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Abstract By analysing some explicit examples we investigate the positivity and the
non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator as-
sociated with the operator ∆ +λ I as λ varies. It is known that the semigroup is pos-
itive if λ < λ1, where λ1 is the principal eigenvalue of −∆ with Dirichlet boundary
conditions. We show that it is possible for the semigroup to be non-positive, eventu-
ally positive or positive and irreducible depending on λ > λ1.
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1 Introduction

Let Ω ⊆ RN be a bounded open set with smooth boundary, and let λ ∈ R. The
Dirichlet-to-Neumann operator Dλ is a closed operator on L2(∂Ω) defined as fol-
lows. Given ϕ ∈ H1/2(Ω) solve the Dirichlet problem

∆u+λu = 0 in Ω ,
u = ϕ on ∂Ω .

(1.1)

A solution only exists if λ is not an eigenvalue of −∆ with Dirichlet boundary con-
ditions. If u is smooth enough we define

Dλ ϕ :=
∂u
∂ν

, (1.2)

where ν is the outer unit normal to ∂Ω . One can show Dλ extends uniquely to an
operator Dλ ∈L

(
H1/2(∂Ω),H−1/2(∂Ω)

)
. If we denote its part in L2(∂Ω) again by
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Dλ , then−Dλ generates an analytic semigroup e−tDλ on L2(∂Ω) and also on C(∂Ω);
see for instance [4,5,10,12].

Let 0 < λ1 < λ2 < λ3 < .. . be the strictly ordered Dirichlet eigenvalues of−∆ on
Ω . It is shown in [4,5] that e−tDλ is positive and irreducible if λ < λ1. The question
left open was whether or not the semigroup is positive for any λ > λ1. It is tempting
to conjecture that it is not positive for λ > λ1. The aim of this paper is to explore
this question by means of two explicit examples, and to show that there is no obvious
conjecture. The examples should stimulate more research into positivity properties of
e−tDλ on general domains.

The first example is a bounded interval Ω = (0,L), where L > 0. In that case
positivity and non-positivity alternate at each Dirichlet eigenvalue λk = (kπ/L)2. De-
tails are given in Section 3. One could therefore conjecture that positivity and non-
positivity alternate at each eigenvalue, possibly counting multiplicity. One could also
conjecture that if e−tDλ is a positive semigroup for some λ ∈ (λk,λk+1), then e−tDλ is
a positive semigroup on the whole interval (λk,λk+1). Such conjectures are disproved
by the second example.

Theorem 1.1 Let Ω = B(0,1) be the unit disc in R2. Then the semigroup e−tDλ has
the following properties.

(i) The semigroup e−tDλ is positive and irreducible for all λ < λ1, and for λ in a
left neighbourhood of every simple eigenvalue.

(ii) The semigroup e−tDλ is eventually positive and irreducible for all λ ∈ (λ3,λ4).
More precisely, there exists T > 0 such that e−tDλ is positive and irreducible
for all t ≥ T and all λ ∈ (λ3,λ4).

(iii) The semigroup e−tDλ is not positive for λ in a neighbourhood of every double
eigenvalue, and in a right neighbourhood of every simple eigenvalue.

Note that all Dirichlet eigenvalues on the disc are of multiplicity one or two; see
Section 4. From Theorem 1.1 we deduce the following facts.

1. The semigroup e−tDλ can change from not positive to positive between two eigen-
values. According to the above theorem this is the case for λ ∈ (λ3,λ4).

2. It is possible that e−tDλ is positive (and irreducible) for large enough t, but not for
small t.

3. In order for e−tDλ to be positive (or even eventually positive), the smallest eigen-
value µ1(λ ) of Dλ must have a positive eigenfunction. We see in Section 4 why
this is only possible in a left neighbourhood of every simple eigenvalue.

4. It may be that the semigroup e−tDλ is eventually positive for all λ ∈ (λk−1,λk) if
λk is a simple eigenvalue. This is however not entirely clear; see Remark 4.7.

Proofs and further discussions of the example of the disc are given in Section 4. The
analysis of the explicit examples gives insight into what could be true in general.
However, one has to be careful not to infer too much from the multiplicities of the
eigenvalues. Due to the symmetry of the ball we expect higher multiplicity, but for
a generic domain, the eigenvalues are all simple; see [21,13]. It just happens that on
the ball the simple eigenvalues have the properties required for the positivity of the
semigroup. Supporting evidence for the comments below is given in Section 5.
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1. An important necessary condition for the positivity of the semigroup is that the
smallest eigenvalue of Dλ has a positive eigenfunction. The condition is not suf-
ficient as the example of the disc shows.

2. There is a good chance that a positive or eventually positive semigroup is (eventu-
ally) irreducible. Standard results on positive irreducible operators (Krein-Rutman
Theorems) then imply the simplicity and uniqueness of the eigenvalue with posi-
tive eigenfunction. Hence we only expect positivity near simple eigenvalues.

3. We do not expect positivity of the semigroup near every simple eigenvalue be-
cause the corresponding eigenfunctions have changing sign most of the time.
Note that every eigenvalue of Dλ corresponds to an eigenvalue of−∆ with Robin
boundary conditions, that is, if Dλ ϕ = µϕ , and u solves (1.1), then

−∆u = λu in Ω ,
∂u
∂ν
−µu = 0 on ∂Ω ;

(1.3)

see [5]. Hence, for the minimal eigenvalue of Dλ to have a positive eigenfunction,
a corresponding eigenfunction u of the Robin problem needs to have a positive
(or negative) trace. This is not a generic property even if the eigenvalue is simple.

