trace
operator, then it is evident that we can choose b such that λ1(t) has a graph like
the one in Figure 5.3 on the right. Another example with a non-compact trace
operator is given in [5, Example 9.5], but not with such explicit estimates on the
norm of the trace operator.

t

λ1

−∞

t

λ1

−∞

Fig. 5.3 Possible behaviour of λ1(t) for a domain with non-compact trace operator and
indefinite weight.

5.4 Estimates for the principal eigenvalue

If b > 0 is constant, then the Faber-Krahn inequality implies that λ1(t) ≥ µ1(t),
where µ1(t) is the principal eigenvalue of (1.1) with Ω replaced by a ball B of the
same volume as Ω; see [14,13,15,20,22]. This inequality also holds for classes of
non-smooth domains as shown in [13,14]. If we assume that the trace operator from
H1(Ω) into L2(∂Ω) is compact, then λ1(t) exists for all t ∈ R. By Theorem 4.10
and the isoperimetric inequality we have

λ′1(0) = b
σ(∂Ω)

|Ω| > b
σ(∂B)

|Ω| = b
σ(∂B)

|B| = µ′1(0).

Hence the graphs of λ1(t) and µ1(t) cross transversally at t = 0 as shown in
Figure 5.4, so λ1(t) > µ1(t) on some interval (0, ε1) and λ1(t) < µ1(t) on some
interval (−ε2, 0) with ε1, ε2 > 0 possibly depending on Ω.
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t

λ1

λ1(t)
µ1(t)

Fig. 5.4 Comparison of principal eigenvalues λ1 and µ1.

Together with results in [8,9] this supports the conjecture that λ1(t) ≥ µ1(t)
for all t ∈ R with equality if and only if Ω is (essentially) a ball, as stated in [12]
by F. Brock and the author.

Despite the simplicity of the argument, the result is rather more general than
that in [8,9] since we do not assume that Ω ⊆ R2 is near a ball. We allow domains
in RN and only indirectly make some smoothness assumptions on ∂Ω by requiring
the existence of a trace inequality.

6 Stability of semigroups with respect to the domain

If λ1(t) > −∞, then it is well known that −Aµ(t) generates an analytic semigroup
Tt(s) on L2(Ω) with

‖Tt(s)‖L(L2) = e−λ1(t)s,

as shown in Proposition 2.6. We want to comment on the stability of that semi-
group with respect to small perturbations of the domain. To illustrate our point
we assume that dµ = bdσ as in Section 5 with b ∈ Cc(RN ). The last assumption is
to make sure b is naturally defined on any nearby domains.

Consider a bounded domain Ω and assume that b > β on ∂Ω for some constant
β > 0. For t > 0 the semigroup is exponentially stable, that is, λ1(t) > 0. It is
shown in [16,19] that a small local perturbation of the domain such as adding a
little spike as in Figure 6.1 has very little influence on λ1(t).

Next we look at a domain Ω which is smooth except for one cusp z0 as in
Figure 5.1. Since {z0} is a set of capacity zero the set Vµ ∩ Cc(Ω̄ \ {z0}) is dense
in Vµ. It follows that in (2.6) we can replace Vµ by Vµ ∩ Cc(Ω̄ \ {z0}). Let now
Ωn, n ∈ N, be a sequence of domains obtained from Ω by cutting or rounding the
cusp off a little bit and such that Ωn is smooth. We can clearly arrange such that
Ωn ⊆ Ωn+1 ⊆ Ω for all n ∈ N and

⋃
n∈NΩn = Ω. Then by the above density result

λ1(t) = inf
n∈N

inf
u∈H1(Ωn)∩C(Ω̄)

aµ(t;u, u)

‖u‖22
= −∞ (6.1)

for all t ∈ R. The principal eigenvalue on Ωn is given by

λn,1(t) := inf
u∈H1(Ωn)∩C(Ω̄)

aµ(t;u, u)

‖u‖22
.

Hence if b < 0 in a neighbourhood of z0 and the cusp is sharp enough, then by
(6.1)

lim
n→∞

λn,1(t) = λ1(t) = −∞



Principal eigenvalues for generalised indefinite Robin problems 17

for all t > 0. This has implications for the stability of the semigroup Tt(s) with
respect to very small perturbations of ∂Ω where b < 0. In fact, if we add an
arbitrarily small slightly rounded cusp to a smooth domain as in Figure 6.1 then
λ1(t) can be made arbitrarily negative. In particular, assume that Ω is smooth
and that b is indefinite with λ1(t) > 0 for some t > 0. Hence the semigroup Tt(s)
is exponentially stable. However, by adding a small spike as described above, we
can make λ1(t) arbitrarily negative, and therefore the semigroup on the perturbed
domain is very unstable. This is in stark contrast to the case of b > 0.

