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Six Painlevé equations
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Consider a second-order nonlinear ordinary differential equation y” = R(t;y,y’) for y = y(t), where
R(t;y,n) is a rational function in (¢,y,7n), and ’ = d/dt. Such an equation is said to have the Painlevé

property if any solution has no movable singular point except for poles.

Any rational ordinary differential equation of second order with the Painlevé property is reduced to
one of the six Painlevé equations, F,..., Pyr unless it can be integrated algebraically, or transformed

into a simpler equation such as a linear equation or the differential equation of elliptic functions.
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Characteristic features of Painlevé equations

e Degeneration diagram: Py — Py — P

AN N
Pv — Pi1 — B

e Affine Weyl group symmetry: Dfll) . Aél) —  (24;)D
(Bécklund transformations) AV AV
AD LA

e Hypergeometric solutions: Gauss — Kummer — Bessel

N\ N\

Hermite — Airy —

The parameter space of Py (J =1I,..., VI) can be identified with the Cartan subalgebra of a semisimple
Lie algebra. The natural action of the corresponding affine Weyl group on the parameter space can

be lifted to a group of Béacklund transformations for P;. (Okamoto 1970s, ...)

Along each wall of the affine Weyl group in the parameter space, there arise special solutions which
can be expressed in terms of (confluent) hypergeometric functions. Typically, algebraic solutions arise

as fixed points of some diagram automorphism of the affine Weyl group. (Umemura 1980s, ...)
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An example: Py

e Symmetric form of Piyv

fo = folfr — f2) +
— fl=fi(fo—fo)+a1 fo+tfi+tfo=t
fo=fo(fo—f1) +

Here a; (j = 0,1,2) are complex parameters with ag + a3 + ag = 1.

The differential equation for y(t) = — f1(v/2t)/v/2 coincides with Py with o = ag — v, f = —2a2.

1 3
Py’ = @(y’ﬁ + 5@/3 +4ty* +2(8° —a)y + S

e Affine Weyl group symmetry
Consider the differential field X = C(ayg, a1, as; fo, f1, f2) representing the symmetric form of Ppy.
We regard the indices for o; and f; as elements of Z/3Z. This differential field X has fundamental

differential automorphisms (Bécklund transformations) sg, s1, S2 and

si(a) = —ay, si(Qit1) = g1 + o, si(i—1) = a1 + ay,
si(fi) = fi, si(fir1) = fir1 + a—_i, si(fi—1) = fiz1 — %
() = ait1,  w(fi) = fira

These transformations generate the (extended) affine Weyl group W = (s0, 81, 82, m) of type Aél):
s2=1 (i=0,1,2); (s051) = (s182)% = (5250)° = 1;

=1 7ws;=s;1m (i=0,1,2).
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e Hypergeometric solutions

When ay = 0, by setting fo = 0 we obtain the first order equation f] = fifo + a1 = fi(t — f1) + a1.
This Riccati equation is linearized to the Hermite equation v’ — tu’ — ayu = 0 by the transformation
of variables fi1 = u’/u. Along each wall (reflection hyperplane) a; =n (j = 0,1,2;n € Z), there exists
a one-parameter family of solutions which are expressed by determinants of Hermite functions. They
are obtained by Backlund transformation from the seed solutions along agy = 0.

e Algebraic solutions

At the barycenter (ag, o, a2) = (3,3, 3) of the fundamental alcove C, there is a rational solution
(fo, f1, f2) = (%, %, %), obtained as the fixed point of 7. By Bécklund transformations, we obtain a

rational solution at the barycenter of each triangle (expressed by ratios of Okamoto polynomials).
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e Discrete Painlevé equation as Schlesinger transformation

Consider the parallel translation T by the vector Py P;. This transformation 77 belongs to the extended

affine Weyl group W = (sq, s1, s2,m), and is expressed as 17 = SpSom = TS287.

a1:0 051:1
\720 a1:1
> 2
C Tl > C/

Qo = 0

This element T} = ws951 € W transforms the parameters as
Ti(ag) =+ 1, Ti(an) =ar—1, Ti(a) = az.

The action of 77 on the dependent variables f; (j =0, 1,2) is computed as

ap  aztag _ fefifa —aofofi + aofafo — (o + ao) fé — o

o :th%_ h=%5 fo(fofe — ao)
T (f1) = fa — % _ W7
Ti(f2) = fo+ o t+az fo(fof2 +042).

27 7, f0f2—040

This can be regarded as a version of the discrete Painlevé equation dPry.
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Note that

Q Q B Q «
T1(f1)=f2——0=t—fo—f1——07 Tll(f0)=f2+—1=t—f0—f1+—1.
fo fo fi 1
By setting x, = T7*(f1), yn =T17"(fo) (n € Z), we obtain
Qo +n o1 —n
$n+xn+1:t_yn_ Oy 3 yn—1+yn:t_33n+ 1ZU

Here n is the independent variable and ¢, g, a7 are the parameters. This equation is a version of
the discrete Painlevé equation dPpy. In fact, from this difference equation one can derive the Painlevé

equation P by taking an appropriate continuum limit.

