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I Issai Schur (1875–1941) obtained his doctorate from the
University of Berlin in 1901. His thesis helped to found the
field of representation theory. In it, he described the
polynomial representations of the general linear group
GLn(C), in particular the invariant subspaces of tensor space.

I One of Schur’s main ideas, now called the Schur functor,
relates representations of GLn(C) to representations of the
symmetric group Sd .

I This idea has had a large influence on the development of
representation theory up to the present day, and regularly
reappears in different guises, most recently in geometric
modular representation theory, a new approach with the
potential to solve long-standing problems.



Invariant subspaces of tensor space

Let F be an infinite field, e.g. R or C, and let n ∈ Z+.
The vector space F n = {(a1, · · · , an) | ai ∈ F} has a standard basis

{e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1)}.

An arbitrary basis is obtained from this one by applying a linear
transformation ej 7→ g .ej =

∑
i aijei , where g = (aij) ∈ GLn(F ),

the general linear group of invertible n × n matrices over F .
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For any d ∈ Z+ we can form the tensor space T d(F n) with basis

{ei1 ⊗ ei2 ⊗ · · · ⊗ eid | i1, i2, · · · , id ∈ {1, · · · , n}}.

For g ∈ GLn(F ), we define a linear transformation Lg of T d(F n) by

Lg (ei1 ⊗ ei2 ⊗ · · · ⊗ eid ) = g .ei1 ⊗ g .ei2 ⊗ · · · ⊗ g .eid ,

where the right-hand side is expanded using the distributive law.
This makes T d(F n) a representation of the group GLn(F ).

Question

Which subspaces V of T d(F n) are invariant in the sense that
Lg (V ) = V for all g ∈ GLn(F )?

The point of the question is that only the invariant subspaces of
T d(F n) are ‘intrinsic’, i.e. independent of the basis of F n.



Example (d = 2)

T 2(F n) has basis {ei ⊗ ej}. If n ≥ 2, the 1-dimensional subspace
span(e1 ⊗ e1) is not invariant. If an invariant subspace contains
e1 ⊗ e1, it has to contain ei ⊗ ei for any i , and also

(ei + ej)⊗ (ei + ej)− ei ⊗ ei − ej ⊗ ej = ei ⊗ ej + ej ⊗ ei .

This leads to one example of an invariant subspace, the space of
symmetric tensors:

Sym2(F n) = span{ei ⊗ ei , ei ⊗ ej + ej ⊗ ei}.

It is fairly easy to show that the only other nontrivial invariant
subspace of T 2(F n) is the space of alternating tensors:

Alt2(F n) = span{ei ⊗ ej − ej ⊗ ei}.

For σ ∈ Sd , the symmetric group of permutations of {1, 2, · · · , d},
define the linear transformation Pσ of T d(F n) by

Pσ(ei1 ⊗ ei2 ⊗ · · · ⊗ eid ) = eiσ−1(1)
⊗ eiσ−1(2)

⊗ · · · ⊗ eiσ−1(d)
.

Thus T d(F n) is also a representation of the group Sd .
Schur’s crucial observation is that any Pσ commutes with any Lg :

Lg (Pσ(ei1 ⊗ ei2 ⊗ · · · ⊗ eid )) = g .eiσ−1(1)
⊗ g .eiσ−1(2)

⊗ · · · ⊗ g .eiσ−1(d)

= Pσ(Lg (ei1 ⊗ ei2 ⊗ · · · ⊗ eid )).

One consequence is that any subspace of T d(F n) defined in terms
of the Pσ’s is automatically invariant for the Lg ’s.

Example (d = 2)

Sym2(F n) = ker(id− P(1 2)), Alt2(F n) = im(id− P(1 2)).



The Schur functor

This is a functor Φ : Pold(GLn(F ))→ Rep(Sd ,F ) where

I Pold(GLn(F )) is the category of polynomial representations of
GLn(F ) of degree d , e.g. invariant subspaces of T d(F n);

I Rep(Sd ,F ) is the category of representations of Sd over F .