Add small rounded cusp

Fig. 6.1 Small perturbation of a smooth domain

7 Appendix: Perturbations of forms

The purpose of this section is to prove some perturbation results for forms. The
results are possibly folklore, but we include them for convenient reference.

Suppose that V and H are Hilbert spaces over C with V ↪→ H, and V dense in
H. We assume that U ⊂ C is an open set and let for each t ∈ U

a(t; · , ·) : V × V → C

be a bounded sesqui-linear form satisfying the following conditions: There exists
λ∗ ∈ R and α > 0 such that

α‖u‖2V ≤ Re a(t;u, u) + λ∗‖u‖2H (7.1)

for all u ∈ V and t ∈ U . Moreover, the map

t 7→ a(t;u, u) is analytic on U (7.2)

for all u ∈ V . It follows that for each t ∈ U the form a(t; · , ·) is sectorial and
closed on H with domain D(a(t; · , ·)) = V . Denote by A(t) the m-sectorial operator
induced by a(t; · , ·); see [27, Theorem VI.2.7]. We define the adjoint form of a(t; · , ·)
by

a](t;u, v) := a(t; v, u)

for all u, v ∈ V . The form has the same properties as a(t; · , ·). We denote the
corresponding m-sectorial operator induced on H by A](t). It is easily checked
that the dual operator of A(t) equals to A](t).
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7.1 Analytic dependence of eigenvalues

As a first result we prove the analytic dependence of simple eigenvalues on the pa-
rameter t, and compute their first derivative in terms of the corresponding eigen-
functions of A(t) and A](t).

Theorem 7.1 Suppose the above assumptions are satisfied, and that for t0 ∈ U the

problems A(t0)u = λu and A](t0)u = λu in H have an algebraically simple eigenvalue

λ1(t0). Then there exists a neighbourhood U0 of t0 such that

A(t)u = λu and A](t)u = λu

have an algebraically simple eigenvalue λ1(t) for all t ∈ U0 such that the map λ1 : U0 →
C is analytic. Moreover we can choose the eigenfunctions u(t) and u](t) such that the

maps u, u] : U0 → V are analytic. Moreover, for all t ∈ U0

d

dt
λ1(t) =

1

〈u(t), u](t)〉
∂

∂t
a
(
t;u(t), u](t)

)
. (7.3)

Proof We have already seen above that a(t; · , ·) is a closed sectorial form on H with
domain V independent of t. As t → a(t;u, u) is assumed to be analytic it follows
from [27, Theorem VII.4.2] that A(t), t ∈ U , is a analytic family of closed operators.
As λ1(t0) is an algebraically simple eigenvalue it follows from [27, Theorem VII.1.8]
that there exists a neighbourhood U0 of t0 and an analytic map λ1 : U0 → C such
that λ1(t) is an algebraically simple eigenvalue of A(t)u = λu for all t ∈ U0.
Moreover, we can choose the corresponding eigenfunctions u(t) such that u : U0 →
H is analytic. The same arguments apply to the adjoint problem, so we have a
family of eigenvectors u] with u] : U0 → H analytic. We now show that these maps
are analytic as maps into V , not just H. As u(t) is an eigenvector to λ1(t) it follows
from (7.1) that

α‖u(t)‖2V ≤ a(t;u(t), u(t)) + λ∗‖u(t)‖2H =
(
λ1(t) + λ∗

)
‖u(t)‖2H

for all t ∈ U0. As λ1 : U0 → C and u : U0 → H are analytic and hence continu-
ous, these functions are (locally) bounded. Therefore, from the above inequality
u : U0 → V is (locally) bounded. We know that the map t 7→ 〈f, u(t)〉 is analytic on
U0 for all f ∈ H. As H is dense in V ′ and u : U0 → V (locally) bounded we conclude
from [27, Theorem III.1.37 and Remark III.1.38] that u : U0 → V is analytic. In
the same way we see that u] : U0 → V is analytic. To prove formula (7.3) note that
for every v ∈ V

a
(
t;u(t), v

)
= λ1(t)〈u(t), v〉

for all t ∈ U0. Differentiating the relation we get

∂

∂t
a
(
t;u(t), v

)
+ a
(
t; u̇(t), v

)
= λ1(t)〈u̇(t), v〉+ 〈u(t), v〉 d

dt
λ1(t)

for all t ∈ U0. Setting v := u](t) and rearranging we get

∂

∂t
a
(
t;u(t), u](t)

)
− λ1(t)〈u̇(t), u](t)〉+ a

(
t; u̇(t), u](t)

)
= 〈u(t), u](t)〉 d

dt
λ1(t). (7.4)
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Using u̇(t) ∈ V as a test functions we get

a
(
t; u̇(t), u](t)

)
= a]

(
t;u](t), u̇(t)

)
= λ1(t)〈u](t), u̇(t)〉.

