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Abstract We prove a Faber-Krahn inequality for the first eigenvalue of the Lapla-
cian with Robin boundary conditions, asserting that amongst all Lipschitz domains
of fixed volume, the ball has the smallest first eigenvalue. We prove the result in
all space dimensions using ideas from [M.-H. Bossel, C. R. Acad. Sci. Paris Sér.
I Math. 302 (1986), 47–50], where a proof for smooth domains in the plane was
given. The method does not involve the use of symmetrisation arguments. The
results also imply variants of the Cheeger inequality for the first eigenvalue.

1 Introduction

The purpose of this paper is to prove an isoperimetric inequality similar to the well
known Faber-Krahn inequality for the first eigenvalue of the Robin problem

−∆u = λu in Ω ,

∂ u
∂ ν

+βu = 0 on ∂ Ω
(1.1)

on a bounded Lipschitz domain Ω ⊂ RN , N ≥ 2, with outer unit normal ν and
β > 0 constant. It is well known that the eigenvalues of (1.1) form a sequence
0 < λ1 < λ2 < .. . . The eigenvalue λ1 = λ1(Ω ) is referred to as the first eigenvalue
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of (1.1) on the domain Ω . In the model of a vibrating membrane, the boundary
conditions describe an elastically supported membrane, and λ1(Ω ) is the ground
frequency.

We shall prove that amongst all domains of fixed volume, the one on the ball
has the smallest first eigenvalue. In the model of the membrane, this means that
amongst all membranes of the same volume, the one on the ball has the lowest
ground frequency. More precisely, the aim of the paper is to prove the following
theorem.

Theorem 1.1 Let Ω ⊂RN (N ≥ 2) be a bounded Lipschitz domain, β > 0 a con-
stant and λ1(Ω ) the first eigenvalue of (1.1). If B is an open ball of the same
measure as Ω , then λ1(B)≤ λ1(Ω ).

For the case β = ∞, that is, the Dirichlet problem (fixed membrane), this is the
celebrated Faber-Krahn inequality (see for instance [4, 14, 21, 22, 27, 28, 30]). If
β = 0, then λ1(Ω ) = 0 for all bounded domains Ω , so the question we ask is not
very interesting and other questions become relevant (see for instance [4,18,27]).
If β ∈ (0,∞), it is known that there exists a positive lower bound for λ1(Ω ). In [10,
Corollary 2.4] a lower bound in terms of β , the measure of Ω and the isoperimetric
constant is given. In [23, 29], it is shown that if B is a ball circumscribing Ω , then
λ1(B)≤ λ1(Ω ). Note that this lower bound is not evident as, unlike in case of the
Dirichlet problem, λ1(Ω ) is not a monotone function of Ω (see [29] for a counter
example). Other isoperimetric inequalities for Robin problems and a comparison
between various lower bounds for λ1(Ω ) are given in [32–34].

For domains in the plane Theorem 1.1 has been proved in [6] (see also [5, 7]).
For N ≥ 3 Theorem 1.1 has been open for many years. It has been taken up into a
recent list of open isoperimetric problems (see [18, Problem 14] or [10]). The dif-
ficulty in proving Theorem 1.1 is that the level curves (or surfaces in case N ≥ 3)
of the first eigenfunction of (1.1) are not closed in Ω , so the usual symmetrisation
techniques to decrease the Dirichlet integral do not seem to be useful. Symmetri-
sation is avoided in [6] by using an alternative estimate of λ1(Ω ).

We generalise the approach in [6] and prove the desired inequality in any space
dimension for a larger class of domains. At the same time we rectify some short-
comings in [6] and fill in essential technical details not provided there. In addition
to that we set up the proof such that it works simultaneously for Dirichlet boundary
conditions.

Our proof proceeds in several steps. In Section 2 we introduce a functional of
the level sets of the first eigenfunction of (1.1) and derive an alternative representa-
tion of that functional. The idea to use that functional originates from a conformal
invariant called extremal length due to Ahlfors and Beurling [2, Chapter 4] and
results by Hersch [19] as explained in [5]. The next step, presented in Section 3,
is to establish an estimate for λ1(Ω ) in terms of that functional. All these results
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are valid with essentially the same proof for mixed Dirichlet-Robin problems with
β ≥ 0 non-constant. We note that this estimate (from Theorem 3.1 and 3.5) can be
used to prove variants of the Cheeger inequality in a similar manner as carried out
in [6]. The next step is a proof of Theorem 1.1 for domains of class C2 making use
of properties of the radially symmetric problem on the ball. The final step consists
of an approximation argument involving smoothing the domain, and then using
the results on the continuous dependence of λ1(Ω ) on the domain from [9].

We suspect that the assertion of Theorem 1.1 remains true for arbitrary do-
mains in the setting of [10] (see also [3]). In the extreme case of a domain with
a fractal boundary the result is true. Indeed, in that case (1.1) degenerates into a
Dirichlet problem (see [10, Remark 3.5(b)]). By the usual Faber-Krahn inequality
for the Dirichlet problem we have λ1(Ω )≥ µ1(B), where µ1(B) is the first eigen-
value of the Dirichlet problem on the ball B with the same volume as Ω . Since
λ1(B)≤ µ1(B) it follows that λ1(B)≤ λ1(Ω ).

One question we leave open is that of the uniqueness of the minimising do-
main. More precisely, if λ1(B) = λ1(Ω ) for a sufficiently smooth domain Ω with
the same measure as the ball B, does it follow that Ω is a ball? For the Dirichlet
problem, the question is answered in the affirmative, but the proof is not straight-
forward (see the discussion in [21, Section II.8]). The results in the present paper,
in particular Remark 4.3, provide a strong indication that the methods can be used
to derive a uniqueness result for Robin as well as Dirichlet boundary conditions.
This will be attempted elsewhere.