The parallel translations 74, T5,T5 by the three vectors Py P,. PiP>. Py Py are expressed as

T1 = TTS2851, T2 — §17S9, T3 = S§1S2Tr.

Furthermore, they satisfy the relations T;7; = T;T; (i,5 = 1,2,3) and 717575 = 1. Note that the
extended affine Weyl group W = (80, 81, 82, ) is expressed as a semidirect product of a free abelian

group 7 of rank 2 and the symmetric group &3 = (s1, s2) acting on 7:

—~

W:<So,81,82,ﬂ'>:7><163, T:{Tf1T§2‘k1,k2€Z}.

It means that, through the representation on K = C(«yg, a1, as; fo, f1, f2), the group of parallel trans-

lations of W = (80,81, 82, ) gives rise to a set of commuting dPy; flows.

Reference:
M. Noumi: Painlevé equations through symmetry,

Translations of Mathematical Monographs 223, American Mathematical Society, 2004.
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Discrete Painlevé equations

Consider a system of non-autonomous rational discrete evolution equations for two unknown functions
(dependent variables) f = f(x) and g = g(x):

fx+06)=R(z; f(z),9(x)),  g(z+0)=5(z; f(z),9(x)),
where R(x; f,qg),S(x; f,g) € K(f,g) are rational functions in the variables (f,g) with coefficients in

a difference field of “known functions”. Typically, we consider the following three classes of discrete

Painlevé equations, according to the choice of K:

(dP): K =C(z) .-+ rational/additive
(gP): K =C(e") ... trigonometric/multiplicative (¢ = €°)
(eP): K =C(p(x),p'(x)) --- elliptic

How to choose R(x; f,g) and S(z; f,g)? How to detect discrete Painlevé equations?

e Singularity confinement property: Discrete counterpart of the Painlevé property
Grammaticos, Ramani, Papageorgiou, Hietarinta, ... (Phys.Rev.Lett. 1991,...)

e Algebraic entropy: The degrees of the iterates of the rational map should grow polynomially.
Bellon-Viallet (Com.Math.Phys. 1999),. ..

e Birational representations of affine Weyl groups:
Noumi, Yamada, Kajiwara (Comm.Math.Phys. 1998, ...)

e Geometry of rational surfaces:
Discrete dynamical systems on rational surfaces obtained from P? by blowing up at nine points

— Sakai’s table of discrete Painlevé equations (Sakai (Comm.Math.Phys. 2001), ...)
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Sakai’s table of discrete Painlevé equations (of second order)

Sakai (2001) proposed a class of discrete Painlevé equations of second order, by classifying rational
surfaces obtained from P? by blowing-up at nine points (or from P! x P! by blowing-up at eight points)

whose group of Cremona transformations form affine Weyl groups.

e In terms of the type of rational surfaces (anti-canonical divisors):

(eP) : A(()l)
) AL DAY A AN A0 DAY D
~ 1
A0
(dP) : Aél) — Agl) — Aél) — Dé(ll) — Dél) — Dél) — Dél) — Dél)
\ N\

Eél) — E%l) — Eél)

e In terms of the affine Weyl group symmetry:

(eP):  EM
(@P): B - B - BV - DY — AP — 4y + A41)D — (A1 + 4D — 410 — A
N (1)
Al
(dP) : Eél) — Eél) — Eél) — Dfll) — A:(,,)l) — (2A1)(1) — All(l) — A(()l)

N\ N\
AL A 4



Discrete Painlevé equations

(Grammaticos-Ramani-- - - & Sakai)
Rational (9) Trigonometric (9) Elliptic (1)
dP qP eP

Continuous

Painlevé equations

P
Ultradiscrete

Painlevé equations

uP
. qPV

A + Ay qPmn, qPiv
Az : Py A+ Ay P
A1+A;: P My Py Ay Al

Ay Py Aq: P (Ao)

(Ao: Prp)  (Ao: P)
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An example: qP(E.gl))

g-Painlevé equation of type E;I) (Ramani-Grammaticos-Tamizhmani-Tamizhmani, Sakai, 2001)
e t: independent variable e b1,bo, ..., bg: parameters with b1bob3by = q and bsbgbrbg = 1
o f=f(t),g=g(t): unknown functions

Notation: ¥ = ¢(qt), ¢ = @(q ') (bj =b;,7=1,...,8)

(fg—tt)(fg—1t°)  (f = bit)(f — bat)(f — bst)(f — bat)