Hence by (7.4) we see that

∂

∂t
a
(
t;u(t), u](t)

)
= 〈u(t), u](t)〉 d

dt
λ1(t).

As λ1(t) is an algebraically simple eigenvalue of A(t) and A](t) it follows that
〈u(t), u](t)〉 6= 0. Hence (7.3) follows.

For the special case a(t; · , ·) is a Hermitian form for all t ∈ U we get the following
corollary.

Corollary 7.2 Suppose that the assumptions of Theorem 7.1 are satisfied and that

a(t;u, v) = a(t; v, u) for all u, v ∈ V . If A(t0)u = λu in H has an algebraically simple

eigenvalue λ1(t0) then there exists a neighbourhood U0 of t0 such that A(t)u = λu has

an algebraically simple eigenvalue λ1(t) for all t ∈ U0 such that the map λ1 : U0 → C is

analytic. Moreover we can choose the eigenfunction u(t) such that the map u : U0 → V

are analytic. Moreover, for all t ∈ U0

d

dt
λ1(t) =

1

‖u(t)‖2H

∂

∂t
a
(
t;u(t), u(t)

)
. (7.5)

Proof Clearly the adjoint problem is the same as the original problem so Theo-
rem 7.1 directly applies.

7.2 Ellipticity of perturbed forms

We now assume that a(t;u, v) is of the form

a(t;u, v) := a(u, v) + tb(u, v)

with a, b : V × V → C being bounded sesqui-linear forms. Further we assume that
a is V -elliptic, that is, there exist α > 0 and λ∗ ∈ R such that

α‖u(t)‖2V ≤ Re a(u, u) + λ∗‖u‖2H (7.6)

for all u ∈ V . We provide a criterion which guarantees that a(t;u, v) is V -elliptic.

Lemma 7.3 Suppose that b : V × V → C is a bounded sesqui-linear form and that

b(un, un) → 0 whenever un ⇀ 0 weakly in V . Then for every ε > 0 there exists

c(ε) > 0 such that

|b(u, u)| ≤ ε‖u‖2V + c(ε)‖u‖2H (7.7)

for all u ∈ H.
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Proof Suppose that there exists ε > 0 such that (7.7) fails. Then there exist un ∈
V with ‖un‖V = 1 such that |b(un, un)| > ε + n‖un‖2H for all n ∈ N. By the
boundedness of b on V there exists C > 0 such that

C ≥ |b(un, un)| > ε+ n‖un‖2H

for all n ∈ N. This is only possible if un → 0 in H. Since (un) is bounded in V this
implies that un ⇀ 0 weakly in V , and so by assumption b(un, un) → 0. Hence we
get

0 = lim
n→∞

|b(un, un)| ≥ ε+ lim
n→∞

n‖un‖2H > 0.

Since this is a contradiction c(ε) as required exists.

We can now prove the following result on the V -ellipticity of forms.

Proposition 7.4 Suppose that a, b are bounded bilinear forms on V . Assume that there

exist constants α > 0 and λ∗ ∈ R such that

α‖u‖V ≤ Re a(u, u) + |b(u, u)|+ λ∗‖u‖2H

for all u ∈ V . Further suppose that b(un, un)→ 0 whenever un ⇀ 0 weakly in V . Then

for every t ∈ R there exists ct > 0 such that

α

2
‖u‖2V ≤ Re

(
a(u, u) + tb(u, u)

)
+ (λ∗ + ct)‖u‖2H

for all u ∈ V and t > 0.

Proof Fix t ∈ R with t 6= 0. From Lemma 7.3 there exists a constant c ∈ R such
that

(1 + |t|)|b(u, u)| ≤ α

2
‖u‖2V + c‖u‖2H

for all u ∈ V . Hence, using the assumption on a, we have

Re
(
a(u, u) + tb(u, u)

)
≥ Re a(u, u) + |b(u, u)| − (1 + |t|)|b(u, u)|

≥ α‖u‖2V − λ∗‖u‖
2
H −

(
α

2
‖u‖2V + c‖u‖2H

)
≥ α

2
‖u‖2V − (λ∗ + c)‖u‖2H .

Rearranging the above the claim of the proposition follows.

Acknowledgement Thanks to Tom ter Elst suggesting some improvements.
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