2 A functional of the level sets

In this section we introduce a functional used to prove Theorem 1.1. Since the
proof is essentially the same as for pure Robin boundary conditions, we will cover
a more general situation than actually needed. We consider the mixed boundary
value problem

−∆u = λu in Ω ,

u = 0 on Γ0,

∂ u
∂ ν

+βu = 0 on Γ1,

(2.1)

on the C2-domain Ω , where Γ0,Γ1 are disjoint open and closed subsets of ∂ Ω with
Γ0 ∪Γ1 = ∂ Ω . We further assume that β ∈C1(Γ1), with β (x) > 0 for all x ∈ Γ1. If
Γ0 = /0, then we have a pure Robin problem as in (1.1) and if Γ1 = /0 we have the
Dirichlet problem.

For open sets U ⊂Ω we define the interior and exterior boundary by

∂iU := ∂U ∩Ω and ∂eU := ∂U ∩∂ Ω .



4

Then clearly ∂U = ∂iU ∪ ∂eU is a disjoint union. Given U ⊂ Ω open such that
U ∩Γ0 = /0 and ϕ ∈C(Ω ) non-negative we define the functional

HΩ (U,ϕ) :=
1
|U |

(

∫

∂iU
ϕ dσ +

∫

∂eU
β dσ −

∫

U
|ϕ|2 dx

)

, (2.2)

where σ denotes the (N− 1)-dimensional Hausdorff measure on ∂U and |U | the
Lebesgue measure of U . If the boundary of U is Lipschitz, then σ is the usual
surface measure (see [13, Section 3.3.2]). Since ϕ is continuous on ∂iU it follows
that all integrals in HΩ (U,ϕ) are defined. Note however that the first and last
integrals appearing in HΩ (U,ϕ) do not need to be finite for every choice of U and
ϕ .

We next look at a family of particular sub-domains U , namely the level sets of
the first eigenfunction ψ of (2.1). It is well known that

ψ ∈W 2
p (Ω )∩C∞(Ω ) (2.3)

for all p ∈ (1,∞) (see [1, Theorem 4.2] and standard results on interior regular-
ity). By well known embedding theorems ψ ∈ C1(Ω) (see [17, Corollary 7.11]).
Moreover, ψ can be chosen such that 0 ≤ ψ(x) for all x ∈ Ω and ‖ψ‖∞ = 1. We
let

m := min
x∈Ω

ψ(x).

By the Hopf boundary maximum principle ψ(x) > 0 for all x ∈ Ω ∪Γ1 and ψ
attains its minimum on ∂ Ω (see [16, Theorem 2.15]). If Γ0 = /0, then m > 0 and
otherwise m = 0. We now consider the level sets

Ut := {x ∈Ω : ψ(x) > t}. (2.4)

By the continuity of ψ in Ω , the sets Ut are open. Note that the interior boundary
of Ut is the level surface

St := ∂iUt = {x ∈Ω : ψ(x) = t} (2.5)

and that St = /0 if t 6∈ (m,1]. Note also that U t ∩Γ0 = /0 for all t ∈ (m,1).
The main aim of this section is to establish a new representation of HΩ (Ut ,ϕ).

Key to get the representation is the following result. The proof involves regularity
properties of the level sets Ut and St which will be proved in Lemma 2.3 at the end
of this section.

Proposition 2.1 If ψ is a positive first eigenfunction of (2.1), then

HΩ (Ut , |gradψ|/ψ) = λ1(Ω ) (2.6)

for almost all t ∈ (m,1).
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Proof From Lemma 2.3 given below we know that Ut is Lipschitz and St is of
class C∞ for almost all t ∈ (m,1). We now fix t ∈ (m,1) with these properties and
prove (2.6) for that choice of t. Since ψ satisfies the boundary conditions in (2.1)
we have

β =− 1
ψ

∂ ψ
∂ ν

on Γ1. Moreover, since St is a smooth level surface of ψ we also have

|gradψ|=−∂ ψ
∂ ν

on St if ν denotes the outward pointing unit normal to Ut . Combining the two and
using that Γ0∩∂Ut = /0,

∫

St

|gradψ|
ψ

dσ +

∫

∂eUt

β dσ =−
∫

∂Ut

1
ψ

∂ ψ
∂ ν

dσ .

We have chosen t such that Ut is Lipschitz. Since ψ ∈W 2
p (Ω ) for all p ∈ (1,∞)

and ψ ≥ t > 0 on U t we have |gradψ|/ψ ∈W 1
p (Ut) for p ∈ (1,∞). Hence the

divergence theorem applies (see [26, Théorème 3.1.1]) and thus

∫

St

|gradψ|
ψ

dσ +

∫

∂eUt

β dσ =−
∫

Ut

div
(gradψ

ψ

)

dx

=−
∫

Ut

∆ψ
ψ
− |gradψ|2

ψ2 dx = λ1(Ω )|Ut |+
∫

Ut

|gradψ|2
ψ2 dx.

For the last equality we used that ψ is an eigenfunction of (2.1). If we substitute the
above into the definition of HΩ (Ut , |gradψ|/ψ) the assertion of the proposition
follows. ut

Theorem 2.2 Let ϕ ∈C(Ω ) be non-negative and set

w := ϕ− |gradψ|
ψ

.

Then

HΩ (Ut ,ϕ) = λ1(Ω )+
1
|Ut |

(

∫

St

wdσ −2
∫ 1

t

1
τ

∫

Sτ
wdσ dτ−

∫

Ut

|w|2 dx
)

(2.7)

for almost all t ∈ (m,1).

