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In this paper we analyse the change of stability of Schrodinger semigroups with indefinite
potentials when a coupling parameter varies. Generically, the change of stability takes place
at a principal eigenvalue associated with the problem. The uniqueness of the principal
eigenvalue is shown for several classes of potentials.

1. Introduction

We shall be concerned with the stability of the zero solution of the linear parabolic
problem

(d,u — AM = Xmu in RN x (0, oo),

u(-,0) = tio inRN, ( U )

lim u(x) = 0,

when the parameter X varies in the positive real axis. Here, m is some bounded and
continuous weight function being positive somewhere and u0 an initial condition.
The stability is understood as stability in the || • || ̂ -norm. We point out that by
duality and interpolation we also get the stability in Lp(R

N), 1 g p < oo. The question
of stability of the zero solution is closely related to the existence of a principal
eigenvalue for the elliptic eigenvalue problem

— A<p = Xrmp o n RN,

lim (p{x) = 0.
|jx|-00
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By a principal eigenvalue we mean a X > 0 such that (1.2) has a positive solution cp.
The function <p is then called principal eigenfunction.

The main goal of this paper is to obtain theorems of the following type under
various assumptions on m.

THEOREM 1.1. There exists a unique principal eigenvalue Xi > 0 for (1.2) and the zero
solution of (1.1) is asymptotically stable for X e [0, Xx) and unstable for X > Aj.

The stability or instability of the zero solution of (1.1) is equivalent to the stability
or instability of the semigroup generated by A + Am on the space

C0(Rw)«={«eC(Rw): lim

The operator A generates an irreducible analytic semigroup on C0(R
N) with domain

of definition

D(A)={ueC0(R
N):AueC0(R

N)},

where the derivatives have to be understood in the sense of distributions ([8]; for
the theory of irreducible semigroups, see [15]). Throughout this work, we restrict
ourselves to considering continuous and bounded weight functions. For these weights
the operator Ak—A + Xm also generates an irreducible analytic semigroup on
C0(R

N), with the same domain of definition, £>(A).
For analytic semigroups the spectral mapping theorem holds (cf. [15,

Corollary A-III.6.7]), i.e. a(e'A*)\{0} = e'"^ for t > 0. This makes it possible to study
the spectrum of

Sx-.= eA> (1.3)

to analyse the stability of the semigroup. Such stability is determined by the spectral
radius

r(A)==sprSA.

The semigroup is exponentially stable if r(X) < 1 and unstable if r(X) > 1. When r(X) =
1, extra information is needed to decide if the semigroup is stable or not. Thus the
graph of r(X) gives a great deal of information about the stability of the zero solution,
and the nature of this graph is constrained by a theorem of Kato [13] which asserts
that r(X) is a log-convex function.

The stability of the zero solution and the behaviour of r(X) is well understood for
bounded domains (see [3,10]). In the bounded domain case, a(A>) consists only of
eigenvalues and if a principal eigenvalue Xt exists then 0 must be the greatest
eigenvalue of A + Xtm and so r(At) = 1. In the case of Dirichlet or Robin boundary
conditions, there exists a principal eigenvalue Aj > 0; also r(0) < 1 and the graph of
r(X) is as shown in Figure 1.1 (a) and so Theorem 1.1 holds. The theorem also holds
in the case of Neumann boundary conditions with \D m(x) dx<0 and the graph of
r(X) is as shown in Figure l.l(b). If, however, we consider Neumann boundary
conditions with j B m(x) dx ^ 0, then no positive principal eigenvalue exists, the graph
of r(X) is as shown in Figure 1.1 (c) and so Theorem 1.1 does not hold.

The situation is more complicated in the case of unbounded regions. Principal
eigenvalues may not exist for (1.2) unless some further restrictions are placed on m.
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Figure 1.1.

We shall investigate the validity of Theorem 1.1 and the nature of the graph of r(X)
when m satisfies assumptions of the following types:

(i) m is sufficiently small at infinity and N 2: 3; in particular, we shall obtain
detailed results in the case where m has compact support.

(ii) m is sufficiently negative at infinity.
The existence of principal eigenvalues has been proved under such assumptions in
[1,5,6]. Results on the uniqueness of such eigenvalues and on the change of stability
have been obtained in [9] for some special periodic-parabolic problems. Theorems
on change of stability for positive potentials have also been obtained in [19,
Section B.5].

We now consider the general nature of the function r(X). Since <r(A) = (— oo,0],
r(0) = 1. Moreover, since m is somewhere positive, it follows that limA_QOr(/l) = oo
(see [9]). In order that Theorem 1.1 holds, it is necessary that there exists a principal
eigenvalue X1 such that the stability properties of the zero solution change at X = X1

and this indicates that we must have r(X^ = 1. Thus the graph of r(X) in Figure 1.1 (b)
is compatible with the validity of Theorem 1.1 and we shall show that when m is
sufficiently negative at infinity then the theorem holds and r(X) is as shown in
Figure l.l(b). When m is sufficiently small at infinity, however, Theorem 1.1 may
still hold but the graph of r(X) has a different nature. If m is sufficiently small at
infinity, e.g. m has compact support, then Xm is a relatively compact perturbation of
A and so