)
(fg—D(fg—1)  (f =bs)(f = b6)(f = br)(f — bs)
(fg =) (fg—t)  (g—t/b1) (g —1t/bs) (g —t/bs) (g — t/bs)
(fg=D(fg=1)  (9-1/bs) (9 —1/bs) (g = 1/b7) (9 — 1/bg)

e When b1b3 = b5b7 (and baby = qbgbs), this equation is decoupled consistently into the four equations
(Murata-Sakai-Yoneda, 2003):
fg—tt _ (f = bat)(f — bat) fg—t*  (f —bit)(f —bst)
fg—=1  (f=be)(f—bs)’ fo—1  (f=bs)(f —br)
fg—tt  (g—t/bo)(g—t/bs) fg—t°  (9—1t/bi)(g—1t/bs)
fo—1 (9—1/be)g—1/bs)" fg—1  (g—1/bs)(g—1/br)°
Hence we obtain the discrete Riccati equation for g:
(tt—1)f +t{—(bs + bs)t + (ba + ba) }
{—(bs + bs) + (b2 + ba)t} f + bebs(1 — t2)’

(t* = 1)bsbrg + t {(b1 + b3) — (b5 + br)t}
{t(b1 + b3) — (bs +b7)} g+ (1 — t2)

Pg+@Q

Rg+ S~

g= f=

Namely, g is determined from g by a fractional linear transformation: g =
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e Choose the variable
_1—bg/b5tg—t/b1 _AZ—|—B

T bybig_1/bs ~ T CziD

|

Then the corresponding discrete Riccati equation can be solved by

. 8W7<a; Qb, ¢, d767f;Q7x/Q) p = q2CL2 .
B 8W7(a; b7 C, d767 f:C_Iax) , B deef’

bibs bs by by byt b
(Cl/;b7(j76l767¢f)>:<18-_8_2_4L 1)7

where .1 3W,19 denotes the very well-poised ¢-hypergeometric series defined by

—1-q¢*ag  (ao;Q)r(ar; @)k (ar; @)k N
W, y 1,534, = § < 1, <1).
ralVrsalaoin e arid ) —~ 1—ao (¢qkr(qao/ar; @)k (qa0/ar; @)k = d =l <1)

Here (a;q)r = (1—a)(1—qa)---(1—¢"ta) (k =0,1,2,...) stands for the standard g-shifted factorials.

e The discrete Riccati equation for z is linearized as
F .
G Y

Hence we obtain two ¢-difference equations of second order:

F=(AF+BG)H, G=(CF+ DG)H.

z =

F+01F+C2E:O, E—Fle—l-dQQ:O.

By choosing an appropriate gauge factor H, these equations for I’ and G are identified with the second

order g-difference equations (three-term recurrence relations) for balanced gW7.

Reference:
K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada: Hypergeometric solutions to the
g-Painlevé equations, IMRN 2004:47(2004), 2497-2521.
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Discrete Painlevé equations with W(Eél)) symmetry

The three discrete Painlevé equations with W(Eél)) symmetry can be formulated in terms of the
configuration space of (9 + 1) points in P? (or (8 + 1) points in P! x P!). They can be regarded as an
non-autonomous version of QRT mappings (Quispel-Roberts-Thompson, Physica D. 1989).

Standard Cremona transformation (quadratic transformation)

Let p1,p2,p3 be a triple of points in P? which are not collinear. Then one can choose a system of
homogeneous coordinates (x1 : 3 : x3) such that py =(1:0:0), p2=(0:1:0), p3=(0:0:1).
Then the birational mapping

~ 1 1 1
Cl'py,p2,ps - P?...— P q=(r1:22:23) — q = (T2w3 : X173 : T1T2) = (l‘_1 : x—2 : 35_3)

is called the standard Cremona transformation with respect to (p1,p2,p3) (determined up to (C*)3).

VAN

L1 L3
D2
Bplap2,p3 Bl1,l2,ls
14 L3

P3 Pl

®o

D3 p1
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Configuration space X3, of n points in P?

We say that a n-tuple (p1,...,p,) of points in P? = P?(C) is in general position if, for any distinct triple
J1,J2,73 € {1,2,...,n}, the three points p;,,p;,,p;, are not collinear. Two n-tuples (p1,...,p,) and
(q1,--.,qn) are regarded as a same configuration if there exists a ¢ € PGL(3;C) such that g.p; = g;

(j=1,...,n). We consider the following configuration space of n points of P? in general position:

Xsn ={ (p1,---,pn) € (P*)" : in general position }/~.

We denote by [p1,...,ps] the equivalence class (PGL(3;C)-orbit) of (p1,...,pn).

Note that the symmetric group &,, of degree n acts on X3, from the right through the permutation

of points:
1, Pnl-0 = [Po(r)s - Pom)] (0 € Gy)

For each triple of distinct indices (j1, jo,j3), we define the action of the standard Cremona transfor-
mation crj, j, j, Dy
pj (] € {j17j27j3})

D1,y PR)CTjy dags = Q15+, nl; @5 = . o :
B Crpj17pj27pj3(pj) (-] 6{17'771}\{31732733})

Then it turns out that the group of birational transformations ({cr;, S,) on X3,

generated by the standard Cremona transformations crj, j, j, together with G,,, gives a realization of

3J2,J3 }1§j1 <ja<jz<m

the Weyl group W (1% 3,,—3) associated with the tree T5 3 3.
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A system of coordinates of X3 ,,

If we fix homogeneous coordinates (x; : 2 : x3) of P?, the configuration space X3, can be identified
with the double coset space