For V ∈ Pold(GLn(F )), we define

Φ(V ) = HomGLn(F )(T
d(F n),V )

= {linear maps f : T d(F n)→ V commuting with each Lg}

with the action of σ ∈ Sd given by f 7→ f ◦ Pσ−1 .

Example (d = 2)

Φ(Sym2(F n)) = span(id+P(1 2)),Φ(Alt2(F n)) = span(id−P(1 2)).

Schur’s advisor Frobenius had already described Rep(Sd ,C), and
the same description holds whenever d! = |Sd | is invertible in F ,
i.e. char(F ) /∈ {2, · · · , d}.
I The irreducible representations (i.e. those without Sd -invariant

subspaces) are parametrized by partitions of the number d ,
i.e. expressions d = d1 + d2 + · · · with di ∈ N, d1 ≥ d2 ≥ · · · .

I Every representation is uniquely a direct sum of irreducibles.

Theorem (Schur 1901)

Assume char(F ) /∈ {2, · · · , d}. (Actually Schur assumed F = C.)

1. The functor Φ identifies Pold(GLn(F )) with the subcategory
of Rep(Sd ,F ) given by partitions of d of length ≤ n.
In particular, if d ≤ n, then Φ is an equivalence.

2. There is an irreducible invariant subspace V d1,··· ,dn ⊂ T d(F n)
for any partition of d of length ≤ n. Every invariant subspace
is a direct sum of isomorphic copies of V d1,··· ,dn ’s.



These Weyl modules V d1,··· ,dn are well understood, with explicit
defining equations and bases. At the two extremes we have:

V d ,0,··· ,0 = Symd(F n) = {x ∈ T d(F n) |Pσ(x) = x for all σ ∈ Sd},

V 1,1,··· ,1 = Altd(F n) = im{
∑
σ∈Sd

sign(σ)Pσ} (if d ≤ n).

Example (d = 3, n ≥ 2)

V 2,1,0,··· ,0 = im(id− P(1 2)) ∩ ker(id + P(1 2 3) + P(1 3 2))

= span{ei ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ei ,

ei ⊗ ej ⊗ ek − ej ⊗ ei ⊗ ek + ek ⊗ ej ⊗ ei − ej ⊗ ek ⊗ ei}

Theorem (Weyl 1925)

dimV d1,··· ,dn =
∏

1≤i<j≤n

di − dj + j − i

j − i
.

Some subsequent developments

Schur’s classification of irreducible polynomial representations of
GLn(C) inspired analogous classifications of representations of:

I semisimple Lie groups and Lie algebras (Weyl 1920s/30s);

I algebraic groups (Chevalley, Borel 1950s/60s);

I certain infinite-dimensional Lie algebras (Kac, Moody 1970s);

I quantum groups (Drinfel’d, Lusztig et al. 1980s/90s).

The relationship between the commuting actions of GLn(C) and
Sd on T d(Cn), now known as Schur–Weyl duality, has been
extended to all of these contexts, leading to analogues such as:

GLn(C) Sd
On(C) (orthogonal group) Brd (Brauer algebra)

quantum GLn(C) Hd (Hecke algebra)
...

...



The modular case

If char(F ) is a prime p ≤ d , Rep(Sd ,F ) is not so well understood.
The Schur functor

Φ : Pold(GLn(F ))→ Rep(Sd ,F )

is still crucial, but information now also flows from left to right.

I We still have V d1,··· ,dn and Weyl’s formula for dimV d1,··· ,dn .

I However, V d1,··· ,dn is usually reducible.

I V d1,··· ,dn always has a unique irreducible quotient Ld1,··· ,dn .

I However, we do not have a general formula for dim Ld1,··· ,dn .

I Φ is still an exact functor of abelian categories.

I However, it is no longer faithful: we can have Φ(Ld1,··· ,dn) = 0.