<ress(A + Xm) = ffess(A) = ( - oo, 0] .
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Hence r(X) ^ 1 for all A ^ 0. It was shown in [5 ] that there exists a principal
eigenvalue Ax in this case; it follows easily that 0 is an extreme point of cr(A + Xxm)
and so r{Xi) = 1. Since r(X) is log convex, it follows that r{X) = 1 for 0 < A < Ax. Thus
the graph of r(A) may be as shown in Figure 1.1 (d). In order to prove Theorem 1.1
in this case, it is necessary to prove the stability of the zero solution in the range
0 < A < Ax where r(X) = 1. Suppose that m is non-negative. Since e'A is neutrally stable
and

glA <; £t(h + km)

it is surprising that any such stability result should hold. We shall show that such
results for non-negative m are possible when N ^ 3 but not when N = 1, 2. The
deeper reason for that different behaviour lies in the recurrence and nonrecurrence
properties of the Brownian motion modelling the diffusion process (e.g. [11]). In
fact, the nonrecurrence of the diffusion in dimension N js 3 makes heat disappear at
infinity, so that in spite of the existence of a heat source even asymptotic stability is
possible.

The plan of the paper is as follows. In Section 2, we consider the case where N ^ 3
and m is radially symmetric and has compact support. We prove that r(X) is as
shown in Figure 1.1 (d) and that Theorem 1.1 holds for such weight functions. In
Section 3, we obtain general results about the case where m has compact support
and show that in general, whether or not there exists a principal eigenvalue, r'(0) =
0 and that, whenever JRJV m(x) dx < 0, r(X) = 1 for small A. The results obtained for
the compact support case are useful tools for studying the case where m is sufficiently
negative. In Section 3, we use them to get an easy proof of Theorem 1.1 in the case
where m is negative and bounded away from zero at infinity and, in Section 4, to
prove Theorem 1.1 for functions m which are sufficiently negative in the sense that
em-xm ) 1S exponentially stable, where m~ ^ 0 denotes the negative part of m. A
characterisation of such functions m~ was obtained recently by Arendt and Batty
[2 ] . In Section 5, we return to the case where m is small at infinity but may not
have compact support. We give a new proof of the existence of a principal eigenvalue
Ax, in this case showing that Xt is the limit of the principal eigenvalues for Dirichlet
problems on large balls so that Xx has the variational characterisation

Ax = inf

JRN
JM»»#2>o mi//2

JRN

and are thus are able to establish the uniqueness of the principal eigenvalue and the
instability of the zero solution when X> Xx.

2. The case m is radially symmetric with compact support

Throughout this section, we shall assume that N ^ 3 and that m(x) is continuous
and radially symmetric with compact support. First we give some definitions and
collect some results on spectral theory which will be used later. Let X be a Banach
space and Te <£{X). A A e C is said to belong to the Browder essential spectrum of
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T, denoted by aess (T), if and only if one of the following conditions is satisfied: A
is a limit point of <T(T), or the image of A — T is not closed, or the space
(J;tSiker [(A — Tf] is infinite dimensional. The essential spectral radius of T is
denned as

spress(T) = sup{|A|:Ae<7ess(r)}.

REMARKS 2.1. (i) If A e <r(T) — o-ess (T), then A is a pole of the resolvent of T. Hence,
it is an eigenvalue of T (cf. [7, Theorem A.3.3]).

(ii) Let T be a closed densely denned operator on the Banach space X and
K e <£{X) such that K(n - T )" 1 is compact for some /j e p(T). If />(T) is connected
and dense in C and p(T+ K) is not empty, then

(cf. [4, Lemma 18]).
(iii) If X is a Banach lattice and T is positive, then

spr (r)ec7(T).

Therefore, whenever spress (T) < spr (T), part (i) implies that spr (T) is an eigenvalue.
If that is the case and in addition T is irreducible, then it follows from [17,
Theorem 5.2] that spr (T) is an algebraically simple eigenvalue with associated
eigenvector lying in the quasi-interior of X+. Moreover, there is no other eigenvalue
with associated positive eigenfunction.

In particular, these properties hold for X = C0(R
iV) and T=eA+km when m is

continuous and bounded as the following remarks show.

REMARK 2.2. (i) Remark 2.1 (ii) may he applied to determine the essential spectrum
of A + m as an operator on Q^R*) if m e C^R^). Observe first that D(A) is continu-
ously embedded in C^R^). If we show that uh->mu is a compact operator from
C^R*) to C0(R

N), then the hypotheses of Remark 2.1(ii) are obviously satisfied and
hence

ffess (A + Am) = ffess (A) = ( - oo, 0 ] .

Using embedding theorems on bounded domains, it is clear that u \-* mu is compact
from C^R^) to CQIR^) when m has compact support. The norm of the multiplication
operator defined above is HmH ,̂. Since the continuous functions having compact
support are dense in C0(RN) and the ideal of compact operators is closed, it follows
that multiplication by any C0-function is a compact operator.