Proof Note that

|ϕ|2 =
(

w+
|gradψ|

ψ

)2
= |w|2 +2

w
ψ
|gradψ|+ |gradψ|2

ψ2 .
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Using the coarea formula (see [13, Section 3.4.3] or [24, Section 1.2.4]) and noting
that ψ = τ on Sτ

∫

Ut

w
ψ
|gradψ|dx =

∫ 1

t

∫

Sτ

w
ψ

dσ dτ =

∫ 1

t

1
τ

∫

Sτ
wdσ dτ.

The coarea formula applies to any non-negative measurable (not necessarily inte-
grable) function, so the above works for any ϕ ∈C(Ω ). If we substitute the above
into (2.2) and use (2.6), then the assertion of the theorem follows. ut

We finally prove the properties of the level sets Ut used in the proof of Propo-
sition 2.1. The properties are not completely obvious, and implicitly used in [6]
without proof. Some alternative results are mentioned in Remark 2.4 after the
proof of the lemma. Since Ω is of class C2, the function ψ has an extension
ψ̃ ∈W2

p (RN) with compact support (see [17, Theorem 7.25]). Choosing p > N
it follows from standard embedding theorems that ψ̃ ∈ C1(RN). As usual we de-
note by B(z,δ ) the open ball of radius δ centred at z.

Lemma 2.3 If ψ , Ut and St are as above, then the following assertions hold.

(1) The function t 7→ σ(St ) is in L1((0,1)).
(2) The surfaces St are of class C∞ and Ut is Lipschitz for almost all t ∈ (m,1).
(3) There exist c > 0 and t1 ∈ (m,1) such that σ(St )≤ cσ(∂ Ω ) for all t ∈ (m,t1].

Proof (1) By the coarea formula (see [13, Section 3.4.2] or [24, Section 1.2.4])
and (2.3)

∫ 1

0
σ(St )dt = ‖grad ψ‖1 < ∞.

Hence the function t 7→ σ(St ) is in L1((0,1)).
(2) As ψ ∈ C∞(Ω ) Sard’s lemma (see [20, Theorem 3.1.3]) implies that St is

of class C∞ for almost all t ∈ (0,1). Since Ω is of class C2 it is therefore sufficient
to show that Ut can locally be represented by the graph of a Lipschitz function
where the level surfaces St meet Γ1, that is, near St ∩Γ1 (note that St ∩Γ0 = /0).
Let ψ̃ ∈ C1(RN) be an extension of ψ as explained above. Fix x0 ∈ St ∩Γ1 and
t ∈ (m,1). We know that ψ > 0 on Γ1, so by the boundary conditions and the
assumption that β (x0) > 0

grad ψ̃(x0) ·ν(x0) =−βψ(x0) < 0. (2.8)

In particular grad ψ̃(x0) 6= 0. Hence by the implicit function theorem S̃t := {x ∈
RN : ψ̃(x) = t} is locally near x0 a C1-hypersurface. Moreover, S̃t = ∂Ũt , where
Ũt := {x ∈RN : ψ̃(x) > t}. Choose now a coordinate system with origin at x0 such
that the N-th coordinate direction is given by ν(x0). For δ > 0 let

Qδ :=
{

x = (x1, . . . ,xN) ∈ RN : |xi|< r, i = 1, . . . ,N
}

(2.9)
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and Rδ := {x∈Qδ : xN = 0} ⊂RN−1. Since Ω is a domain of class C2 there exists
δ > 0 and a function u ∈C2(Rδ ) such that

Ω ∩Qδ =
{

(x′,xN) ∈ Rδ × (−δ ,δ ) : xN < u(x′)
}

. (2.10)

Now we look at Ũt . Note that the outer unit normal to Ũt at x0 points in the di-
rection of −gradψ(x0). By (2.8) grad ψ̃(x0) has a non-zero component into the
direction of ν(x0). Hence by the implicit function theorem there exists η > 0 and
a function v ∈C1(Rη) such that

Ũt ∩Qη =
{

(x′,xN) ∈ Rη × (−η,η) : xN < v(x′)
}

.

Setting ε := min{δ ,η} and g := min{u,v} we have

(Ũt ∩Ω )∩Qε =
{

(x′,xN) ∈ Rε × (−ε,ε) : xN < g(x′)
}

.

Since the minimum of two C1-functions is Lipschitz continuous it follows that g
is Lipschitz continuous on Rε . The situation is depicted in Figure 1. Hence Ut =

Ũt ∩Ω is Lipschitz near x0, showing that Ut is Lipschitz.

Ut ∩Qε

Qε

R
N−1

xN

Γ1 ⊂ ∂Ω

S̃t
−gradψ̃(x0)

ν(x0)

Fig. 1 Representation of Ut near a boundary point x0 ∈ Γ1.

(3) To prove the final assertion of the lemma let K = {x ∈ Ω : ψ(x) = m}.
By the maximum principle K ⊂ ∂ Ω . By the Hopf boundary maximum principle
(see [16, Theorem 2.15]) we know that ∂ u/∂ ν 6= 0 on K. Hence, as ψ > 0 in Ω

−∂ ψ
∂ ν

(z) =−ν(z) ·gradψ(z) > 0

for all z ∈ K. By continuity of ν and gradψ there exists α > 0 such that

−ν(z) ·gradψ(z)≥ α > 0

for all z ∈ K. Since continuous functions are uniformly continuous on compact
sets there exists δ0 > 0 such that

−ν(z) ·gradψ̃(x)≥ α
2

> 0 (2.11)
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for all z ∈ K and x ∈ B(z,δ0). Similarly there exists δ1 > 0 such that ν(x) ·ν(z) >

1/2 for all z∈K and x∈ B(z,δ1)∩∂ Ω . Hence there exists δ > 0 such that for each
z ∈ K there is an open cube Qz,δ centred at z such that, if we choose a coordinate
system with xN in the ν(z) direction, then

(i) Qz,δ has the form (2.9);
(ii) there exists u ∈C2(Rz,δ ) such that (2.10) holds;