Example (p = d = 2 ≤ n)

Since −1 = 1 in F ,

Alt2(F n) = span{ei ⊗ ej + ej ⊗ ei}
⊂ Sym2(F n) = span{ei ⊗ ei , ei ⊗ ej + ej ⊗ ei},

so V 2,0,··· ,0 = Sym2(F n) is reducible. We have

L2,0,··· ,0 = Sym2(F n)/Alt2(F n).

This irreducible representation is ‘not seen’ by the Schur functor:

Φ(Sym2(F n)) = Φ(Alt2(F n)) = span(id + P(1 2)),

so Φ(L2,0,··· ,0) = 0.



The Lusztig conjecture

Fix n and p = char(F ) and let d1, · · · , dn (and hence d) vary.

1979: Lusztig defined a function f (d1, · · · , dn) combinatorially and
conjectured, on the basis of computations and analogies, that
dim Ld1,··· ,dn = f (d1, · · · , dn) as long as p ≥ 2n − 3.

1994: Andersen–Jantzen–Soergel, completing a program begun by
Kazhdan–Lusztig, proved that Lusztig’s conjecture is true as
long as p � n.

2013: Williamson, building on work of Soergel, has found a family of
counterexamples to Lusztig’s conjecture showing that no
polynomial lower bound p ≥ P(n) is sufficient. His
calculations use geometric modular representation theory.

Geometric interpretation of the Schur functor

Let Nd be the set of all nilpotent d × d complex matrices X .
The group GLd(C) acts on Nd by conjugation. By the Jordan form
theorem, the orbits are in bijection with partitions of d : the orbit
Od1,d2,··· consists of matrices with Jordan blocks of sizes d1, d2, · · · .

Example (d = 2)

N2 = {( a b
c −a ) | a, b, c ∈ C, a2 + bc = 0} is the union of two orbits,

O1,1,0,··· = {( 0 0
0 0 )} and O2,0,··· = N2 \ {( 0 0

0 0 )}.

Theorem (Mautner 2010, using Mirković–Vilonen 2007)

When d ≤ n, Pold(GLn(F )) is equivalent to Perv(Nd ,F ), the
category of GLd(C)-equivariant perverse sheaves on Nd with
coefficients in F , in such a way that Ld1,··· ,dn corresponds to the
intersection cohomology complex IC (Od1,··· ,dn ,F ).



There was already a well-known definition of a functor
S : Perv(Nd ,F )→ Rep(Sd ,F ), the Springer correspondence:

I take Fourier transform to produce a sheaf on Matd(C);

I restrict to the set Matd(C)rs of matrices with distinct
eigenvalues, producing a locally constant sheaf;

I thus obtain a monodromy representation of π1(Matd(C)rs);

I this factors through the quotient map π1(Matd(C)rs)� Sd .

That this works was proved by Springer (1976) when F = C and
Juteau (2007) and Mautner (2010) in general.

Theorem (Mautner, Achar–H.–Juteau–Riche)

When d ≤ n, the Schur functor is the composition of:

I Mautner’s equivalence Pold(GLn(F ))
∼→ Perv(Nd ,F );

I the Springer correspondence S : Perv(Nd ,F )→ Rep(Sd ,F );

I tensoring with the sign character.

Let G be any split connected reductive algebraic group over F .
Let T be a maximal torus of G (e.g. diagonal matrices in GLn(F )),
and let W = NG (T )/T be the Weyl group (e.g. Sn for GLn(F )).
Define a functor

Φ′ : Rep(G ,F )→ Rep(W ,F ) : V 7→ V T (T -fixed vectors).

This generalizes the d = n case of the Schur functor:

Φ(V ) ∼= Φ′(V ⊗ det−1)⊗ sign for V ∈ Poln(GLn(F )).

Theorem (Achar–H.–Riche)

Let N be the nilpotent cone of the Langlands dual group G∨(C).
Restricted to a suitable subcategory Rep(G ,F )sm, Φ′ is the
composition of:

I a certain functor Rep(G ,F )sm → Perv(N ,F );

I the Springer correspondence S : Perv(N ,F )→ Rep(W ,F ).