Mat*(B,n;C) - {X S Mat(B,n;(C) ‘ det(X)j17j27j3 # 0 (1 <1 <J2<Js < n)},

X3, = GL(3;C)\Mat*(3,n;C)/T",

where T™ = (C*)™ denotes the diagonal subgroup of GL(n;C). By using the action of GL(3;C) and

T, any X € Mat*(3,n;C) can be transformed into a unique canonical form:

L11 L12 13 0 Lln 100 Yia - Yin 1001 Uiy - Uln
X = |®a Tz @o3 -+ Ton| =Y =010y -+ you| 2U=[010 1 ugs -+ wuzn|,
T31 X32 L33 - T3n 001 ysqg -+ ysn oo11 1 --- 1

where u1; = &1248035/&12;8234, u1; = &124&135 /61256134, &ije = det(X);x. In this way we obtain a
transversal Uz , — X3, = GL(3;C)\Mat*(3,n;C)/T", where

100 1 wus -+ up
Usn = {U =101 0 1 ugs -+ wap det<U)j1,j2,j3 # 0 (1 S <J2<J3< n)}
oo11 1 --- 1

is a Zariski open subset of C2(®~%)_ Hence, the field of rational functions on X3, is given by

K<X3,n) = C(U); u = (uz’,j)izl,Q;j:S,...,n-
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Birational action of the Weyl group W3 ,, on X3,

We denote by W3, = W (T2 3.,-3) = (s0,51,...,5,—1) the Weyl group associated with the Dynkin

diagram 75 3 ,—3: 0
T3 p—3: T
o—C0O0—0——=0 ce Oo—=O
1 2 3 4 n—1
Namely, W3, is the group generated by the simple reflections sg,si,...,s,—1 with the following
fundamental relations: i
. S$iS5 = 8554 @) @)
W3 = (50,8153 Sn-1) ° s?2=1 (i=0,1,...,n—1); 515,85 = 885
n 4 5 6 7] 8 9 10
root system || Ay | Ds | Fg | E7 | Eg Eél) x | .- (* : of indefinite type)
dimc X3, 0 2 4 16 | 8 10 | 12
This group Ws,, = (so,s1,...,5n—1) acts on X3, birationally through the standard Cremona trans-

formation sy = crio3 with respect to the first three points, and adjacent transpositions s; = (12), s =
(23), ..., Sp—1 = (n—1,n).
This birational action induces a realization of the Weyl group W3, as a group of automorphisms of

the field of rational functions (X3, ), so that

(w-p)([p1s - > Pul) = @([p1; - Pa]-w)

for each w € W3, and for generic configurations [p1,...,pn] € X3 .
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In terms of the coordinates u = (u;;)i=1,2;j=5.....n Of the transversal Us ,, introduced above,

.....

1 001 Uiy -+ Uin
U=10101 Ugs -+ Uy Eu;g,n
0011 1 - 1
the action of the simple reflections s (k = 0,1,...,n —1) of W3, on K(X3,) = C(u) is computed

explicitly as follows:

1
k=20 so(uij) = U_w
k=1 si(uy) = uzy,  s1(ugs) = wyy
ulj 1
k=2 Sa(U1j) = —,  Sa2(u2;) = —
2( lj) Up; 2( 2]) Ug;j
k=3: s3(uij) = 1 — uy;
"
k' =4: 7 - 3 17) — Y — 67 . 9
s4(uis) o sa(uij) s ( n)
]{,’:5,...,71—11 Sk(uw) = Ui s4(3)
Theorem: The automorphisms sg,s1,...,5,-1 of K(X,,,) = C(u) defined as above satisfy the

fundamental relations for the simple reflections of the Weyl group Ws ,, = W (T3 3 ,—3).
For any w € W3, the action of w on the coordinates u;; is expressed as
w(ui;) = R;‘j’(u) (i=1,2;5=05,...,n).
Since wywa(ui;) = wi(w2(u)) , these rational functions R}’ (u) satisfy the compatibility condition

R (u) = Ri? (R™ (u))  (wi,wp € Wag);  R™H(u) = (R (u))ra-
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Canonical solution to the birational W3 ,, action on X3,

Note that, for any generic configuration of nine points in P2, there exists a unique cubic curve (elliptic
curve) passing through them. For general n, one can solve the system of W3, equations for u =
(wij)i=1,2;j=5,....n, by parametrizing the n points in terms of elliptic functions (or their degenerate
cases). In fact, one can construct a set of functions u;; = u;;(¢), in certain variables € = (g9, €1,...,€n)

on which W3, acts linearly, so that

uij(w(e)) = Ri(u(e)) (i=1,2; j=5,...,n; we& Way),

where w(e) = (w(ep), w(e1), ..., w(ey)). For this purpose we make use of the Picard lattice Ls ,,, and

a particular realization of the affine root system of type 15 3 3.

e Picard lattice L3,

The Picard lattice L, is a free Z-module of rank n 4 1 with a Lorentzian symmetric bilinear form:
Ly, =Zey®Zey ®---®ZLeyn; (eoleg) =-—1, (ejlej)=1 (j=1,...,n), (eile;)=0 (i#j).