Here Rz,δ is as before. We also use that by the implicit function theorem, ∂ Ω is
a graph over RN−1 as long as ν(x) · ν(z) 6= 0. Then Qz,δ , z ∈ K, forms an open
cover of the compact set K and therefore has a finite sub-cover. Hence there ex-
ist z1, . . . ,zn ∈ K such that Qzk,δ is an open cover of K. Since ψ attains a strict
minimum on K there exists t1 ∈ (m,1) such that

St ⊂V :=
n

⋃

k=1

Qzk,δ

for all t ∈ (m,t1]. We now fix t ∈ (0,t1] and focus our attention on one particular
cube, say Qδ := Qzk,δ . As done above we choose a coordinate system with origin
at z := zk and xN-coordinate into the direction of ν(z). Then (2.11) reads

− ∂ ψ̃
∂ xN

(x)≥ α
2

> 0 (2.12)

for all x ∈ Qδ . If St ∩Qδ 6= /0, then by the implicit function theorem there exists a
subset D ⊂ Rδ and function v ∈C1(D,R) such that St ∩Qδ is the graph of v. The
surface area of that graph is given by

σ(St ) =

∫

D

√

1+ |gradv(x′)|2 dx′.

Since St is a level surface of ψ̃ , the normal is given by

(−gradv(x′),1) =
1

∂ ψ̃
∂ xN

(x′,v(x′))
grad ψ̃(x′,v(x′)),

so taking into account (2.12) we have

σ(St) =

∫

Rδ

1

| ∂ ψ̃
∂ xN

(x′,v(x′))|
|grad ψ̃(x′,v(x′))|dx′ ≤ 2

α
‖grad ψ̃‖∞ σ(Rδ )

We have also chosen δ such that ∂ Ω ∩Qδ is the graph of a C2-function u. Hence
σ(Rδ )≤ σ(∂ Ω ∩Qδ )≤ σ(∂ Ω ), and with the above

σ(St ∩Qδ )≤ 2
α
‖grad ψ̃‖∞ σ (∂ Ω )

Hence adding up over all n cubes we get

σ(St )≤
2n
α
‖grad ψ̃‖∞ σ(∂ Ω ),

completing the proof of the lemma. ut
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The assertions of the above lemma remain true under alternative assumptions. We
discuss some possibilities below.

Remark 2.4 (a) For (1) and (3) of Lemma 2.3 above we only need that β (x) ≥
0 for all x ∈ Γ1, not positivity everywhere. If we have pure Dirichlet boundary
conditions, that is, Γ0 = ∂ Ω , then (2) simply follows from Sard’s theorem since
U t ⊂Ω for all t ∈ (0,1).

(b) To show that Ut is Lipschitz in part (2) we used that grad ψ̃ 6= 0 on Γ1. This
is guaranteed by the boundary conditions if β (x) > 0 for all x ∈ Γ1. If β = 0 on
part of Γ1, then the argument does not work any more. We could try and overcome
this by using Sard’s theorem, and applying it to the extension ψ̃ of ψ . The idea is
that almost all t ∈ (m,1) are regular values of ψ̃ . Recall that t is a regular value of
ψ̃ if gradψ(x) 6= 0 for all x ∈ S̃t . In that case S̃t is a hyper-surface of class C1, and
by the boundary conditions

−∂ ψ
∂ ν

(z) =−ν(z) ·gradψ(z)≥ 0

for z ∈ Γ1 ∩ S̃t . If we choose a regular value t and x0 ∈ S̃t ∩Γ1 then by the implicit
function theorem we can find local representations of S̃t and Γ1 as in the proof of
(2) if we choose the N-th coordinate in the direction of

ν(x0)+
grad ψ̃(x0)

|grad ψ̃(x0)|
.

The problem is that we only know that ψ̃ ∈ C1(RN) and thus we cannot apply
Sard’s theorem as attempted above, not even in dimension N = 2 (see [36]). How-
ever, if ψ has an extension ψ̃ ∈ CN(RN), then Sard’s Lemma (see [20, Theo-
rem 3.1.3]) applies and the above arguments work. To ensure that the above is
the case it is sufficient to assume that Ω is of class CN,α and β ∈CN−1,α (Γ1) for
some α ∈ (0,1). Then ψ ∈ CN,α (Ω) has an extension ψ̃ ∈ CN,α (RN) as needed.
Of course the above works if Ω and β are of class C∞.

(c) If N = 2, then by the analyticity of the eigenfunction ψ and the boundary
conditions gradψ(x) = 0 for at most finitely many points in Ω . Hence by the
implicit function theorem Ut is Lipschitz and (2.6) and (2.7) hold for all t ∈ (m,1)

except possibly a finite number of t.

3 A Lower Estimate for the First Eigenvalue

The purpose of this section is to give a lower estimate of the first eigenvalue of
(2.1) in terms of the functional HΩ introduced in the previous section. That esti-
mate is the key to prove the main result of this paper. The proofs are slightly dif-
ferent for pure Robin boundary conditions. Since we are mainly concerned with
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such problems we start this section by looking at pure Robin conditions. At the
end of the section we prove a similar estimate for problems involving Dirichlet
boundary conditions (Theorem 3.5). We conclude the section by discussing some
variational characterisations of λ1(Ω ).

We make the same assumptions on Ω and β as in Section 2, but assume that
Γ1 = ∂ Ω . In particular we assume that β ∈C1(∂ Ω ) with β (x) > 0 for all x ∈ ∂ Ω .
According to Remark 2.4 we could just require that β (x)≥ 0 on ∂ Ω with β (x) > 0
somewhere if β and the domain are sufficiently smooth. We consider the convex
subset Mβ := Mβ (Ω ) of C(Ω ) given by

Mβ :=
{

u ∈C(Ω ) : limsup
x→z

ϕ(x)≤ β (z) for all z ∈ ∂ Ω
}

,

(Functions in Mβ are called admissible repartitions in [5, 6].) As in the previous
section we normalise the first eigenfunction ψ of (1.1) such that it is positive with
‖ψ‖∞ = 1 and m = minψ . Finally let Ut and St be the level sets of ψ as defined in
(2.4) and (2.5).