4. For most domains, the eigenfunctions to the second eigenvalue of the Dirichlet
or Robin problem do not have a closed nodal line. Hence the eigenfunction of
Dλ which is the trace of that eigenfunction has changing sign. In such a situation
the semigroup e−tDλ is not positive for λ ∈ (λ1,λ2). There are however examples
where the nodal line is closed and therefore the trace is positive; see [16]. Never-
theless, even in that case we do not expect positivity or even eventual positivity
of e−tDλ for λ in a right neighbourhood of λ1. However, we do expect eventual
positivity or even positivity for some λ ∈ (λ1,λ2).

We finally note that our results provide counter-examples to a claim in [12], where
the main theorem implies that e−tDλ is a positive semigroup regardless of the value
of λ . The proof in [12] is correct for λ < λ1, but does not work for λ > λ1 due to an
incorrect application of the maximum principle in the appendix of [11]. Positivity in
the case λ = 0 is also proved in [10].

2 The Dirichlet-to-Neumann operator

We briefly outline how the Dirichlet-to-Neumann operator Dλ can be defined by
means of a bilinear form. Given ϕ and ψ , solve (1.1) for boundary values ϕ and
ψ . This gives functions u,v ∈ H1(Ω). We then let

aλ (ϕ,ψ) :=
∫

Ω

∇u∇v̄−λuv̄dx. (2.1)

This form turns out to be bounded on H1/2(∂Ω). If the domain and the functions
involved are smooth enough, then we can apply the divergence theorem and (1.1) to
conclude that

aλ (ϕ,ψ) =−
∫

Ω

(∆u+λu)v̄ dx+
∫

∂Ω

ψ̄
∂u
∂ν

dσ =
∫

∂Ω

ψ̄Dλ ϕ dσ . (2.2)
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Hence Dλ is the operator induced by the form aλ on L2(∂Ω). A rigorous treatment of
this approach on non-smooth domains can be found in [2,4,5]. To analyse the positiv-
ity of e−tDλ we either compute the semigroup explicitly, or we use the Beurling-Deny
criterion. That criterion asserts that e−tDλ ≥ 0 if and only if

aλ (ϕ
+,ϕ−)≤ 0

for all ϕ ∈D(aλ ); see [18, Theorem 2.6]. Hence if we can find ϕ such that aλ (ϕ
+,ϕ−)>

0, then the semigroup cannot be positive. We use this criterion to prove non-positivity
in a left or right neighbourhood of each eigenvalue of the Dirichlet Laplacian on the
disc.

From the form we can also say something about the stability of the semigroup
e−tDλ ; see also [4].

Proposition 2.1 The semigroup e−tDλ is exponentially stable if λ < 0, and unstable
if λ > 0.

Proof The stability is determined by the sign of the first eigenvalue of Dλ which is
given by the infimum of the Rayleigh coefficient

µ1(λ ) = inf
ϕ∈H1/2(∂Ω)

aλ (ϕ,ϕ)

‖ϕ‖2
2

.

Fix ϕ ∈ H1/2(∂Ω) and let u ∈ H1(Ω) be the solution of (1.1). If λ ≤ 0, then

aλ (ϕ,ϕ) =
∫

Ω

|∇u|2−λ |u|2 dx≥
∫

Ω

|∇u|2 dx≥ 0,

so that µ1(λ ) ≥ 0. If λ = 0 and ϕ = c is constant, then u = c and µ(λ ) = 0. Due
to the compactness of the embedding H1/2(∂Ω) ↪→ L2(∂Ω) we have µ1(λ ) > 0 if
λ < 0, and µ1(λ ) < 0 if λ > 0. This implies the exponential stability of e−tDλ for
λ < 0 and the instability for λ > 0. ut

It is interesting to note that the change of stability does not occur at an eigenvalue
of the Dirichlet Laplacian. The change of stability occurs at the first (the trivial)
eigenvalue of the Neumann Laplacian. The Neumann and the Robin eigenvalues −∆

influence the precise behaviour of e−tDλ . There is a close connection between the
spectrum of Dλ and the spectrum of the Robin Laplacian as shown in [5]. Our exam-
ples provide some insight into its effect on the positivity properties and the precise
behaviour of the semigroup e−tDλ , or the operator e−tDλ for some range of t.

3 Non-positivity in one dimension

We explicitly compute the Dirichlet-to-Neumann operator on an interval (0,L), L > 0
and show that the positivity and the non-positivity of e−tDλ change at every eigen-
value.

If Ω = (0,L), then the boundary value problem (1.1) reduces to

u′′+λu = 0 on (0,L), u(0) = a, u(L) = b. (3.1)
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The boundary ∂Ω = {0,L} consists of two points and therefore we can identify
L2(∂Ω) with R2 in a natural way. We have to find solutions u1,u2 of (3.1) correspond-
ing to the standard basis of R2, that is, u1(0) = u2(L) = 1 and u1(L) = u2(0) = 0. If
λ > 0 these solutions obviously are

u1(x) :=
sin
√

λ (L− x)

sin
√

λL
and u2(x) :=

sin
√

λx

sin
√

λL
.

If λ < 0 we get

u1(x) :=
sinh
√
−λ (L− x)

sinh
√
−λL

and u2(x) :=
sinh
√
−λx

sinh
√
−λL

,

and if λ = 0, we get u1(x) = (x−L)/L and u2(x) = x/L. A unique solution of (3.1)
only exists if

√
λL 6= kπ for all k ∈ N, that is,

λ 6= λk :=
(kπ

L

)2
.