In the algebro-geometric terms, L3, is the Picard group of the rational surface obtained from P? by
blowing up at n points pi, ..., pn; €o represents the class of lines in P2, and eq, ..., e, the exceptional
curves corresponding to pi,...,p,. For A,A" € Ls,, (A|JA’) = —A - A’ denotes the minus of the

intersection number of divisors.
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e Realization of the root system of type 715 3 ,_3

We denote by b3, = C ®z L3, the complexification of L3 ., and by b3, = Homc(h3,,C) its dual

space; both b3 , and b3, has a symmetric bilinear form induced from that of Ls ;:
bg,n:Ceo@Cel@---@Cen, f)g’nzcgo@Cél@"'@CEn,

where ¢; = (-|e;) € b3, (j =0,1,...,n). We reagard ¢; (j =0,1,...,n) as linear functions on b3 n;

the symmetric bilinear form on b3, is given by

(50|50):_17 (5j’5j):1 (j:1,...,n), (Ei‘é“j):() (17&])

In what follows, we use € = (0;€1,...,&,) as a system of coordinates for b3 ,,.
We define the simple roots ap, a1, ..., an-1 € b3, by
ap =eg—e1—e2—€3, oj=¢;—¢cj41 (j=1,...,n—1).

n—1 .
we obtain

Note that (oj|a;) =2 for all j =0,1,...,n — 1, and that from the matrix ((ai7&j))ij:07

the Dynkin diagram of type 75 3 ,—_3:

Qg
o o I O 10 o - (%“%’)ZO

O} ) O}
U S S

Q1 G @3 Qg Q@5 Qg o Qp_1

(@)

io—oj - (a]ay) =—1

In the case n = 9 of affine root system of type Eé(;l), in this realization the null root § € b3 4 is given
by 0 = 3eg—e1—€2—e3—€4—€5—€g—E7—Eg—Eg. We also use the following notation of root lattices

Q(Eél)) = Lo © Loy © -+ - D Loy @ Lag D Q(ER) = Zog @ Zovy @ -+ - ® Loy,
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e Action of the Weyl group W3, on b3,
We define the simple coroots h; € h3 ., by ho =eg —e1 —ea —e3, hj=e€;—ejy1 (j=1,...,n—1),
so that a; = (:|h;). The Weyl group W3 ,, acts b3, and b3, in a standard manner:

sj(h) =h —(h,a;)h; (h € ban);  s;(A) =A—(h;, A)eyj (A€ b3y,).

We remark that the simple reflections sy acts on the linear functions ¢g, ¢4, ..., &, as follows.

80(60) = 260 — &1 — &9 — &3

30(81) =&p — &2 —¢&3, 30(52) =&y — €1 — €3, 80(83) =€&p— €1 — €&,

So(é‘j):é‘j (j:4,,n)
The other simple reflections s (k =1,...,n—1) acts as sp(co) = €0 and sx(g;) = €5,(5), 5k = (k, k+1)
as an adjacent transposition of indices.

In the case n =9, we define the canonical central element c € h3 g9 by ¢ = 3eg —e; — --- — €9, so that

6 = (+|c). This element c € h3 9 and the null root § € h3 g are invariant under this action of W(Eél)).

e Affine Weyl group and Kac’s translations
We now consider the case n = 9 of affine root system of type Eél). For each element o € b3 ¢ such

that (dla) = 0, Kac’s translation Ty, : b3 9 — b3 g is defined by
To(N) = A+ (0[N = (3(a]@)(3]A) + (a]A)) (A € b3 o).

When «, 3 € b3 g and (d|a) = (0|8) = 0, one has T, T = T4 3; also, wly, = Ty qw for any w € Wy 9.
When a € Q(Eél) ), T, can be realized as an element of W(Eél)). Furthermore one has

W(EM) =To x W(Es); Q(Es) > Tg:a— Ta.
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e Construction of a canonical solution

Let Q2 = Zw1 & Zw- be a free Z-submodule of C generated by two complex numbers wq,ws which are
linearly independent over R. We denote by Eq = C/ the corresponding elliptic curve, and by o(t)

the Weierstrass sigma function associated with the period lattice Q0 (possibly multiplied by eat2+b).

Regarding ¢ = (e0;€1,...,6,) as a system of coordinates for b3 ,, we fix a point € € hsz,. If the

coordinates eq, €1, €2, €3 € C are generic, one can define a holomorphic mapping p. : Eq — P? by

. O'(Eo—f:‘g—ég—t)_0'(80—61—63—75).0'(80—61—52—15)
pe(t) a ( 0'(81 —t) ‘ 0'(82 —t) ‘ 0'(83 —t) ) (t € (C),

so that the image C. = p.(Fq) C P? becomes a smooth cubic curve. By using this parametrization,
we construct a meromorphic mapping

P3,n - b3,n tee XS,n : 903,7%(5) = [ 5(51)7 te 7p8<5n)] € X37n
by transferring the configuration of n points €1,...,&, on Eq to the cubic curve C, C P?.