(ii) The essential spectrum of the operators e'<A+Am> can be determined from the
result above. By (i) for any m e CO(R1V) we can apply [9, Proposition 5.4] to see
that

where Kx{t) is a compact operator on C0(R
iV). Hence we obtain that

for all t > 0 and AeR. Applying Remark 2.1 (iii) to this situation we see that if
r(X) = spr (eA+Am) > 1, then r(X) is the only eigenvalue having positive eigenfunction.



832 K. J. Brown et al.

Now we have all the ingredients to begin the results of this section. The following
theorem holds:

THEOREM 2.3. Equation (1.2) has a unique principal eigenvalue Xl = Xl(m)>0.
Moreover, r(X) = 1 for all X e [0, AJ.

Proof. We seek a positive radially symmetric eigenfunction. Thus problem (1.2)
reduces to

^ ^ 0, <p'(0) = 0. (2.1)

Let R >0 be such that supp(m)<= BR-.= {x:\x\ <R}. Then for r ̂  R, (2.1) reduces to

JV-1

whose general solution is C1 + C2r~{N'2) where Cu C2 are constants. Since q>{r)-*0
as r —> oo and iV 5: 3, we must have (p(r) = Cr~(N~2\ r^. R, for some C > 0. Hence

N-2
'{R)

which gives us the boundary condition to be satisfied by the eigenfunction on the
boundary of the ball BR. It is well known that the boundary value problem

' — Aq> = Xmcp for | x | < R,

N-2 - (2.2)
——--9), for|x|=.R,

has a unique principal eigenvalue X1>0 with a corresponding unique positive radially
symmetric eigenfunction, say <po(r). Let C > 0 be such that 9>0W = CR~(iV~2). Then
the function

>o(W), fo r |x | ^K,

is a principal eigenfunction of (1.2) associated with lx.
Remark 2.2(ii) excludes the possibility that r(Ax) > 1 since we know that the

eigenvalue 1 has a positive eigenfunction. This shows that r(Aj) = 1.
Since r(O) = r(X1)= 1 and X-+r(X) is log-convex, it follows that r(l t) = 1 for all

AeCCUJ. •

REMARK 2.4. Since the decay of the principal eigenfunction cp at infinity is of order
r~(N~2\ it follows readily that cpeLp(R

N) provided p>(N/(N — 2)). In particular,
q> $ Lx for any N and <p e L2 if and only if N ^ 5. This fact was observed originally
in [18] for the special case m 2; 0.

The stability of the semigroup generated by A 4- Xm, X e [0, X^m)), on C0(R
N) will

be obtained from the following result:

PROPOSITION 2.5. Given X e [0, X^m)) and cx > 0, there exists rp e 0,(11^) radially sym-
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metric such that

<p = cl + \p

satisfies

— A<p = Xm<p

and<p(x)>Ofor allxeR".

Proof. We define

ils(x) = c2\x\-(N-2\ \x\>R,

where c2 is a constant to be chosen later and R > 0 is such that supp m<^BR. In BR,
the function i// is defined as the unique solution of the boundary value problem

* <> on 3BR.

Since X<ku this boundary value problem has a unique radially symmetric solution
\j/. If we choose c2 so that c2|x|~(iV~2) = iA(x) for |x| = i?, then q>--=c1 + [// satisfies
— Aq> = Xmcp o n KN.

It remains to show that <p is positive. In BR, <p satisfies

0 in BR,

N-2 _. N-2 (2.4)

Since X<XU the problem

' — Aq> — Xmcp = pup i n BR,

d N-2
- w + q> = 0 on dBR
i R

has a positive principal eigenvalue n with corresponding positive principal eigenfunc-
tion w. Then using this function w as the auxiliary function in the generalized
maximum principle (see [16, p. 73, Theorem 10]), it follows that, since <p satisfies
(2.4), (p(x) > 0 for any x e BR. Since (p^c^ + ij/ and \\f/\ is a decreasing function for
| x | > R, it is easy to see that <p(x) > 0 for all x e R^ and the proof of the proposition
is complete. D

COROLLARY 2.6. For any X e [0, X^m)), the Schrodinger semigroup et{A + Xm) is bounded.

Proof. Note first that || eI(A+Am) ||ro>0O = || et(A+Xm) 11| x for all t ^ 0. Let <p be the bound
state given by Proposition 2.5. Then
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and hence,

1 et(A + Xm)
1 00,00 =

K. J.

ii

Brown

<P
tlfx e R iv(

et

P(*

al.

I k II00

00 X€K T\ )

< 00

for all t S; 0. This proves the assertion. •

We remark that, for X = X1(m), the semigroup is not necessarily bounded [18].
Now we are able to state and prove our stability result.

THEOREM 2.7. For all X e [0, Xx(m)), the semigroup e
t(A+Xm) is stable on C0(R

N), i.e.

11111 || c WQ I 00 — ^
t->oo

for all u0 e C0(R
N).

Proof. Let R > 0 be such that supp maBR and consider the eigenvalue problem

in BR,

8 . N-2 „ _ (2.5)

where m+ is the positive part of m and fi > 0 will be regarded as a new parameter.
Since X < Aj(m), there exists a unique nt > 0 such that (2.5) has a positive eigenfunc-
tion <p0, which is radially symmetric. Choose c > 0 so that c\x\'(N~2) = (/>0(x) for
I x I = /?. Then the function

satisfies

— Aip — Xmq> = /i1m
+(p > 0

on R^. Since q> is a supersolut ion for the elliptic p roblem, it follows tha t et(-A + Xm)(p is
a decreasing function of t a n d so

lim | |e ' ( A + AmVlloo = 0.