Hence if λ 6= λk, then the solution of (1.1) is u(x) = au1(x)+ bu2(x). To determine
the matrix representation of Dλ we compute the coordinate vectors of the images of
the basis vectors. If λ > 0, λ 6= λk, they are

Dλ

[
1
0

]
=

[
−u′1(0)
u′1(L)

]
=

√
λ

sin
√

λL

[
cos
√

λL
−1

]
and

Dλ

[
0
1

]
=

[
−u′2(0)
u′2(L)

]
=

√
λ

sin
√

λL

[
−1

cos
√

λL

]
.

The minus sign in the first component comes from the fact that the outer unit normal
is pointing in the negative direction at x = 0, and in the positive direction at x = L.
Hence, the matrix representation of Dλ is

Dλ =

√
λ

sin
√

λL

[
cos
√

λL −1
−1 cos

√
λL

]
.

As expected, the matrix is symmetric because Dλ is a self-adjoint operator. Even
more, the matrix is of the form[

α −β

−β α

]
= α

[
1 0
0 1

]
−
[

0 β

β 0

]
.

with

α(λ ) :=

√
λ cos

√
λL

sin
√

λL
and β (λ ) :=

√
λ

sin
√

λL
(3.2)

if λ > 0. For λ < 0 we get in a similar manner

α(λ ) :=

√
−λ cosh

√
−λL

sinh
√
−λL

and β (λ ) :=

√
−λ

sinh
√
−λL

. (3.3)
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Note that (3.3) is the same as (3.2) with complex argument
√

λ = i
√
−λ . Hence

e−tDλ = e−tα
[

coshβ t sinhβ t
sinhβ t coshβ t

]
. (3.4)

That semigroup is positive if and only if β ≥ 0. Therefore, e−tDλ is positive if and
only if λ ≤ 0 or if λ2k < λ < λ2k+1 for some k ∈ N. This means positivity and non-
positivity change at each Dirichlet eigenvalue λk of−∆ . For the stability of the semi-
group we need to compute the eigenvalues of Dλ . The eigenvalues of that matrix are
α±β . Hence, if λ > 0, λ 6= λk, we have

µ1(λ ) = α−β =−
√

λ tan

√
λL
2

,

µ2(λ ) = α +β =
√

λ cot

√
λL
2

.

(3.5)

If λ < 0 we get by a similar calculation (or using (3.5) with complex arguments)

µ1(λ ) = α−β =
√
−λ tanh

√
−λL
2

,

µ2(λ ) = α +β =
√
−λ coth

√
−λL
2

.

(3.6)

Note that µ1(λ ) and µ2(λ ) are differentiable at λ = 0. Figure 3.1 shows µ1 and µ2
as functions of λ . We can now summarise the properties of e−Dλ .

λ

λ1 λ2 λ3 λ4

Fig. 3.1 Plot of µ1(λ ) (solid) and µ2(λ ) (dashed).
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Theorem 3.1 Let Dλ be the Dirichlet-to-Neumann operator as defined above. Sup-
pose that λk =(kπ/L)2, k∈N, are the eigenvalues of−u′′= λu with Dirichlet bound-
ary conditions. Then the following assertions are true.

(i) e−tDλ is positive if and only if λ < λ1 or λ2k < λ < λ2k+1. Positivity and non-
positivity change at every eigenvalue λk, k ∈ N;

(ii) We have

lim
λ→λk+

e−tDλ =
1
2

[
1 (−1)k

(−1)k 1

]
for all t > 0. That limit is a projection, and in particular a degenerate semi-
group.

(iii) limλ→λk− ‖e
−tDλ ‖= ∞ for all k ∈ N.

Proof (i) From (3.4) the semigroup e−tDλ is positive if and only if sinhβ t > 0 for all
t > 0. By (3.2) this is the case for λ ∈ (λ2k,λ2k+1), k ∈ N. If λ < 0 then β (λ ) > 0
always by (3.3), so sinhβ t > 0 for all t > 0.

(ii) The entries of the matrix (3.4) are

e−αt coshβ t =
1
2
(
e−t(α−β )+ e−t(α+β )

)
=

1
2
(
e−tµ1(λ )+ e−tµ2(λ )t

)
e−αt sinhβ t =

1
2
(
e−t(α−β )− e−t(α+β )

)
=

1
2
(
e−tµ1(λ )− e−tµ2(λ )

) (3.7)

If k is even, then µ1(λ )→ 0 as λ → λk and µ2(λ )→∞ as λ → λk+. If k is odd, then
µ1(λ )→ ∞ as λ → λk+ and µ2(λ )→ 0 as λ → λk. Hence,

lim
λ→λk+

e−α(λ )t coshβ (λ )t =
1
2

and lim
λ→λk+

e−α(λ )t sinhβ (λ )t =
(−1)k

2
,

proving (ii).
(iii) If k is even, µ2(λ )→ −∞ as λ → λk−. If k is odd, then µ1(λ )→ −∞ as

λ → λk−. Hence, at least one term in (3.7) tends to infinity. ut

Note that the limiting behaviour of µ1(λ ) and µ2(λ ) observed in Figure 3.1 is valid
in general as shown in [5].