Theorem 3.1 Let Ω be a bounded domain of class C2 and λ1(Ω ) the first eigen-
value of (1.1). Then, with the above notation, for every ϕ ∈ Mβ there exists
t ∈ (m,1) such that HΩ (Ut ,ϕ)≤ λ1(Ω ). Moreover,

λ1(Ω )≥ inf
t∈(m,1)

HΩ (Ut ,ϕ)≥ inf
U ⊂Ω open

HΩ (U,ϕ) (3.1)

for all ϕ ∈Mβ .

It is evident that (3.1) follows from the first assertion of the theorem. Hence, the
remainder of this section is devoted to the proof of the first assertion. A very
special role will be played by the function |gradψ|/ψ .

Remark 3.2 Note that |gradψ|/ψ ∈ Mβ only under very special conditions. We
show that |gradψ|/ψ ∈Mβ if and only if ψ is locally constant on ∂ Ω . Indeed, if ψ
is locally constant on ∂ Ω , then ∂ ψ/∂ ν =−|gradψ|. By the boundary condition
in (1.1) we have |gradψ|/ψ ∈ Mβ . If |gradψ|/ψ ∈ Mβ , then by the boundary
condition and the continuity of gradψ

|gradψ|
ψ

≤ β =− 1
ψ

∂ ψ
∂ ν
≤ |gradψ|

ψ

for all x ∈ ∂ Ω . Hence ∂ ψ/∂ ν = −|gradψ| for all x ∈ ∂ Ω , implying that ψ is
locally constant on ∂ Ω .

Given ϕ ∈C(Ω ) we define w as in Theorem 2.2, namely

w := ϕ− |gradψ|
ψ

. (3.2)
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For the proof of Theorem 3.1 we need the differentiability of a function appearing
in the representation (2.7) of HΩ (Ut ,ϕ). The statement remains valid under the
assumptions of Section 2.

Lemma 3.3 Suppose that the assumptions of Section 2 hold and that ϕ ∈ C(Ω )

is non-negative such that ϕ ∈ L1(U) for every open set U ⊂ Ω with U ⊂ Ω ∪Γ1.
Let w be as in (3.2) and define

F(t) :=
∫ 1

t

1
τ

∫

Sτ
wdσ dτ

for all t ∈ (m,1). Then F is absolutely continuous on [ε,1) for all ε ∈ (0,1) and

d
dt

F(t) =−1
t

∫

St

wdσ

for almost all t ∈ (0,1).

Proof Fix ε ∈ (0,1). By assumption ϕ ∈ C(Ω )∩ L1(Uε). Applying the coarea
formula (see [13, Section 3.4.3] or [24, Section 1.2.4])

∫ 1

ε

1
τ

∫

Sτ
ϕ dσ dτ =

∫

Uε

ϕ
ψ
|gradψ|dx < ∞

and
∫ 1

ε

1
τ

∫

Sτ

|gradψ|
ψ

dσ dτ =
∫

Uε

|gradψ|2
ψ2 dx < ∞,

where we used that |gradψ|/ψ is bounded on Uε . Since the functions involved
are all non-negative it follows that

f (τ) :=
1
τ

∫

Sτ
wdσ =

1
τ

∫

Sτ
ϕ dσ − 1

τ

∫

Sτ

|gradψ|
ψ

dσ

defines a function in L1((0,1)). Hence

F(t) =

∫ 1

t
f (τ)dτ

is absolutely continuous on [ε,1) and thus differentiable almost everywhere (see
[31, Theorem 8.17]). Moreover,

F ′(t) =− f (t) =−1
t

∫

St

wdσ

for almost all t ∈ (ε,1). Since ε ∈ (0,1) was arbitrary this completes the proof of
the lemma. ut

The last ingredient for the proof of Theorem 3.1 is the following estimate for w
near ∂ Ω . It is used in a contradiction argument, whose details are completely
omitted in [5–7]. We again look at the case where Γ1 = ∂ Ω .
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Lemma 3.4 Let ϕ ∈Mβ and let w be as in (3.2). Then for every ε > 0 there exists
δ > 0 such that w(x)≤ ε for all x ∈ Ω with dist(x,∂ Ω ) < δ .

Proof Assume that ϕ ∈ Mβ and fix ε > 0. Since |gradψ|/ψ is continuous and
therefore uniformly continuous on the compact set Ω there exists δ0 > 0 such that

∣

∣

∣

|gradψ(x)|
ψ(x)

− |gradψ(z)|
ψ(z)

∣

∣

∣
<

ε
2

(3.3)

for all x,z ∈ Ω with |x− z|< δ0. Fix z ∈ ∂ Ω . By assumption limsupx→z ϕ(x) ≤
β (z). Hence there exists rz > 0 such that supx∈B(z,rz)∩Ω ϕ(x)≤ β (z)+ ε/2 and so

ϕ(x)−β (z)≤ ε
2
. (3.4)

for all x ∈ B(z,rz)∩Ω . The balls B(z,rz), z ∈ ∂ Ω form an open cover of ∂ Ω .
By the compactness of ∂ Ω we can select a finite sub-cover B(zi,ri), i = 1, . . . ,n,
where ri := rzi . We then choose δ ≤min{r1, . . . ,rn,δ0} such that x ∈⋃n

i=1 B(zi,ri)

whenever x ∈ Ω with dist(x,∂ Ω ) < δ . Fix now x ∈ Ω with dist(x,∂ Ω ) < δ . By
choice of δ there exists i ∈ {1, . . . ,n} with x ∈ B(zi,ri). Since by the boundary
conditions β (zi)≤ |gradψ(zi)|/ψ(zi) we get from (3.3) and (3.4)

w(x) = ϕ(x)− |gradψ(x)|
ψ(x)

≤ ϕ(x)−βi(zi)+βi(zi)−
|gradψ(x)|

ψ(x)

≤ ε
2

+
|gradψ(zi)|

ψ(zi)
− |gradψ(x)|

ψ(x)
≤ ε

2
+

ε
2

= ε.