By compar i son , this holds for every uoe C0(R
N) having compac t support . Given

u0 e Q ^ R ^ ) and fixed £ > 0, there exists a decomposi t ion uo = u1 + u2 such that
|| «x || oo < £ a n d u2 e C ^ R ^ ) having compac t suppor t . Hence, by the boundedness of
the semigroup, we find tha t

II ^ ^0II00 = M£ "1~ II e u21| oo,

for some constant M > 0, which completes the proof. •

An alternative proof of the above theorem may be based on [15, Corollary
A-IV.1.14], by showing that zero lies in the continuous spectrum of A + Xm.

It is also possible to prove that X^m) is the unique principal eigenvalue (our
construction in Theorem 2.3 shows that X^m) is the only eigenvalue corresponding
to a positive radially symmetric eigenfunction, but does not preclude the existence
of another eigenvalue corresponding to a positive nonradially symmetric eigenfunc-
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tion) and that the zero solution is unstable for X > X^m). We defer the proofs of
these results to Section 5, where they are given for more general m.

Thus Theorem 1.1 holds in the case where m is continuous and radially symmetric
with compact support.

3. General properties for continuous weights with compact support

Throughout this section, it is assumed that m(x) is a continuous weight function
with compact support. Our goal is to obtain some general properties for this class
of potentials which are of interest in themselves but which we shall also use later to
study the case where m is sufficiently negative to ensure that Theorem 1.1 holds.
Some open problems arising in [18, Section 5] will also be partially answered.

THEOREM 3.1. Suppose JV ^ 1 and that m is continuous and has compact support. Then
r'(0) = 0, where ' stands for differentiation with respect to the parameter k.

Notice that if JV 2: 3 and m is radially symmetric, the above result is an immediate
consequence of Theorem 2.3.

Proof of Theorem 3.1. Since r(X) is log-convex and r(0) = 1, either (i) there exists
e > 0 such that r(X) = 1 for X e [0, s], or (ii) r(X) > 1 for all X > 0. If (i) occurs, then
there is nothing to show. Suppose (ii) holds. Since r(X) > 1, it follows from
Remark 2.2(ii) that

1 = spress (e<A+lm>) < spr (e
{A + Xm)) = r{X)

and that r{X) is an algebraically simple eigenvalue whose corresponding positive
eigenfunction we denote by q>%. Then ^ I s an eigenfunction of the operator — (A + Xm)
corresponding to the eigenvalue

n(X)=-logr(X).

Hence, we obtain

(3.1)

Since n(X) < 0 lies in the resolvent set of —A considered in C0(R
N) as well as L2(R

iV)
and the right-hand side of (3.1) lies in L2(R1")nC0(R"), we see that <px has to be in
the domain of definition of A as an operator in L2, which is Hl(RN). In particular,
<px lies in H\(RN).

From standard analytical perturbation results (see [12]), the function ^( - ) is
analytic in (0, oo) and X-><px may be chosen analytic and normalised so that
II^AIIL2 = 1 f ° r all A > 0. By differentiating (3.1) with respect to X, we obtain

- ( A + Xm)<p'x - m<pk = p!{X)<px + n{X)q>\.

Multiplying this relation by <px and integrating over R^, using the fact that
q>x e Hi{RN), it follows that

JRN
fi'(X)=- mcpldx. (3.2)
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In a similar way, multiplying (3.1) by <px and integrating, we obtain

\\Vq>x\\
2 dx =/i(X) +X I mq>\dx. (3.3)

JR"

In particular, (<px) is bounded in H\, uniformly on bounded intervals of A and hence
we can find a sequence, say (q>Xk)kii_, Xk->0, as fe-» oo, converging to some 9) in L2 loc.
Since /i(At)->0 as fc->0, it follows from (3.3) that V<pXk is a Cauchy sequence in L21oc

and so <pXk is convergent to cp in H\(£l) on any bounded set Q. Letting fc-> 00 in (3.3)
shows that J R N || V^ ||2 dx = 0 and so <p is a constant function. Since (^AJ converges
to (p in L2 on any bounded set and || q>Xk ||L2 = 1 for all k, it follows that <p = 0. Hence
(̂ >t) converges to the zero function in L2 on the support of m and so by (3.2) ju'(O) =
0. Thus r'(0) = 0 and the proof is complete. •

We now use Theorem 3.1 to show that Theorem 1.1 holds for potentials negative
and bounded away from zero at infinity.

COROLLARY 3.2. Let me C(RJV) be such that there exist c>0 and R>0 satisfying
m(x)^ — c < 0 for all | x | > i ? > 0 . Then the problem (1.2) has a unique principal
eigenvalue, denoted by Ax = X^m) > 0, which is algebraically simple. Moreover, the zero
solution o/( l . l ) is exponentially stable if X e (0, A:) and unstable for X > At. In addition,
we have that r'(0) ^ — c.