4 Non-positivity on the disc

In this section we discuss the Dirichlet-to-Neumann operator on the unit disc in R2,
and in particular we prove Theorem 1.1. We first solve

∆u+λu = 0 in B,
u = ϕ on ∂B,

(4.1)

where B :=B(0,1) is the unit ball in R2 and λ > 0. Given the Fourier series expansion
of ϕ we want to express Dλ ϕ and the semigroup e−tDλ ϕ in terms of that Fourier
series. By separating variables it turns out that Jk(

√
λ )eikθ , k ∈ Z, are solutions of

∆u+ λu = 0, where Jk are the Bessel functions of the first kind. Note that J−k =
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(−1)kJk, so J|k|(
√

λ )e±ikθ are solutions for all k ∈N; see [8, page 304]. If Jk(
√

λ ) 6=
0, then

uk(r,θ) =
J|k|(
√

λ r)

J|k|(
√

λ )
eikθ (4.2)

is the solution of (4.1) with boundary values eikθ on ∂B. The formula is also valid for
λ < 0, where

√
λ ∈ C. Hence we can apply the Dirichlet-to-Neumann operator

Dλ eikθ =
∂uk

∂ν
=

eikθ

J|k|(
√

λ )

d
dr

J|k|(
√

λ r)
∣∣∣
r=1

=

√
λJ′|k|(

√
λ )

J|k|(
√

λ )
eikθ .

To simplify notation we set

dk(λ ) :=

√
λJ′|k|(

√
λ )

J|k|(
√

λ )
, (4.3)

so that
Dλ eikθ = dk(λ )eikθ . (4.4)

We prove properties of dk(λ ) as a function of λ and k in Lemma 4.2 below.
If Jk(

√
λ ) = 0, then Jk(λ )eikθ is zero on ∂D and therefore λ is an eigenvalue of

the Dirichlet Laplacian on B with eigenfunctions Jk(
√

λ r)e±ikθ , k ∈N. Alternatively
we can write them as real valued functions, namely

Jk(
√

λ r)(acoskθ +bsinkθ),

where k ∈ N and a,b ∈ R. If jk,m, m ∈ N are the positive zeros of Jk, then it turns out
that

σ(−∆) = { j2
k,m 6= 0: k ∈ N,m ∈ N}

is the Dirichlet spectrum of−∆ on the unit disc; see [8, pages 304/305]. The first few
eigenvalues can be seen on the graph of the Bessel functions in Figure 4.1. Table 4.1
lists their approximate values and multiplicities. Bourget’s hypothesis (1866) states
that Jk and Jn have no common zeros (other than zero) if n 6= k, a conjecture proved
by means of a number theoretic result due to CF Siegel [19]; see [14, page 198] or
[22, page 484]. Hence all Dirichlet eigenvalues on the disc are either simple or of
multiplicity two. We strictly order the distinct eigenvalues λ1 < λ2 < λ3 . . . . The first
few can be identified from Figure 4.1. They are listed in Table 4.1 together with their
multiplicity; see [1, page 409].

Remark 4.1 Note that (4.4) means that dk(λ ) is an eigenvalue of Dλ with eigen-
functions e±ikθ . By construction, uk is an eigenfunction of the Laplacian with Robin
boundary conditions. More precisely,

−∆uk = λuk in B,
∂uk

∂ν
−dk(λ )uk = 0 on ∂B.

(4.5)

Such a relationship between the eigenvalues of Dλ and the Laplacian with Robin
boundary conditions always holds; see [5]. Another interpretation is that dk(λ ) are
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λ

1 J0

J1
J2 J3 J4

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8λ9

Fig. 4.1 Graphs of the first five Bessel functions J0,. . . , J4.

Eigenvalue Approx. Value Zero of Bessel function Multiplicity

λ1 2.40482 J0 1
λ2 3.83172 J1 2
λ3 5.13562 J2 2
λ4 5.52012 J0 1
λ5 6.38022 J3 2
λ6 7.01562 J1 2
λ7 7.58832 J4 2
λ8 8.41722 J2 2
λ9 8.65372 J0 1

Table 4.1 First few Dirichlet eigenvalues of −∆ on B.

the eigenvalues of the Steklov problem for (∆ +λ I)-harmonic functions which can
be used to describe the trace space of H1(Ω); see [6,7]. A graph of these eigenvalues
as a function of λ is given in Figure 4.2.

Next we prove some properties of dn(λ ).

Lemma 4.2 The function dk(λ ) has the following properties.

(i) For all n ∈ N and λ ∈ R, λ 6= λk, we have

dn(λ ) = n−
√

λJn+1(
√

λ )

Jn(
√

λ )
= n−

∞

∑
k=1

2λ

j2
n,k−λ

, (4.6)

where jn,k is the k-th positive zero of Jn.
(ii) The function λ 7→ dn(λ ) is strictly decreasing between its singularities. More-

over, if jn,k > 0 is a zero of Jn, then

lim√
λ→ j−n,k

dn(λ ) =−∞ and lim√
λ→ j+n,k

dn(λ ) = ∞.

(iii) For every L > 0
lim
n→∞

(
dn(λ )−n

)
= 0 (4.7)

uniformly with respect to λ ∈ (0,L].
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(iv) For every L > 0 there exists n0 ≥ 1 such that

n−1 < dn(λ )< n

for all n≥ n0 and all λ ∈ (0,L].
(v) Let λ > 0 and set m := max{n ∈ N : j2

n,1 ≤ λ}. Then m ≤
√

λ − j0,1 and the
map n→ dn(λ ) is concave for n≥ m.