Since the above works for any choice of x under consideration the assertion of the
lemma is proved. ut

We are now ready to give a proof of Theorem 3.1.

Proof (Proof of Theorem 3.1) We give a proof by contradiction. Suppose that there
exists ϕ ∈Mβ such that

λ1(Ω ) < HΩ (Ut ,ϕ) (3.5)

for all t ∈ (m,1). Set w as in (3.2) and F as in Lemma 3.3. Then by Theorem 2.2

λ1(Ω ) < HΩ (Ut ,ϕ) = λ1(Ω )+
1
|Ut |

(

∫

St

wdσ −2F(t)−
∫

Ut

|w|2 dx
)

and therefore
2F(t) <

∫

St

wdσ −
∫

Ut

|w|2 dx (3.6)

for almost all t ∈ (m,1). Using Lemma 3.3 we conclude that

d
dt

(

t2F(t)
)

= t
(

−
∫

St

wdσ +2F(t)
)

<−t
∫

Ut

|w|2 dx≤ 0 (3.7)
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for almost all t ∈ (m,1). Hence the function t2F(t) is strictly decreasing on (m,1).
Since F(1) = 0 and F is continuous there exist η > 0 and t0 ∈ (m,1) such that
F(t) > η for all t ∈ (m,t0]. We now show that this contradicts the assumption
that ϕ ∈ Mβ . By Lemma 2.3 there exist t1 ∈ (m,t0] and c > 0 such that σ(St) ≤
cσ(∂ Ω ) for all t ∈ (m,t1]. If we set

ε :=
η

cσ(∂ Ω )
,

then by Lemma 3.4 there exists δ > 0 such that w(x) ≤ ε for all x ∈ Ω with
dist(x,∂ Ω ) < δ . Since ψ attains a strict minimum on ∂ Ω there exists t ∈ (m,t1]

such that dist(x,∂ Ω ) < δ for all x ∈ St . We can choose t such that (3.6) also holds.
Hence, by (3.6) and our choice of ε,t and η

0 < 2η < 2F(t) <

∫

St

wdσ ≤ ε σ(St)≤ η.

Since this is obviously a contradiction, (3.5) cannot be true for all t ∈ (m,1). Hence
there exists t ∈ (m,1) such that HΩ (Ut ,ϕ)≥ λ1(Ω ) as claimed. ut

We next turn to problems involving Dirichlet boundary conditions, that is, prob-
lems of the form (2.1) with Γ0 6= /0. The only difference in the proof is that it re-
quires another contradiction argument. The main ideas are from [5, Section 8.3],
where a proof in case N = 2 and an outline for N ≥ 3 for pure Dirichlet bound-
ary conditions was given. The set Mβ used above will be replaced by the set of
non-negative functions in C(Ω ).

Theorem 3.5 Let Ω be a bounded domain of class C2 and λ1(Ω ) the first eigen-
value of (2.1) with Γ0 6= /0. Then, with the above notation, for every ϕ ∈ C(Ω )

non-negative there exists t ∈ (0,1) such that HΩ (Ut ,ϕ)≤ λ1(Ω ). Moreover,

λ1(Ω )≥ inf
t∈(0,1)

HΩ (Ut ,ϕ)≥ inf
U ⊂Ω open

U∩Γ0= /0

HΩ (U,ϕ) (3.8)

for all ϕ ∈C(Ω ) non-negative.

Proof We give a proof by contradiction, assuming there exists ϕ ∈ C(Ω ) non-
negative such that (3.5) holds for all t ∈ (0,1). Then, as in the proof of Theo-
rem 3.1, we get (3.6) as well as (3.7). Hence, as before, the function G(t) := t2F(t)
and F(t) are positive and strictly decreasing on (0,1). As a consequence

g(t) :=
1

G(t)

is strictly increasing on (0,1). Since F(t) > 0 it follows from (3.6) that
∫

St

wdσ > 2F(t)+

∫

Ut

|w|2 dx > 0
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for almost all t ∈ (0,1). By the Cauchy-Schwarz inequality and the coarea formula

G(t) = t2F(t) = t
∫ 1

t

t
τ

∫

Sτ
wdσ dτ < t

∫ 1

t

∫

Sτ
wdσ dτ

= t
∫

Ut

w|gradψ|dx ≤ t
(

∫

Ut

|w|2 dx
)1/2(∫

Ut

|gradψ|2 dx
)1/2

for all t ∈ (0,1). Taking into account (3.7) we get

tg′(t) =− tG′(t)
(G(t))2 >

(

∫

Ut

|gradψ|2 dx
)−1

for almost all t ∈ (0,1). Fix now t1 ∈ (0,1). Since the last integral is a decreasing
function of t we have

g′(t) >
c
t

for almost all t ∈ (0,t1] if we set c := ‖gradψ‖−2
2 . Since G is absolutely continuous

and positive on [ε,1) for all ε ∈ (0,1), so is g. Using the fundamental theorem of
calculus for such functions (see [31, Theorem 8.18])

g(t1)≥ g(t1)−g(ε) =

∫ t1

ε
g′(τ)dτ > c

∫ t1

ε

1
τ

dτ = c(logt1− logε)

for all ε ∈ (0,t1]. Letting ε to zero we see that − logε is bounded from above. As
this is not true, the assertion of the theorem must be valid. ut

As a corollary we get the following characterisation of λ1(Ω ). Special cases ap-
pear in [5].