Then it turns out that this meromorphic mapping s ,, is W3 ,,-equivariant with respect to the canonical
linear action of W3, on hs39 and the birational action on X3g9. In terms of the coordinates u =
(wij)i=1,2; j=5,..n of the transversal Us ,,, @3, is expressed as

O(Oéo + 83,4)0(814) O'(Cko + 6@')0‘(83]')
U(Oéo + 81’4)0'(834) O’(ao + 83j)0’(8¢j>

O30 Uy = Uj(e) = (i=1,2; j=5,...,n)

where ag = ¢9g — €1 — €3 — €3, and €;; = €; — €. These meromorphic function u;;(e) solve the system

of W3 ,, equations on X3 ,,:

uij(w(e)) = Rij(u(e)) (i=1,2,j=5,....,n; we Ws,).
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Elliptic difference Painlevé equation: eP(EE(;l))

In order to formulate discrete Painlevé equations with W(Eél)) symmetry, we use the framework of

the configuration space X3 19. In the configuration of ten points [p1,p2,...,p9,q] € X310 (¢ = p10),
we use the first 9 points pq, ..., pg as reference points for the standard Cremona transformations, and
regard g = p1o as the general point in P? which is transformed by the action of W3 g = W(Eél)).
[p1,02,.--,p9,q] €Xz10 N Wzi0 (¢ =p10)
T |
[p1,D2,--,p0] € Xz A Wsg
In the transversal Us 19, we distinguish the 10th column from the others and regard (z1,22) =
(u1,10,u2,10) as the inhomogeneous coordinates of a general point in P2
U5 Ui U7 U118 U19 <1

01
0 1 ugs woe w2y Usg uzg 22 | € Us 10 — X310,
11 1 1 1 1 1 1

Us 10 =

o o -
o = O

Then the action of W39 C W3 109 on X3 19 is described as follows: for each w € W3 9,

w(uiy) = Riz(u) (i=1,2;7=5,...,9); w(z;) = S (u; 21,22) (1 =1,2).

In this system of birational transformations, we regard (zi,z2) as unknown functions, and u =
(wij)i=1,2; j=5,..8 as parameters for the Cremona transformations. We have already seen that the

system of W3 ¢ equation for u;; has a canonical solution 39 : h3g--- — X3 9.
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Hence, by substituting this solution w;;(¢), we obtain a system of Cremona transformations

w(z1) = S7'(e; 21, 22), w(z2) = S5'(€; 21, 22) (w e Wso)

for unknown functions z1, z2; here we have used the notation S’ (e; 21, 22) in place of S}’ (u(e€); 21, 22).
This system can be described as a realization of W39 as a group of automorphisms of the field of
rational functions K = K(z1, z2) with coeflicients in the field K = M(Eq ®z L3 o) of Q®z L3 o-periodic

meromorphic functions on b3 g.

On this field K = K(z1, 22), the action of the simple reflections sg, s1, ..., Sg are determined as follows:

S0 S1 52 S3 S4 S5 S6 S7 S8
1 21 21

21 — zZ92 — 1— 21 21 21 21 21
21 Z9 U15(E)
1 1 Z9

V) — 21 — 1— ) V) V) ) 29
zZ9 Z9 U35 (5)

€35)0(€124)0(€135) Eij = Ei—Ej

o(c14)0(€35)0(€124)0 (€235) )o (
34)0(625)0(6234)0(5125)' Eijk = E0—E&;—&j—¢€k '

0(634)0(515)0(5234)0(5125)

U15<6) = X ’LL25(€) = O'(E

Since W3 g = W(Eél)) =To x W(Eg), Tog = {T,| @ € Q(Es)}, form the translation part we obtain a

commuting family of birational transformations
To(z1) = ST (g5 21,22), Talz2) = S5(¢; 21, 22) (o € Q(Es))

parameterized by the root lattice Q(FEg) of type Eg. This system of discrete time evolutions is the
elliptic difference Painelvé equation eP(Eél)). Note that qP(Eél)) (resp. dP(Eél))) can be obtained
simply by replacing o (t) by sin(t) (resp. by ).
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Geometric description of T,,,, as
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Lattice 7-functions for eP(Eél))

We formulated the elliptic difference Painlevé equation eP(Eél)) as an action of Ws g on the field of
rational functions K = K(z1, 22) as a group of automorphisms. Here K denotes the field of 2 ®z L3 o-
periodic meromorphic functions on b3 g. In order to understand the structure of eP(Eél)), we introduce

a system of homogeneous coordinates (f1 : f2 : f3) for P? such that

Jo— o(c12)o(€124) f1 2y = o(e24)0(€124) fo
1 — T - R
o(e34)0(€234) f3 o(e34)0(c134) f3
together with new dependent variables 7y, ..., 79 corresponding to the nine points pi,...,p9. Then

the action of W3 9 on K = K(z1, 22) can be extended to the field £ = K(f1, f2, f3;71,...,T9) as follows:

