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Definition
A normal form game [ consists of a (finite) set N of at least two
players, and for each player i € N:

» A non-empty (finite) set of strategies A;; and

» A payoff function u; : A — R where A = X;cnA; is the set of
strategy profiles or outcomes.
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» Ay ={a, b}, Ao ={c,d}, As={e,f}.
Then:

A={(a,c,e),(a,c,f)(a,d,e),(a,d,f)(b,c,e),(b,c,f)(b,d e),(b,d, f)}

We can display the payoffs in tables as follows:

D

f e

f
c [1,1,1 [2,2,3 c [3,22 [4,5,4
d [2,3,2 | 54,4 d 4,45 | 6,66
(377 (baa)

The payoff to player 3 for the strategy profile (b, d, e) is
U3(b, d, e) =5.
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Player Permutations Sy Acting on Strategy Profiles A

Suppose each player has the same strategy set.
Eg. A1 = A2 = A3 = {a, b}

Let m € Sy be a permutation of the players.
The player permutations act on the left of strategy profiles via

7'('(51, vy Sn) = (Sﬂ.—l(l), ceey Sﬂ.—l("))

Example
Take m = (123) € S3 and (s1, 2, 53) € A.

7'('(51, S, 53) = (Sﬂ.fl(l), 571.71(2)7 Sﬂ.71(3)) = (53, 51, 52)
Eg. 7(a,b,a) = (a,a,b)
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» [ is invariant under (123) and (12);

Eg. let m = (123), w(a, b,a) = (a, a, b) as before, and we see that
uz(a, b, a) = uy)(m(a, b, a)) = us(a, a, b) = 3.

» ((123),(12)) = Ss.
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Label-Dependent Notions of Symmetry
[ is:
» standard symmetric if it is invariant under a transitive
subgroup of the player permutations.

Example

Standard symmetric 3-player game.

a b a b
a |1,1,1 |23,4 a |423 |7,56
b | 3,4,2 56,7 b |6,7,5 8,8,8
(a,,) (b,)

» [ is invariant under (123);
» ((123)) = {e,(123),(132)} is a transitive subgroup of Ss;

» [ is not invariant under (23).

Note: Must have uj(a, a,a) = uj(a, a, a) for all i,j € N etc.
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Properties of Subgroups of bij(I")

Let G be a subgroup of the game bijections bij(I").
» The stabiliser of player /i € N is the subgroup
G={geG:g(i)=i} <G.
We say that G is:
» player transitive if for each i, j € N there exists g € G such
that g(/) = J;
» player n-transitive if for each ™ € Sy there exists g € G such
that g(i) = =(i) for all i € N; and
» strategy trivial if for each g € G;, g(s;) = s; for all 5; € A;
(ie. 77 =ida,).
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Automorphism Group
An automorphism of I is an invariant bijection g € bij(I")

ie. ui(s) = ug(y(g(s)) forallie N,sc A

The automorphisms of ' form a group which we denote by Aut(T).

Example
Matching Pennies

H T
H[1,-1]-11
T [—1,1 | 1,-1
Aut(F) = {(e; (5 7). (5 7)) (e (F 5). (B 1)),
(@2): (B 7). (£ 0, (2 (B 1), (5 7))}

Aut(T") is player transitive, is not strategy trivial and contains no
proper transitive subgroups.
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Theorem
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» there exists standard symmetric [' such that "' = T;

» Aut(l") has a player transitive and strategy trivial subgroup.
Definition
[is:

» symmetric if Aut(I") is player transitive; and

» n-transitive if Aut(") is player n-transitive.

symmetric

standard
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Example: n-transitive standard non-fully symmetric

e f e f
c [1,1,1 | 2,3,4 c | 4,2,3 |243
d | 3,42 | 432 d |3,2,4 1,1,1
(a,,) (b,)

Aut(l) = (((123); (2 4), (€9), (55)), ((12): (5 2), (§2): (£ 2)))

» Aut(l") is player n-transitive;
» (((123);(25),(<9),(¢f))) is player transitive and strategy
trivial;

> ((12):(25):(58): (£F)) ¢ Aut(r).
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Bonus Example: only-transitive non-standard symmetric
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