Corollary 3.6 Under the assumptions of Theorem 3.5

λ1(Ω ) = max
ϕ∈C(Ω )

ϕ≥0

(

ess-inf
t∈(0,1)

HΩ (Ut ,ϕ)
)

= max
ϕ∈C(Ω )

ϕ≥0

(

ess-inf
U ⊂Ω open

U∩Γ0= /0

HΩ (U,ϕ)
)

.

Proof The assertion follows from Theorem 3.5 if we set ϕ := |gradψ|/ψ and
then use Proposition 2.1. ut

Remark 3.7 If λ1(Ω ) is the first eigenvalue of (1.1), for pure Robin problems we
expect that, as above

λ1(Ω ) = µ(Ω ) := sup
ϕ∈Mβ

(

ess-inf
t∈(m,1)

HΩ (Ut ,ϕ)
)

. (3.9)

From Theorem 3.1 we have λ1(Ω )≤ µ(Ω ), but we are not sure whether equality
holds, unless ϕ := |gradψ|/ψ ∈Mβ of course, in which case we have a maximum.
From Remark 3.2 we know that ϕ ∈Mβ if and only if ψ is locally constant on ∂ Ω .
In the general case we need to interchange the order of supremum and infimum.
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We can choose a sequence ϕn ∈C∞
c (Ω ) with 0≤ ϕn ≤ ϕn+1 ≤ ϕ for all n ∈N and

ϕn→ ϕ pointwise. Then by the monotone convergence theorem
∫

St

ϕn dσ +
∫

Ut

|ϕn|2 dx→
∫

St

ϕ dσ +
∫

Ut

|ϕ|2 dx

for all t ∈ (m,1) as n→ ∞. Hence, from the definition (2.2) of HΩ and Proposi-
tion 2.1 we see that HΩ (Ut ,ϕn)→ HΩ (Ut ,ϕ) = λ1(Ω ) for all t ∈ (m,1). On the
other hand Theorem 3.1 implies the existence of tn ∈ (m,1) such that λ1(Ω ) ≥
HΩ (Utn ,ϕ) for all n ∈ N, but that does not necessarily imply (3.9).

4 Proof of the Main Result

In this section we give a proof of Theorem 1.1. The key is the estimate of λ1(Ω )

given in Theorem 3.1 applied to a function ϕ ∈ Mβ constructed as a rearrange-
ment of an appropriate function on the ball. The same proof works for Dirichlet
boundary conditions with obvious modifications using Theorem 3.5.

We start by looking at properties of (1.1) on a ball. We assume that β ∈ (0,∞)

is a constant and that B is a ball of radius R. Without loss of generality we can
assume that B is centred at the origin. We denote the first eigenvalue of (1.1) on
B by λ ∗1 and a corresponding eigenfunction by ψ∗. As in the previous section we
normalise ψ∗ such that ψ∗ > 0 and ‖ψ∗‖∞ = 1. Since B is a ball the eigenfunction
is radially symmetric, that is, ψ∗(x) = v(|x|) for some function v ∈C1([0,R]). As
in the previous section, the function

ϕ∗ :=
|gradψ∗|

ψ∗
(4.1)

will play a crucial role. By the radial symmetry ψ ∗ is constant on ∂ B and thus
by Remark 3.2 ψ∗ ∈ Mβ (B). The idea then is to construct a rearrangement ϕ of
ϕ∗ lying in Mβ (Ω ), and then to use Theorem 3.1 to prove Theorem 1.1. We next
establish some properties of ϕ∗. Since ϕ∗ is radially symmetric we only need to
look at the radial function

g(|x|) := ϕ∗(x)

for x ∈ B.

Lemma 4.1 The function g : (0,R)→ (0,∞) is strictly increasing.

Proof Since ψ∗ satisfies (1.1), the function v defined above is a positive solution
of the radial equation

v′′(r)+
N−1

r
v′(r)+λ ∗1 v(r) = 0 for r ∈ (0,R].
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It is easily verified that

v(r) = cr−(N/2−1)JN/2−1(
√

λ ∗r)

for all r ∈ (0,R], where Jn is the Bessel function of index n and c a normalising
constant. Since ψ∗ is decreasing in the radial direction and by elementary proper-
ties of Bessel functions (see [35, page 45])

|gradψ∗(x)|=−v′(|x|) = c
√

λ ∗|x|−(N/2−1)JN/2(
√

λ ∗|x|)

for all x ∈ B. Hence

g(r) =
√

λ ∗
JN/2(

√
λ ∗r)

JN/2−1(
√

λ ∗r)

for all r ∈ (0,R). If jn, n ∈N, are the positive zeros of the Bessel function JN/2−1,
then it is known that

JN/2(r)

JN/2−1(r)
=−

∞

∑
n=0

( 1
r− jn

+
1

r + jn

)

whenever r 6= jn for all n ∈ N (see [35, page 498]). Since each of the terms in the
above series is a strictly decreasing function of r between the zeros of JN/2−1, it
follows that g is strictly increasing as claimed. ut

Assume now that Ω is a domain of class C2 and that the ball B has the same volume
as Ω . We next define ϕ ∈Mβ (Ω ) by constructing a suitable rearrangement of ϕ ∗.
As in the previous section we let ψ > 0 be the eigenfunction to λ1(Ω ) with ψ > 0,
‖ψ‖∞ = 1 and 0 < m = minx∈Ω ψ(x). As before, set Ut := {x ∈Ω : ψ(x) > t} and
St := {x ∈Ω : ψ(x) = t}. In what follows we denote the ball of radius r centred at
the origin by Br. We let r(t) be the radius of the ball with the same volume as Ut .
Since Ω and B have the same volume and Um = Ω we have r(m) = R. For x ∈ St

and t ∈ (m,1] we now define

ϕ(x) := g(r(t)).