SO(Ti) :fiTi (i:17273)7 SO(fz) = fl (i:1,2,3),
s0(7j) = 7; (G=4....9), sk(fi) = feaweri  (h=1,2i=1,2,3),
$k(75) = Tept1); (B=1,...,85=1,...,9) sk(fi) = fi (k=4,...,8i=1,2,3).
] 0(514)0(5124) 0(534) (8234) )
s3(f1) = T4 <U(8123)0(813)f1 o(c123)0(€13)
_ T3 0(524)0'(8124) 0(534) (6134) )
s3(f2) = T4 <U(€123)0(523)f2 o(e123)0(€23)
83(f3) :—ifg-

Theorem A: The automorphisms sg, $1, - .., Sg of L = K(f1, f2, f3;71,...,T9) defined as above satisfy

the fundamental relations for the simple reflections of W3 9 = (sg, $1, .- ., Ss).
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In this realization we look at the action of s3 on fi:

- <0(514)0(5124)f 0(534)0(5234)f ) .

T4

s3(f1) =

0(5123)0(513) ! 0(5123)0(513)

By using the relations f; = so(7;)/7; (i = 1,2, 3), this formula can be rewritten as

s3s0(T1) _ 73 (0(814)0(5124) so(11)  o(es4)o(€23q) 80(73))

1 _7'4 0(6123)0(813) 1 _0(6123)0(513) T3

This implies the following bilinear relations for translates of 7 functions:
0(c123)0(€13)74 5350(71) = 0(€14)0(€124)T350(T1) — 0(€34)0(€234)T150(73).

In order to analyze the action of W3 ¢ on 7 functions, we consider the W3 g-orbit of eg in the Picard

lattice Lg g: M3z g = W3 9eg C Lz g. This orbit can also be described intrinsically as

Mg,g = { A e L3’9 | (A’A) = 1, (A‘C) =—-1 }; Q(Eg) = Mg’g N Ta(eg).

Theorem B: There exists a unique family of elements 7(A) € L (A € M3 g) such that

T(e;)=¢e; (j=1,...,9); w(r(A)=71(wA) (AeMsg; we Wsy).
Furthermore, this family of T-functions is characterized by the following non-autonomous Hirota-Miwa
equations: For any distinct i, 7, k,l € {1,...,9},

0(5jkl)a(8jk)7'(ei)7'(eo — €] — 61') + O_(Ekil)0—<5k5i)7(ej)7_<60 — €] — ej)

+ o(eiji)o(eij)T(ex)T(e0 —er —ex) = 0.
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For each A € Ms9 we define 7(A) = w(rg) € L by taking a w € W39 such that A = w.eg; this
definition does not depend on the choice of w since 79 is invariant under the action of the isotropy

subgroup Wj.g of eg. With this definition, the bilinear relation
0(5123)0(813)7'4 5380(7'1) = 0(514)0(6124)7'350(7'1) - 0(834)0(6234)7'180(7'3)-
is rewritten in the form

O'<€123)O'(€13)T<€4) T<€0 — €9 — 64)

= O'(€14)O'<6124)7’(63)7’(60 — €9 — 63) — 0'(634)0'(6234)7'(61)7'(60 — €1 — 62).

Then by the action of Gg we obtain the bilinear equations as described in Theorem B.
Conversely, suppose that the family 7(A) (A € M3 g) satisfies the property as stated in Theorem B.
Then the variables f; (i = 1,2,3) are recovered by

T(eg — €1 — €3)
7(e3)

) f2:T(€0_61_63)7 f3:

7(e2)

T(eg — ez — e3)
7(e1)

fi=

The non-autonomous Hirota-Miwa equations mentioned above guarantee the validity of relations to

be satisfied under the action of ss.
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Non-autonomous Hirota-Miwa equation

attached to a Cs-frame (octahedron)

o(f—=7)o(A=B—=7) m(a)r(A—a)+ oy —a)o(A -y —a) 7(b)T(A - b)
+ ola—B)ocA—a—=0) 7(c)T(A—¢) =0

A=ClA), a=Cla), A=), 7=l

7(¢)

7(A —a)

ra—by Lo

Y T(A —¢)

a,b,c,A—a,A—b,A—ce My
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Hypergeometric 7-function of eP(Eél))

In the following, we present a special hypergeometric solution of eP(Eél)). We assume that the period
lattice Q2 is given by Q = Z1 & Zw with w € C with Im (w) > 0, and set p = e(w) = exp(27y/—1w), so
that |p| < 1. We use the following theta function for o(u):

1 ad .
o(u) =2"20(z;p), z=e(u); 0(z:p) = (2:P)oc(P/2P)oos (2:D)se = [ [(1 = P'2).
i=0
Also, regarding the null root ¢ as a constant with Im (§) > 0, we set ¢ = e(d), |q| < 1.