Proof. Let m*(x) be continuous radially symmetric such that m(x) ^ m*(x), x e RN,
and m*(x) = — c for |x| > 2R. Then m* + c is continuous radially symmetric and has
compact support. Set r(X) = spr (e<

A + Am>) and r*(X) = spr (e(
A+Mm*+o)y T h e n

_ g(A + X(m* + c ) - Ac) _ g - Acg(A + X(m*

and so

By Lemma 3.1, dr*/d/l = 0 and so (d/dX)(e-Xcr*(X))\x=o= -c. It follows that
r'(0) ^ — c and so r(A) < 1 for X small enough. On the other hand, it follows from
[9, Lemma 7.2] that

lim r(X) = oo,

and this, together with the log-convexity of r(X), shows the existence of a unique
X1 = X1(m) such that r{X)<l for Xe(0, AJ, r(Ax)=l and r(A)>l for A>Ai. But
spress (A + Xm) s ( - oo, - Ac], see [5, Theorem 2.1], and so spress (e

(A+Am») < 1. Hence
it follows from Remark 2.1 (iii) that Ax is a principal eigenvalue. It is easy to see that
the stability results in the statement of the theorem hold.

Finally we prove that Ax is the unique principal eigenvalue. If A < A1; then r(X) < 1
and a principal eigenvalue cannot exist. If A > Al5 then according to Remark 2.2(ii)
r(X) > 1 is the only eigenvalue having positive eigenfunction so that 1 cannot be a
principal eigenvalue of e<-A+Xm\ i.e. A is not a principal eigenvalue of (1.2.). •

This corollary extends related theorems in [5] and [9] by guaranteeing the
uniqueness of the principal eigenvalue obtained in [5] and by supplementing the
results in [9] by estimating the slope of r(X) at A = 0; this slope gives information
on the rate of convergence to zero of any positive solution of (1.1) if A is small.
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Corollary 3.2 also enables us to prove the following result about the case where m
has compact support.

THEOREM 3.3. Assume that m is continuous with compact support and

m(x) dx < 0.

For any ball B<=RN such that j B m < 0, let XNB(m) denote the principal eigenvalue of

— A<p = Xm<p in B,

d
. — w = 0 on oB.
{on

Define

XN Jm) = sup {XN B(m):m(x) ^ 0
B

Then

r(X)=\ for all 1 €[0,1^1

REMARK 3.4. The assumption J R N m < 0 guarantees the existence of a ball B such
that | g m < 0 and m(x) ^ 0 for any x £ B.

Proof of Theorem 3.3. For any e > 0, consider the potentials mE denned by

mE = m — s .

As there is x0 e RN such that m(x0) > 0, me(x0) > 0 if e is small enough. Let ^ ( m j
denote the principal eigenvalue associated with me, whose existence and uniqueness
is guaranteed by Corollary 3.2. It follows from the same corollary that
spr (e<

A + ^>) < 1 for all X e (0, ^ K ) ) . Hence

r(X) = spr (e<
A + ta>) = spr (e

i* + Xm° + Xc))=ex* spr (e
(A+Xm^) < eu (3.5)

for X e(0, X^m,)). Let B c R " b e an arbitrary ball such that \Bm < 0 and m(x) ^ 0
whenever x$ B. Then, \Bme <0 for e small enough. For such e, let AJV.B(*«,,) denote
the principal eigenvalue of the Neumann problem associated with mE in the ball B.
By [5, Theorem 2.3],

As m£ :S m, A;v,B(m) 5£ /iiv,B(w8). Thus,

and it follows from (3.5) that

r(X) < eu, X e (0, XNiB{m)).

Therefore, passing to the limit as e—>0,

r(X)^l, Xe(0,XNiB(m)).

Finally, as m has compact support, it follows from Remark 2.2 that r(X) ^ 1 for all
X ^ 0, which completes the proof. •
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The following result shows that when N ^ 3 the condition JR N mdx<0 is not
necessary to ensure that r(X) = 1 for X > 0 close to zero.

THEOREM 3.5. Assume that m is continuous with compact support and N ^ 3. Let m*
be an arbitrary continuous radially symmetric potential with compact support such that

m(x)^m*{x), xeRN.

Let X^m*) denote the principal eigenvalue associated with m*, whose existence and
uniqueness is guaranteed by Theorem 2.3. Then

r{X) = spr {e^
 + M>) = 1, for all X e [0, X1(m*)'].

Proof. As m ^ m*,

Moreover, it follows from Theorem 2.3 that

spr(e(A+;im*>) = l

for all X e [0, Xi{m*)'], and hence r(X) ^ 1 for such range of X. Finally, it follows from
Remark 2.2 that r(X) 3: 1 for any X ^ 0, which completes the proof. •

However, as the following theorem shows, for the cases N = 1 or N = 2 the
condition JRW mdx<0 is essential so that r(X) = 1 for X > 0 close to zero. Before
proving this result, we need a simple lemma.

LEMMA 3.7. Let me C(RN) and B be an arbitrary ball in R*. Denote by TkB(t) the
semigroup generated by A + Xm in C0(B), i.e. by the Dirichlet problem on B, and by
Tk(t) the Schrodinger semigroup e'

iA+Xm). Then

rB(X)-.= spr (TA-J,(t)) ^ spr (Tx(t)) = r(X)

for all X in R.