Since Ω is a disjoint union of St , t ∈ (m,1], the function ϕ is well defined.

Lemma 4.2 The function ϕ constructed above lies in Mβ (Ω ). Moreover,

λ ∗1 = HB(Br(t),ϕ∗)≤ HΩ (Ut ,ϕ) (4.2)

for all t ∈ (m,1).
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Proof Since g is increasing it follows that {x ∈ Ω : ϕ(x) > t}= Ω \U t and {x ∈
Ω : ϕ(x) < t} = Ut are open in Ω for every t ∈ R. Hence ϕ is continuous on
Ω . Moreover, by construction and since g is increasing with g(R) = β we have
ϕ(x)≤ β for all x ∈ Ω . Hence ϕ ∈Mβ (Ω ) as claimed. We next prove (4.2). The
first equation follows by (4.1) and Proposition 2.1. Since by construction the level
sets of ϕ∗ and ϕ have the same volume

∫

Ut

|ϕ|2 dx =

∫

Br(t)

|ϕ∗|2 dx (4.3)

for all t ∈ (m,1] (see [24, Section 1.2.3]). As |Br(t)| = |Ut |, the isoperimetric in-
equality (see [4] or [15, Theorem 3.2.43]) implies that σ(∂ Br(t))≤ σ(∂Ut) for all
t ∈ (m,1]. As ϕ(x) = g(r(t))≤ β for x ∈ St we have

∫

∂ Br(t)

ϕ∗ dσ = g(r(t))σ(∂ Br(t))≤ g(r(t))σ(∂Ut)

=

∫

St

g(r(t))dσ +

∫

∂eUt

g(r(t))dσ ≤
∫

St

ϕ dσ +

∫

∂eUt

β dσ . (4.4)

Using the definition (2.2) of HB and HΩ inequality (4.2) follows. ut

Remark 4.3 If Ut is a ball and σ(∂eUt) = 0, then it is evident from (4.3) and (4.4)
that there is equality in (4.2). From (4.4), the converse is also true, at least if Ut

is sufficiently smooth since there is equality in the isoperimetric inequality if and
only if Ut is a ball (see [8, Theorem 10.2.1]). Recall that Ut is Lipschitz for almost
every t ∈ (m,1) by Lemma 2.3. From the above it should be possible to prove
a uniqueness result for the minimising domain as mentioned at the end of the
introduction.

Now we can give a proof of Theorem 1.1 under the assumption that Ω is a bounded
domain of class C2: If ϕ ∈ Mβ (Ω ) is the function constructed above, then by
Theorem 3.1 there exists t ∈ (m,1) such that λ1(Ω ) ≥ HΩ (Ut ,ϕ). But then (4.2)
implies that

λ1(Ω )≥ HΩ (Ut ,ϕ)≥HB(Br(t),ϕ∗) = λ ∗1 ,

completing the proof of Theorem 1.1 for bounded domains of class C2.
For the final step in the proof of Theorem 1.1 assume now that Ω is a bounded

Lipschitz domain. This means that ∂ Ω is locally the graph of a Lipschitz function
as explained in the proof of Lemma 2.3. It is shown in [25] or [12, Theorem 5.1]
that Ω can be approximated from the outside by a sequence of domains Ωn such
that |Ωn| → |Ω | and the same charts representing ∂ Ω also work for ∂ Ωn. On top
of that we can choose Ωn such that the boundary measure locally converges. More
precisely, there exists a cover of cubes Qi, i = 1, . . . ,m, of the form (2.9) such that
∂ Ωn,∂ Ω ⊂ ⋃m

i=1 Qi. Moreover, there exist Lipschitz functions ui : Ri → R as in
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(2.10). Finally there exist functions ui,n ∈ C∞(Ri) such that a property similar to
(2.10) holds with ui,n→ ui uniformly, ‖gradui,n‖∞ ≤ ‖gradui‖∞ for all n ∈ N and
gradui,n→ gradui almost everywhere. Note that Lipschitz functions are differen-
tiable almost everywhere by Rademacher’s theorem (see [13, Section 3.1.2]), so
the above statements on the gradients make sense. In particular we get

√

1+ |gradui,n|2→
√

1+ |gradui|2 (4.5)

almost everywhere for all i = 1, . . . ,m. Now it follows from [9, Theorem 4.4
and 6.2] that λ1(Ωn)→ λ1(Ω ) (because of the boundedness of ‖grad ui,n‖∞ and
(4.5) we have g ≡ 1 in our situation). Denote by Bn the ball of the same volume
as Ωn centred at the origin. Since |Ωn| → |Ω | we conclude from the above results
in [9] also that λ1(Bn)→ λ1(B). As Ωn is of class C∞ we have

λ1(Bn)≤ λ1(Ωn)

for all n ∈ N by what we have proved already. Passing to the limit the assertion of
Theorem 1.1 follows for Lipschitz domains.

If we deal with Dirichlet boundary conditions we have to replace the above
approximation argument. We assume that Ω is a domain of finite volume (not
necessarily bounded). Then there exists a sequence (Ωn) of domains of class C∞

such that Ω n ⊂ Ωn+1 ⊂ Ω for all n ∈ N and
⋃∞

n=1 Ωn = Ω . Let Bn be a ball of
the same volume as Ωn. Then, by the above result λ1(Bn)≤ λ1(Ωn) for all n ∈ N.
Then λ1(Bn)→ λ1(B) and λ1(Ωn)→ λ1(Ω ) (see for instance [11, Section 4]).
Hence λ1(B) ≤ λ1(Ω ) if Ω is an arbitrary domain of finite measure and B a ball
with the same measure.

Acknowledgements I thank Norman Dancer and James Kennedy for helpful discussions.
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