Elliptic gamma functions (Ruijsenaars)

Recall that the elliptic gamma functions I'(z; p, q) and T'(z; p, ¢, r) are defined by

pq/2p:q
['(z;p,q) = M [(z;p,q,7) = (20,4, 7) 0o (PqT/ 250, ¢, 7)o
(2P, @)oo
under the conditions |p| < 1,|q| < 1,|r| < 1, where
oo o0
(29, 0)oo = || 0 =P'd2), (zpa7)e= ] (1—p'dr"2).
i,j=0 1,5,k=0

These functions satisfy the functional equations
0(pz;p) = —2~'0(2; p), 0(p/z;p) = 0(z;p),
L'(qz;p,q) = 0(2;p)T(2:p,q), L(pq/zp,q9) =T (z;p,9) 7",
L(rz;p,q,7) =T(z;p,¢)L(2:p,q,7), L(pgr/z;p,q) = T'(z;p,q,7).
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Elliptic hypergeometric integrals

Following Spiridonov and Rains, for ¢t = (tg,t1,...,t7) € T®, we consider the elliptic hypergeometric

integrals

(P P)oo (45 @)oo oItz sp, q) dz
2-2mv/=1 Jew T(z%p,q) 2

where I'(tz*1;p, q) = T(tz;p,q)T(tz=1;p,q). Also, for n =0,1,2,..., we set

I(t;p,q) =

Y

I( t ZiE p dzy---dz
I0)(t;p,q) = D) (f I 0 e 0z 'z p) ———
2"71'(27‘(‘ Cn (t)k:;l_‘[1 Zk; ’p7 1<];:l;[l<n b 21" Zn

e Elliptic Bailey transformation (Spiridonov): W (E7) symmetry
When tgt; - - - t7 = p?q?, one has
Itt;p.q) =1(tip,q) || Titjipa) [] Titjipq)s; 6= paftotatats (7=01,2:3)

0<i<j<3 4<i<j<T tin/pq/tatstety (1 =4,5,6,7).

e Three-term recurrence relations

Introducing additive variables x = (zg,x1,...,27), t; = e(x;) (i =0,1,...,7), we modify I(¢;p,q) as
J(z) = e(—(2]2)/20) I(t;p,q);  (z|2) = 2§ + a1+ + 7.

Then J(z) satisfies the three-term recurrence relations

o(zj £ x) T2 J(z) + o(z) £ ;) TfjJ(x) +o(z; ;) TS J(x) =0
for all 4,7,k € {0,1,...,7}, where c(a £ b) = o(a+ b)o(a — b).
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Hypergeometric T-function

Denoting ¢ = § — ag the highest root of the root system Fg, we consider to construct a special solution

of the elliptic difference Painlevé equation eP(Eél)) under the restriction ¢ = w, o(¢) = 0.
We relate the coordinates € = (g¢;€1,...,€9) for hs ¢ to the additive variables x = (xg,x1,...,27) by
:151':8@'—%(80—89)4—%5 (’i:1,...,8); rog = —Is.

In these variables, the highest root is expressed as ¢ = ¢(x) = %(ZL’O +x1+ -+ x7). We also define

the multiplicative variables t = (tg,...,t7) by t; = e(x;) (i =0,1,...,7).

Denoting by V = C8 the 8-dimensional affine space with canonical coordinates x = (g, 21, ..., 7).

For each n € Z, we define the hyperplanes H,, (n € Z) by
H,={zeV|¢x)=w+nd} CV,
For each n € Z, we define a meromorphic function 7™ = 7" (z) on H, as follows:
T™(z)=0  (n<0),

T(O) (m) = H F<qtzt]7p7q7Q) (ZC € H0)7
0<i<y <7

W)= [ Ttjip.g.9) J(@), J(x)=e(—(x|z)/20) I(t;p,q), (x€ Hy).

0<i<j<7
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For general n =0, 1,2, ..., we define
@)= ] T(¢" itjip.q.q) J™(x = §(n —1)d)
0<i<j<7

T () = (1)) e(—n(z]2)/26) I (t;p.q) (x € Hy),
where

I( t ZiE p dzy---dz
1™ (t;p,q) = (P:p)o (f I 0 £ 0(z; ' p)——=.
2”71'(27‘(‘ Cn (1) kj!T[l Zk 7p7 1<k:1;[l<n b 21" Zn

Taking the disjoint union of hyperplanes H,, (n € Z), we set

D=|l,c; Hi={2z€V; ¢(x) cw+Zé} CV.
Then the sequence of functions 7™ = 7(")(z) (n € Z) define a meromorphic function 7 = 7(z) on D
such that 7|y, =7 (n € Z).

Through the parametrization
xo=—cs+ (0 —€9) — 30, T =¢ —3(c0—€9)+36 (1=1,...,7),
7(x) is regarded as a meromorphic function on
D={hebsg|(hlc)=0, (h,¢) €w+Z5}Cbspe.
We also set Dp ={ h € bso | (hlc) =06, (h,¢) =w } C bso.

Theorem: With the meromorphic function 7 on D defined as above, we set 7(A) = T,,_(7) for
each A € M3 9. Then the meromorphic functions 7(A) (A € M3 g) on Dy C b3 o form a set of lattice

T-functions for eP(EéD) in the sense of Theorem B.