Proof The first equality in (4.6) is easily obtained from the standard recursion re-
lations between the Bessel functions and their derivatives; see [22, page 45]. The
second equality in (4.6) follows from the fact that

sJn+1(s)
Jn(s)

=−s
∞

∑
k=1

( 1
s− jn,k

+
1

s− jn,k

)
=

∞

∑
k=1

2s2

j2
n,k− s2 ;

see [22, page 498]. Now (ii) follows from (4.6) since for every k ∈ N the function

λ 7→ 2λ

j2
n,k−λ

(4.8)

is increasing in λ with asymptote λ = j2
n,k. To prove (iii) it is sufficient to show that

for every L > 0 the series
∞

∑
k=1

2λ

j2
n,k−λ

(4.9)

converges to zero uniformly with respect to λ ∈ (0,L] as n→ ∞. First note that

jn,k > j0,k +n≥ j0,1 +n (4.10)

for all n≥ 0 and all k≥ 1; see [17]. Now fix n0 >
√

L− j0,1. Since (4.8) is increasing
in λ and decreasing in jn,k we conclude from (4.10) that

0 <
2λ

j2
n,k−λ

≤ 2L
j2
n0,k
−L

for all n ≥ n0, k ∈ N and λ ∈ (0,L]. By the Weierstrass M-test (4.9) converges uni-
formly with respect to n≥ n0 and λ ∈ (0,L]. By (4.10)

2L
j2
n,k−L

→ 0

as n→ ∞ uniformly with respect to k ∈ N. By the uniform convergence of (4.9) it
follows that

lim
n→∞

∞

∑
k=1

2λ

j2
n,k−λ

= 0

uniformly with respect to λ ∈ (0,L]. Now (iv) immediately follows from (iii). To
prove (v) note that j2

n,k is increasing and concave as a function of n ∈ N for all k ≥ 1;
see [9]. Thus, (4.9) is the sum of convex functions of n ≥ m and therefore convex.
Hence (4.6) implies that dn(λ ) is a concave function of n ≥ m. By (4.10) we have
m≤
√

λ − j0,1, proving (v). ut
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λλ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8λ9

Fig. 4.2 The eigenvalues d0(λ ) (solid) and d1(λ ) to d5(λ ) of Dλ .

We first look at representations of Dλ , e−tDλ and aλ (· , ·) in terms of the Fourier series
of the boundary function.

Proposition 4.3 Suppose that ϕ and ψ are given by the Fourier series

ϕ =
∞

∑
k=−∞

akeikθ and ψ =
∞

∑
k=−∞

bkeikθ .

(i) The sesquilinear form aλ : H1/2(∂B)×H1/2(∂B)→ C is bounded. If ϕ,ψ ∈
H1/2(∂B), then

aλ (ϕ,ψ) = 2π

∞

∑
k=−∞

akbkdk(λ ). (4.11)

(ii) If ϕ ∈ H1/2(∂B), then

Dλ ϕ =
∞

∑
k=−∞

akdk(λ )eikθ ∈ H−1/2(∂B). (4.12)

Moreover σ(Dλ ) = {dk(λ ) : k ∈ N}.
(iii) If ϕ ∈ L2(∂B), then

e−tDλ ϕ =
∞

∑
k=−∞

ake−tdk(λ )eikθ . (4.13)

Moreover σ(e−tDλ )= {e−tdk(λ ) : k∈N}, and e±ikθ are the corresponding eigen-
functions.
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Proof (i) As eikθ , k ∈ Z, is an orthogonal system on ∂B it is easily seen that (4.2)
forms an orthogonal system in H1(B). Using the definition (2.1) of the form aλ (· , ·)
we get

aλ (e
ikθ ,ei`θ ) = 0

if k 6= `. Since all functions and the domain involved are smooth we can compute
aλ (eikθ ,eikθ ) by means of (2.2). Hence

aλ (e
ikθ ,eikθ ) =

∫
∂B

e−ikθ Dλ eikθ dσ = dk(λ )
∫ 2π

0
e−ikθ eikθ dθ = 2πdk(λ )

for all k ∈ Z. By assumption ϕ ∈ H1/2(∂B) which means that

∞

∑
k=−∞

|k||ak|2 ≤ ‖ϕ‖2
H1/2 < ∞,

and similarly for the Fourier coefficients bk of ψ . Let

ϕn :=
n

∑
k=−n

akeikθ and ψn :=
n

∑
k=−n

bkeikθ .

By Lemma 4.2 we have dk(λ )∼ k, so there exists a constant C > 0 such that

|aλ (ϕn,ψn)|= 2π

∣∣∣ n

∑
k=−n

akbkdk(λ )
∣∣∣≤ 2πC

n

∑
k=−n
|k||ak||bk|

≤ 2πC
( ∞

∑
k=−∞

|k||ak|2
)1/2( ∞

∑
k=−∞

|k||bk|2
)1/2
≤ 2πC‖ϕ‖H1/2‖ψ‖H1/2

for all n ∈N. Hence aλ : H1/2(∂B)×H1/2(∂B)→C is a bounded sesquilinear form.
In particular, (4.11) follows.

(ii) By (i) ϕ 7→ aλ (ϕ,ψ) is a bounded linear functional on H1/2(∂B). Hence

Dλ ϕn =
n

∑
k=−n

akdk(λ )eikθ →
∞

∑
k=−∞

akdk(λ )eikθ

in H−1/2(∂B) as n→ ∞.
(iii) To get the Fourier series of the semigroup note that the solution of

v̇+Dλ v = 0, v(0) = eikθ

is given by v(t) = e−tDλ eikθ = e−tdk(λ )eikθ . As dk(λ ) ∼ k the terms in the Fourier
series (4.13) decay exponentially fast for every t > 0, and so the series in (4.13)
represents e−tDλ . ut
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Remark 4.4 The most obvious way to investigate the positivity of e−tDλ is to use the
fact that the spectral radius of a positive operator has a positive eigenfunction. By
the spectral mapping theorem (see [3, Section A-III.6]) that eigenfunction is also the
eigenfunction to the minimal eigenvalue of Dλ . The minimal eigenvalue of Dλ is
given by

dk0(λ ) := min{dk(λ ) : k ≥ 0}.