Proof. Let u o eC o (R") and let u denote the corresponding solution of (1.1). Set
VO:=UQ\B and let v denote the solution of the Dirichlet problem

(dt<p — A<p = Xmq> on B x (0, oo),

ondBx(0, oo),

onB.

Then, an easy comparison argument shows that

on B for all t ^ 0 and, hence,

for all 13; 0. But from this it follows that

and the assertion follows from the formula for the spectral radius. •



Change of stability for Schrodinger semigroups 839

THEOREM 3.7. Assume that N ^ 2 and that

m(x) dx > 0.

Then, for any X > 0, t/ie Schrodinger equation — Sup = Xm<p does not admit a positive
solution in Lx (i.e. a 'bound state'). Moreover, the semigroup g(A + Am) is unstable and

r{X) > 1 for all X > 0.

Proof. The first assertion was shown in [5, Theorem 3.2]. It remains to prove the
instability of the semigroup for all values of X > 0. To do this, denote by XDBR the
principal eigenvalue of the Dirichlet boundary value problem

— A<p = Xm<p o n | x | ^ R ,

q>(x) = 0 for |x | = R.

It is shown in [5, Lemma 3.1] that XDBR->0 as R-*• oo. Fix X > 0 arbitrary. To prove
that r(X)> 1, we choose a ball B such that XDB<X. Using the results on bounded
domains, we see that rB(X) > 1 [3 ] . By the above lemma, it is now clear that r(X) > 1,
proving the instability. •

As the previous results show, the qualitative behaviour of the Schrodinger semi-
group is heavily dependent on the spatial dimension when m has compact support.
When JV 2; 3 and m is radially symmetric, there is a unique principal eigenvalue X^m)
and the Schrodinger equation has a bound state for any X e (0, Ax(m)) and the zero
solution is Lx stable in this X range. On the other hand, if N < 3 then the equation
does not admit a radially symmetric principal eigenfunction in C0(R

JV) because it is
easy to see that any such eigenfunction would have to be identically zero outside
the support of m and this is impossible for a classical solution of (1.2). However, if
JRNm < 0 and N < 3, there is one value of X > 0 for which the semigroup eHA+Xm) has
a bound state, that is, X = vl5 the principal eigenvalue of the Neumann problem in
large balls, the bound state consisting of the principal eigenfunction to the Neumann
problem on any ball containing the support of m extended to be identically equal
to an appropriate constant outside the ball. This bound state, which does not vanish
at infinity, can be regarded as the limit of principal eigenfunctions of Neumann
boundary value problems. This is in contrast with the case JV ^ 3, where the principal
eigenfunction vanishes at infinity and so can be regarded as a solution of a Dirichlet
boundary value problem. In fact, when N ^ 3, we shall show in Section 5 that the
principal eigenvalue of (1.2) can be obtained as the limit of the principal eigenvalues
of the corresponding Dirichlet problems in large balls. The results obtained above
have a bearing on some open problems arising in [18, Section 5] .

4. The case m negative at infinity

In this section we prove the exponential stability of the zero solution for a wide class
of potentials m which are negative at infinity. A recent result obtained by Arendt
and Batty in [2] characterises potentials V such that the Schrodinger semigroup
associated with A — V is exponentially stable. We shall use this result to prove
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Theorem 1.1 for an associated class of potentials m. The following definition from
[2] will be useful.

DEFINITION 4.1. Given a subset G c R " , it is said that G contains arbitrarily large
balls if for any r > 0 there exists x e G such that G contains the ball centred at x
with radius r. By ^ we shall denote the class of subsets of RN containing arbitrarily
large balls.

THEOREM 4.2. Suppose that m admits a decomposition of the form m = m1 — m2 with
supp m^ compact and m 2 ^ 0 such that Jcm2(x) dx= oo for all G e f . Then, there
exists a unique principal eigenvalue Ax > 0 of (1.2) and the zero solution of (1.1) is
exponentially stable for A e [0, AJ and unstable for A > At.

Proof. As m is positive somewhere,

limr(A) = oo. (4.1)
A->oo

We now show that r(A) < 1 for A > 0 small enough. By the variation-of-constants
formula, we can write

gt(A + m) _ gt(A - m2) _|

As mj has compact support, it follows from [9, Proposition 5.4] that the integral
on the right-hand side of the above relation defines a compact operator on (^(R^).
Hence

SX=TX + Kx,

where Kx is a compact operator. Thus, from Remark 2.1, part (ii), we find that

spress Sx = spress Tx, A ^ 0.

Moreover, it follows from [2, Theorem 1.2], that spr Tx gi || Tx \\ < 1 for A > 0. Hence

spr e s s S A <l , A>0. (4.2)

Let m = m1 — m2 be a decomposition of m such that ml and m2 satisfy the conditions
of the theorem and in addition

mj(x) dx

As m2 2:0,

Moreover, it follows from Theorem 3.3 that

Thus,

s p r S ^ l , Ae[<UW i 0 0]. (4.3)

To show that spr SA < 1 for A > 0 small enough, we argue by contradiction. Suppose
that spr SA = 1 for A close to zero. As A -»spr SA is log-convex, spr SA ̂  1 for all A ^ 0
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and hence it follows from (4.2) that

spress Sx <spvSx, X ^ 0.

