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Introduction

A flat manifold is a smooth manifold M with a torsion-free affine
connection ∇ of curvature 0.

M geodesically complete:

M =Rn/Γ
Γ ⊂ Aff(Rn)

Γ-action free and properly discontinuous

M not complete:

M =D/Γ
D ⊂Rn open and Γ-invariant
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I Classical Results on Crystallographic Groups
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Tilings and Crystals

Photographs by John Baez

http://math.ucr.edu/home/baez/alhambra/
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Crystallographic Groups

Γ ⊂ Euc(Rn) is a crystallographic group if it is

discrete (as a subset of Euc(Rn)),

cocompact (has relatively compact fundamental domain).

If Γ is also torsion-free (no γ ≠ id of finite order)
then Γ is called a Bieberbach group.
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Hilbert’s 18th Problem

“Is there in n-dimensional Euclidean space [. . . ] only a finite
number of essentially different kinds of groups of motions with a
[compact] fundamental region?”
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Bieberbach Theorems (1911/1912)

Bieberbach I
Let Γ be a crystallographic group. Then:

Γ ∩Rn is a lattice in Rn.

lin(Γ) is finite and faithfully represented in GLn(Z).

Bieberbach II
Let Γ1,Γ2 be crystallographic groups. Then:
Γ1 ≅ Γ2 ⇔ Γ1 and Γ2 affinely equivalent.

Bieberbach III
For given dimension n, there exist only finitely many
(affine equivalence classes of) crystallographic groups.
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Flat Riemannian Manifolds

Let M =Rn/Γ be a compact complete connected flat Riemannian
manifold.

The fundamental group Γ ⊂ Euc(Rn) is . . .

discrete,

torsion-free,

cocompact.

In other words: Γ is a Bieberbach group.
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Geometric Bieberbach Theorems

Bieberbach I∗

Let M be a compact complete connected flat Riemannian
manifold. Then:

M is finitely covered by a flat torus.

Hol(M) is finite.

Bieberbach II∗

Let M1 and M2 be a compact complete connected flat Riemannian
manifolds with fundamental groups Γ1 and Γ2. Then:
Γ1 ≅ Γ2 ⇔ M1 and M2 are affinely equivalent.

Bieberbach III∗

For a given dimension n, there are only finitely many equivalence
classes of compact complete connected flat Riemannian manifolds.
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n crystallographic Bieberbach

2 17 2
3 219 (or 230) 10
4 4783 74
5 222018 1060
6 28927915 38746
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II Affine Crystallographic Groups
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Generalise

Riemannian manifold ↝ affine manifold:

Γ ⊂ Euc(Rn) ↝ Γ ⊂ Aff(Rn).

Γ discrete, torsion-free, cocompact
↝ Γ-action properly discontinuous, free, (cocompact).

Γ is an affine crystallographic group.

Do Bieberbach’s Theorems hold in this setting?

No! Counterexamples to all three theorems exist.
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Auslander Conjecture (1964)

A tentative analogue to Bieberbach’s First Theorem:

Conjecture
If Γ ⊂ Aff(Rn) is an affine crystallographic group,
then Γ is virtually polycyclic.

A group Γ is called. . .

polycyclic if there exists a sequence of subgroups

Γ = Γ0 ⊃ Γ1 ⊃ . . . ⊃ Γk = 1

such that all Γj/Γj+1 are cyclic groups.

virtually polycyclic if Γ contains a polycyclic subgroup Γ′ of finite index
(also: polycyclic-by-finite).
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Milnor Theorem and Conjecture (1977)

Theorem
Let Γ be a torsion-free and virtually polycyclic group. Then:
Γ is the fundamental group of some complete flat affine manifold.

Conjecture
The fundamental group of a flat affine manifold is virtually
polycyclic.

Margulis (1983): Milnor’s conjecture is wrong!
Non-abelian free Γ ⊂ O2,1 ⋉R

3 exist.
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Special Cases

Auslander’s Conjecture has been proven in special cases:

Γ ⊂ Aff(R3) (Fried & Goldman, 1983)

Γ ⊂ Iso(Rn
1) (Lorentz metric)

Conjecture holds for complete compact flat Lorentz manifolds
(Goldman & Kamishima, 1984)
Compact flat Lorentz manifolds are complete (Carriere, 1989)
Classification is known (Grunewald & Margulis, 1989)
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III Flat Pseudo-Riemannian Homogeneous Spaces
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Flat Homogeneous Spaces

Let M =Rn/Γ. Then:
M homogeneous ⇔ ZAff(Rn)(Γ) acts transitively on Rn.

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (In +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

Γ abelian in signatures (n,0), (n − 1,1), (n − 2,2).
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Questions

1 Is Γ always abelian?

2 If not, is lin(Γ) (= Hol(M)) always abelian?

3 Which Γ appear as fundamental groups of flat
pseudo-Riemannian homogeneous spaces?

4 And what about the compact case?

Baues (2010):

Example of non-abelian Γ with abelian lin(Γ), dim M = 6.

Compact M always has abelian lin(Γ).
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Dimensions bounds

Theorem (Globke, 2011)
Let M be a flat pseudo-Riemannian homogeneous manifold.
If Hol(M) is not abelian, then

dim M ≥ 8.

If in addition M is complete, then

dim M ≥ 14.

Examples show that both bounds are sharp.

19



Abstract Groups

Theorem (Globke, 2012)
Let Γ be a group,

finitely generated

torsion-free

2-step nilpotent of rank n.

Then:
Γ is the fundamental group of a complete flat pseudo-Riemannian
homogeneous manifold M, and dim M = 2n.
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