That minimum exists since dk(λ )→ ∞ as shown in Lemma 4.2. The corresponding
eigenspace is spanned by e±ik0θ , or alternatively by cosk0θ and sink0θ . Unless k0 = 0
none of the eigenfunctions is positive. Hence a necessary condition for e−tDλ to be
positive for some or all t > 0 is that d0(λ ) ≤ dk(λ ) for all k ∈ N. We can see in
Figure 4.2 how the order of dn(λ ) is jumbled by the singularities of dk(λ ) at the
Dirichlet eigenvalues of −∆ , and that most of the time the eigenvalue d0(λ ) having
positive eigenfunction is not the smallest one.

Remark 4.5 From Remark 4.4 it is clear that e−tDλ is not positive if λ > 0 and
d0(λ ) ≥ 0 since by Proposition 2.1 there is always a negative eigenvalue. As J′0 =

−J1, the semigroup is therefore not positive between any zero of J0(
√

λ ) and the
next zero of J1(

√
λ ). Note that these zeros are Dirichlet eigenvalues of−∆ . In partic-

ular, the semigroup is not positive for λ ∈ (λ1,λ2) and λ ∈ (λ4,λ6); see Figure 4.2.
This criterion is far from optimal. It is clear from Figure 4.2 that the semigroup is not
positive for λ ∈ (λ1,λ3) and λ ∈ (λ4,λ8).

We note that by (4.13) we have

(e−tDλ ϕ)(θ) = (Gλ ,t ∗ϕ)(θ) :=
∫

π

−π

Gλ ,t(θ − s)ϕ(s)ds, (4.14)

where

Gλ ,t(θ) :=
1

2π

∞

∑
k=−∞

e−tdk(λ )eikθ (4.15)

for all t > 0. The function Gλ ,t is the “heat kernel” of the analytic semigroup e−tDk(λ )

on L2(∂B). To prove the positivity of e−tDλ it is therefore sufficient to show that
Gλ ,t ≥ 0 for all t > 0. There is a necessary and sufficient condition for a Fourier series
to represent a positive function, namely Herglotz’s theorem asserting that the Fourier
coefficients of a non-negative function form a positive definite sequence; see [15,
Section 7.6]. It is rather difficult to check that a given sequence is positive definite,
so we use a representation of Gλ ,t by means of the Fejér kernels

Kn(θ) :=
1

2π

n

∑
k=−n

(
1− |k|

n+1

)
eikθ =

1
2π(n+1)

( sin n+1
2 θ

sin θ

2

)2
(4.16)

which are positive; see [15, page 12].

Proposition 4.6 For all t > 0 and λ > 0, λ 6= λk, we have

Gλ ,t(θ) =
∞

∑
n=1

nbn(λ , t)Kn−1(θ), (4.17)
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where
bn(λ , t) := e−tdn+1(λ )+ e−tdn−1(λ )−2e−tdn(λ ). (4.18)

Moreover, bn(λ , t)≥ 0 for all n >
√

λ and all t > 0.

Proof By Lemma 4.2 dn(λ )→ ∞ as n→ ∞, so e−tdk(λ ) → 0 as k→ ∞. Moreover,
again by Lemma 4.2 there exists n0 ≥ 0 such that such that the map n 7→ dn(λ ) is
concave for n≥ n0. Hence k 7→ e−tdn(λ ) is convex for n≥ n0. Hence the proof of [15,
Theorem 4.1] applies and (4.17) follows. ut

Using (4.17) we prove that e−tDλ is eventually positive or even positive in a left
neighbourhood of every simple eigenvalue. Let λ` be a simple eigenvalue of −∆

on B with Dirichlet boundary conditions. We know that J0(
√

λ`) = 0 and therefore
d0(λ )→−∞ as λ → λ

−
` . Hence there exists η < λ` and µ ∈ R such that

d0(λ )< µ < min{dk(λ ) : k ∈ N\{0}}. (4.19)

for all λ ∈Λ := [η ,λ`).

Remark 4.7 Condition (4.19) is satisfied for λ ∈ (λ3,λ4) as numerical calculations
or the tabulated values of Bessel functions show; see Figure 4.2 or [1]. One may
conjecture that (4.19) is fulfilled for all λ ∈ (λk−1,λk) if λk is a simple eigenvalue.
Due to the complicated nature of the curves dk(λ ) this is however not clear.

Under condition (4.19) we show that e−tDλ is positive eventually. By Proposition 4.6
it is sufficient to show that there exists T ≥ 0 such that the series (4.17) for the kernel
Gλ ,t(θ) is non-negative for all t > T and all θ ∈ [−π,π]. According to Proposition 4.6
there exists m∈N such that bn(λ , t)≥ 0 for all n≥m, λ ∈Λ and t > 0, where bn(λ , t)
is defined by (4.18). Hence to show the positivity of Gλ ,t(θ) we only need to show
that

Sm(λ , t) :=
m−1

∑
n=1

nbn(λ , t)Kn−1 ≥ 0 (4.20)

for all t > T and all λ ∈Λ . As 0≤ 2πKn−1 ≤ n it is sufficient to show that

e−td0(λ )− e−td2(λ )−2e−td1(λ )−
m−1

∑
n=2

n2|bn(λ , t)| ≥ 0.

for all t > T . Equivalently we want

1− e−t(d2(λ )−d0(λ ))−2e−t(d1(λ )−d0(λ ))−
m−1

∑
n=2

n2|bn(λ , t)|etd0(λ ) ≥ 0. (4.21)