So, Remark 2.1(iii) guarantees that spr Sx is an algebraically simple eigenvalue of S2

for all X > 0. Therefore, X -*• spr Sx is analytic for X > 0 and so spr Sx = 1 for all A ^ 0,
which is impossible since spr Sx > 1 for A large enough. This contradiction shows
that r(X) < 1 for X > 0 small. As r(l) is log-convex, there is a unique At > 0 such that
r(X1)= 1. The uniqueness and stability assertions of the theorem now follow as in
the proof of Corollary 3.2. •

Clearly Corollary 3.2 is a special case of Theorem 4.2; the proof we gave, however,
in Section 3 is based on much more elementary considerations than the proof above,
which depends among other things on Theorem 3.3 which in our development
depends in turn on Corollary 3.2.

It is shown [2, Corollary 1.9 and Theorem 1.10] that there exist potentials
vanishing in a finite number of strips and satisfying all the requirements of
Theorem 4.2. Some characterisations of the weights m2 satisfying | G m 2 = oo for all
G e ^ can also be found in [2, Proposition 1.4].

5. The case of potentials with fast decay at infinity

In this section, we show the existence and the uniqueness of the principal eigenvalue
of (1.2) for continuous weights m satisfying

|m(x) |^c( l + |x|2)-« (5.1)

for some constants c > 0 and a > 1. As any continuous potential with compact
support satisfies (5.1), Theorem 3.7 shows that under hypothesis (5.1) JV5;3 is
necessary for the existence of a principal eigenvalue. Thus we shall assume that
N ig 3 throughout the section.

To show the existence of a principal eigenvalue, we need some preliminary results,
which are of interest by themselves. Consider the weighted Hilbert space

H-.= L2((l + \x\2y*dx) (5.2)

and define

When JV 2: 3, || • \\v defines a norm in 3>(RN), since by Hardy's inequality

~ldx (5.3)

for some constant c0 > 0 independent of i// e ^(R^) . Let V denote the completion of
N), || • \\r). Then, V is a Hilbert space with inner product

(u,v)v— (Vu,Vv}dx.
J

Moreover, since
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it follows from (5.3) that the space V is continuously embedded in H. The following
result shows that this embedding is compact.

LEMMA 5.1. The embedding of V in H is compact.

Proof. Let (uk) be a bounded sequence in V. We have to show that it has a convergent
subsequence in H. As V^H, (uk) is also bounded in the Frechet space H2loc(R

N).
Moreover, since H2,loc(R

N) is compactly embedded in L2iioc(R
N), there exists a

subsequence of (uk), again denoted by (uk), which converges to some function
u e L2<ioc(R

N). In other words,

lim \\uk-u\\L(a) = 0 (5.4)
k->oo

for any bounded Q <= R^.
Given arbitrary R > 0, the following estimates hold

f
BR

^( l + JR2)1"oc-|l",-«illr+ll«t-Mi||i2(Bj!), (5.5)
co

where Hardy's inequality is used to get the last estimate.
Consider arbitrary e > 0. As (uk) is bounded in V and 1 — a < 0, there exists R > 0

such that

(l + tfY-'-K-Hj2^, VMeN. (5.6)
c0 2

Moreover, it follows from (5.4) that there exists NoeN such that

This estimate together with (5.5) and (5.6) completes the proof. •

Given R > 0, consider the following eigenvalue problem:

( — Au = lmu in BR,
\ (5.7)
[u = 0 on dBR.

Where R is large enough, there exists xoeBR such that m(xo)>0. Hence (5.7)
possesses a unique principal eigenvalue, which will be denoted by 2-i(R). It was
shown in [8, Lemma 6.6], that the mapping R-tk^R) is strictly decreasing and that
the limit

Aoo== lim l^R)
R->oo

exists and is finite. The question of interest is to characterise whether Xx is a principal
eigenvalue of (1.2) or not. In fact, this was an open question in [5] and [9] . The
answer is positive as the following theorem shows.
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THEOREM 5.2. Xco>0 is the unique principal eigenvalue of (1.2). Moreover, the zero
solution o / ( l . l ) is unstable for X > Xx.

We first show that Xx is a principal eigenvalue of (1.2). Let <pR denote the principal
eigenfunction associated with X^R). Such eigenfunctions lie in the Sobolev space
H\(BR) vanishing at the boundary and so, extended to equal zero outside BR, can
be regarded as lying in H\(RN). As they have compact support, we can also regard
them as elements of V. If we assume that the <pR are normalised so that || (pR\\v = 1.
it follows from Lemma 5.1 that there exists a sequence of positive real numbers (Rk)
and a p e f l such that limk_ooRk = oo and

lim (pk = <p, (5.8)

where <pk stands for q>Rk and convergence is in H and so in L21oc(R
iV). Next, we show

that (<pk) is also a Cauchy sequence in V and therefore converges in V. For simplicity
we shall write Xk--=X1(Rk) and Bk~BRk. Without loss of generality, we may assume
that / S k and hence Bla Bk. This allows us to consider (p{ as a test function. Using
in addition that <pk and q>t satisfy the elliptic boundary value problem (5.7) and
Green's formula, we obtain

\W<p,\2

<pkA<pk-2
I

m(f>\ - 2Xk nvpt

= Xk m(pk{<pk - 1 - Xk) - <pk)

^ KII<Pk \\HII<Pk - <Pi\\H + U i - h \ II<Pk I I H II9>i I I H + KII 9>i I I H \ \ < P i - <Pk \\H-

As (q>k) is convergent in H and also (At) has a finite limit, it follows that (<pk) is a
Cauchy sequence in V. Since V^H, its limit is 9;. In particular, it follows that
\imk^oo <pk = <p in H\Aoc, and that | |^ | |K= 1, i.e. ^ # 0 . We now prove that <p is a
principal eigenfunction of (1.2) associated with A^ by showing that <p is a weak
solution of (1.2) for 2 = Xx. Suppose ij/ e ®(RN). Then if k is sufficiently large

= Xk dx,

and so letting k —• oo

dx =

Hence 9) is a weak solution of — A^ = A ,̂ m^ and it follows by a standard regularity
argument that <p is a classical solution of the equation.

As 9>k > 0 for all k ^ 1, <p ^ 0. Moreover, it follows from the definition of <pk, using
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Green's Theorem, that

Xk(m<pk, cpk} = (V<pk,V(pky = \\<Pk\\v=^ (5-9)

for all fe^ 1. Since §RNm<pk dx ̂ c\\(pk\\jj for some appropriate constant c, it follows
that \KNm(pl dx is bounded and so because of (5.9) the sequence (Xk) must be bounded
away from zero. Hence Xx > 0 and so we have proved the existence of a positive
principal eigenvalue.

It is now easy to prove that the zero solution is unstable for all X > X^. If X > kx,
we can find a ball BR such that X^R) < X. Instability can now be proved by using
exactly the same argument as that used at the end of the proof of Theorem 3.7.

Finally we prove that X^ is the unique principal eigenvalue. In order to do so, we
must first prove two technical lemmas.

LEMMA 5.3. Let m satisfy (5.1). Then, any principal eigenfunction p of (1.2) satisfies
cp e L2 W V_2 )(R") and Vcp e L2(R

Nf.

Proof. Let <p be a principal eigenfunction associated with some eigenvalue X > 0.
Then

for some constant cN > 0 depending on the spatial dimension. Hence

V<p(x)=-(N-2)cN

It follows from [14, Lemma 2.3] and by using bootstrapping arguments that

|^ (x) |^c |x | - ( i V - 2 ) and \V(p(x)\Sc\x\~(N-1],

for some constant c>0, which completes the proof. •

LEMMA 5.4. Let (p e L2NnN-2)(R
N) be such that V(p e L2 . Then, there exists a sequence

of test functions (<pn) such that limn^co<pn = (p in L2NKN-2)(
RN) and \imn^ODVg>n = V(p

in L2.

Proof. Let \\i e ^ (R") be such that 0 ̂  ij/ ̂  1 and i/r(x) = 1 if x e Bt and i/̂ (x) = 0
outside B2. Define \l/n(x)-~\j/{x/n) and set

It follows easily from the Lebesgue Dominated Convergence Theorem that (pn^>(p
in L2W/(jv-2). Also, applying Holder's inequality, we obtain

^ U , (5.10)

where An-.= {n^\x\^2n} and we denote by ||-||p the L^R^-norm and by ||-||p,^n

the Lp(An)-norm. Since V<p € L2, the Lebesgue Dominated Convergence Theorem
guarantees that the first term in (5.10) tends to zero as n goes to infinity. Moreover,
since <p e L2JV/(JV_2), then lim^oo || q> ||2^/(jv-2),^n

 = 0. From the definition of \j/n it follows
readily that ||Vtyn\\N= \\Vi/'IU- Smoothing out the functions <pn, the proof is
complete. •
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We can now proceed with our proof of the uniqueness of the principal eigenvalue.
Suppose that k is any other principal eigenvalue of (1.2) with corresponding positive
eigenfunction ijj. Since k^R) has variational characterisation

\V\li\2dx

I = inf

JBR

it is easy to show that Xx has the variational characterisation

|ViA|2dx

_ = inf
te9(R") j

jR» n«i/2 dx>t> I m\j/ dx

JR"

From Lemmas 5.3 and 5.4, we see that the principal eigenfunction \jj can be approxi-
mated by a sequence of test functions (\j/n) in such a way that Vi/f,,—•Vi/' in L2 and
i/',,—>i/f in L2;y/(jv-2) s 0 that |RNmi/'2-> |RNmi/'2 dx. Thus, it follows from (5.11) that k
must satisfy

The same argument as at the end of the proof of Theorem 3.8 shows that r(k) > 1
and in particular the instability of the zero solution for all k > Xx. By Remark 2.2(ii)
r(k) is the only eigenvalue having positive eigenfunction. Hence we must have k =
kx and the proof of Theorem 5.2 is complete. •
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