Due to (4.19) there exists T > 0 such that (4.21) is valid for all t ≥ T and all λ ∈Λ .
Note that T can be chosen so that strict inequality holds in (4.21), so Gλ ,t(θ)> 0 for
all t > T and all θ ∈ [0,2π]. Hence e−tDλ is eventually positive and irreducible for all
λ ∈ Λ . To prove the positivity of e−tDλ for all t > 0 for λ in some sub-interval of Λ

we note that

Sm(λ ,0) =
m−1

∑
n=1

bn(λ , t)Kn−1 = 0
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since bn(λ ,0) = 1+ 1− 2 = 0 for all n ∈ N. If we show that Sm(λ , t) has a positive
derivative for all t ≥ 0, then (4.20) holds for all t > 0. We have

d
dt

Sm(λ , t) =−
m−1

∑
n=1

n
(
dn−1e−tdn−1 +dn+1e−tdn+1 −2dne−tdn

)
Kn−1. (4.22)

We know that
M := max

1≤n≤m
sup
λ∈Λ

|dn(λ )|< ∞.

Hence, by (4.19) and since 0≤ 2πKn−1 ≤ n the derivative (4.22) is positive if

−d0(λ )−4Me−t(µ−d0(λ ))
m

∑
n=1

n2 > 0 (4.23)

for all t > 0. As µ − d0(λ ) > 0 (4.23) is valid for all t ≥ 0 if it valid for t = 0. As
d0(λ )→−∞ as λ → λ

−
` we can choose η̃ so that

−d0(λ )−4M
m

∑
n=1

n2 > 0

for all λ ∈ Λ̃ := [η̃ ,λ`). Clearly, Gλ ,t is not only positive, but strictly positive under
the above conditions, so the semigroup is irreducible as well.

A second way to investigate the positivity or non-positivity of e−tDλ is the Beurling-
Deny criterion. It asserts that e−tDλ is positive if and only if aλ (ϕ

+,ϕ−) ≤ 0 for all
ϕ ∈ H1/2(∂B). We use the standard orthogonal basis on L2(∂B), namely the func-
tions ϕn(θ) = sinnθ for n≥ 1. Note that the functions cosnθ only differ from sinnθ

by a phase shift, so do not give any new information.

Proposition 4.8 The Fourier series of the positive and negative parts of ϕn(θ) =
sinnθ are

ϕ
+
n (θ) =

1
π
+

1
2

sinnθ − 2
π

∞

∑
k=1

1
4k2−1

cos2nkθ ,

ϕ
−
n (θ) =

1
π
− 1

2
sinnθ − 2

π

∞

∑
k=1

1
4k2−1

cos2nkθ .

(4.24)

Moreover,

aλ (ϕ
+
n ,ϕ−n ) =

2
π

d0(λ )−
π

4
dn(λ )+

4
π

∞

∑
k=1

1
(4k2−1)2 d2kn(λ ). (4.25)

Proof We easily obtain the Fourier series of ϕ
+
1 by computing the integrals∫

π

0
sinθ sinkθ dθ and

∫
π

0
sinθ coskθ dθ

for k ∈ N. The Fourier series of ϕ+
n is then given by replacing θ by nθ in the series

for ϕ
+
1 . Note also that ϕ−n = ϕ+

n −ϕn, so (4.24) follows. Using Theorem 4.3 we get
(4.25). ut
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Note that the series (4.25) becomes very sparse if n is large, and, except possibly the
n-th term, only contains non-trivial even terms. If aλ (ϕ

+
n ,ϕ−n ) ≥ 0, then the semi-

group e−tDλ is not positive, otherwise nothing can be said.
We can see from (4.25) that e−tDλ is not positive in a right neighbourhood of every

eigenvalue. We just note that the term dn(λ ) is positive and dominates the series for
λ in a right neighbourhood of every eigenvalue associated with a zero of Jn. Going
through all n ≥ 1 we have all Dirichlet eigenvalues. We further note that e−tDλ is
not positive in a left neighbourhood of every eigenvalue of the Dirichlet Laplacian
associated with a zero of J2k, k ≥ 1. We can see the graph of λ 7→ aλ (ϕ

+
n ,ϕ−n ) in

Figure 4.3. As seen already in Figure 4.2, we see again that e−tDλ can only be positive
in a left neighbourhood of every eigenvalue associated with a zero of J0.

λ

aλ (ϕ
+
n ,ϕ−n )

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8λ9

Fig. 4.3 The functions λ 7→ aλ (ϕ
+
n ,ϕ−n ) for n = 1, . . . ,4.

5 Remarks on general domains

In this section we provide reasons for the points made at the end of the introduction.
We start by reviewing some features we observed in the example of the ball in Sec-
tion 4. We first note that the eigenfunctions of Dλ are the traces of the eigenfunctions
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un of the Steklov (or Robin) eigenvalue problem

∆un +λu = 0 in Ω ,
∂un

∂ν
= dn(λ )un on ∂Ω .

(5.1)

The corresponding eigenvalues of Dλ were dn(λ ). For every n, the function λ 7→
dn(λ ) had countably many strictly increasing branches separated by vertical asymp-
totes at Dirichlet eigenvalues of −∆ as seen in Figure 4.2. The eigenfunctions of Dλ

are the traces ϕn := un|∂Ω . In case of the disc these eigenfunctions are independent
of λ , but for general domains we do not expect that.

Let Ω be a bounded domain with smooth boundary, and let 0 < λ1 < λ2 < .. . be
the distinct Dirichlet eigenvalues of −∆ . If λ 6= λk we know that Dλ is a self-adjoint
operator on L2(∂Ω) with compact resolvent. Hence there exists an orthonormal basis
of eigenfunctions (ϕλ ,n) of Dλ in L2(∂Ω) corresponding to the eigenvalues dn(λ ).
From general operator theory dn(λ )→ ∞ as n→ ∞; see [20, Theorem 5.1]. It is not
a priori clear how to order these eigenvalues in a natural way. In case of the disc the
order was given by the order of the eigenfunctions ϕλ ,n which were independent of λ .
The independence of λ is too much to hope for in general, but for each n there should
be a continuous family of eigenfunctions uλ ,n of (5.1) including the Dirichlet eigen-
function where dn(λ )→ ±∞. The corresponding eigenvalues dn(λ ) should form a
family of curves similar to a bifurcation diagram with bifurcations from infinity at
some of the Dirichlet eigenvalues of −∆ as shown in Figure 5.1. The correspond-
ing eigenfunctions should form a continuous family across the singularities of dn(λ ),
such that the nodal line struction on ∂Ω is preserved. Finally, the totality of curves
dn(λ ) should be a superposition of many diagrams like the one in Figure 5.1, as can
be seen in Figure 3.1 for the interval and in Figure 4.2 for the disc. How exactly
they interlace depends on the shape of Ω . The existence of the curves approaching
asymptotes at the Dirichlet eigenvalues from the left is proved in [4], but nothing is
said about right limits. For the disc there was precisely one branch where the eigen-

λ

Fig. 5.1 Curve of eigenvalues of Dλ as a function of λ .

function ϕ0 did not change sign on ∂Ω . The corresponding eigenfunction of (5.1) has
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empty or closed nodal lines. We expect a similar phenomenon on general domains, at
least in a generic situation.

As done for the disc, we can represent every ϕ ∈ H1/2(∂Ω) in terms of the basis
(ϕλ ,n). Similarly, we can represent the bilinear form aλ (· , ·) and the semigroup e−tDλ

in terms of that basis. In particular, if

ϕ =
∞

∑
n=0

cnϕλ ,n, (5.2)

then

Dλ ϕ =
∞

∑
n=0

cndn(λ )ϕλ ,n ∈ H−1/2(∂Ω) if ϕ ∈ H1/2(∂Ω), (5.3)

e−tDλ ϕ =
∞

∑
n=0

e−tdn(λ )ϕλ ,n if ϕ ∈ L2(∂Ω). (5.4)

They correspond to the representations (4.12) and (4.13) in case of the ball. Note that
ϕ is the trace of the solution u of (1.1) given by

u =
∞

∑
n=0

cnuλ ,n, (5.5)

where uλ ,n is the solution of (1.1) with boundary values ϕ = ϕλ ,n. The functions uλ ,k
are eigenfunctions of the Robin problem (1.3) with µ = dn(λ ). Alternatively, (5.5)
can be viewed as the Steklov series expansion the (∆ +λ I)-harmonic functions with
boundary value ϕ as discussed in [6], where the formula is derived for λ < λ1, but
clearly (5.5) works whenever λ is not a Dirichlet eigenvalue.

For the semigroup e−tDλ to be positive, the dominating term in (5.4) must be
positive. The dominating term is the one corresponding to the minimal eigenvalue

dm(λ ) := min{dk(λ ) : k ∈ N}

of Dλ . Hence, for the semigroup e−tDλ to be positive we need that ϕλ ,m ≥ 0 on ∂Ω .
In fact, it is unlikely that the series (5.4) represents a positive function if ϕλ ,m is not
strictly positive everywhere. If ϕ ≥ 0, then cm > 0, again unless there is a positive
eigenfunction other than ϕλ ,n. For the semigroup e−tDλ to be eventually positive it is
sufficient that

limsup
t→∞

(
cm−

∞

∑
n=0
n6=m

|cn|e−t(dn(λ )−dm(λ ))|ϕλ ,n|
)
< 1 (5.6)

uniformly with respect to positive initial conditions. This uniformity holds in case of
the disc, and may well be true in general. The reason is that the Fourier coefficients
cn need to satisfy certain conditions for ϕ to be non-negative. We could have taken
this approach in the example of the ball. Instead we used a representation involving
the Fejér kernels which allowed us to prove that the semigroup is positive for all t > 0
for some range of λ using only a finite sum. If (5.6) is true, then the operator e−tDλ

is not only positive, but also irreducible for t large. Hence the spectral radius would
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be simple, and the only eigenvalue with a positive eigenfunction. In particular, dm(λ )
would be a simple eigenvalue of Dλ , and the only one with a positive eigenfunction.
There are some conclusions we emphasise again:

1. Simplicity of the eigenvalue λk does not imply positivity of the corresponding
eigenfunction for λ in any neighbourhood of λk, and therefore is not a criterion
to expect a positive semigroup near that eigenvalue. In fact, the eigenfunctions
to every double eigenvalue on the disc change sign. According to [21] or [13,
Examples 6.3 and 6.6] there is an arbitrarily small perturbation of the ball that
splits these eigenvalues into simple eigenvalue. The corresponding eigenfunctions
still change sign.

2. Positivity in many cases implies irreducibility as explained above, and therefore
the simplicity of the minimal eigenvalue. Hence it seems more likely that positiv-
ity of the semigroup occurs near simple eigenvalues of the Dirichlet Laplacian.
However, there is no proof for that because dm(λ ) can be a simple eigenvalue of
Dλ without being near a simple eigenvalue of the Dirichlet Laplacian.
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