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This competition is open to undergraduates (including Honours students) at any Australian uni-
versity or tertiary institution. Entrants may use any source of information except other people.
The problems will also be posted on the web page http://www.maths.usyd.edu.au/u/SUMS/.

Prizes ($50 book vouchers from the Co-op Bookshop) will be awarded for the best correct
solution to each of the 10 problems. Students from the University of Sydney are also eligible
for the Norbert Quirk Prizes, based on the overall quality of their entry (one for each of 1st, 2nd
and 3rd years). Extensions and generalizations of any problem are invited and are taken into
account when assessing solutions. If two or more solutions to a problem are essentially equal,
preference may be given to students in the earlier year of university.

Entries must be received by Friday, September 8, 2006. They may be posted to Dr Anthony
Henderson, School of Mathematics and Statistics, The University of Sydney, NSW 2006, or
delivered in person to Room 805, Carslaw Building. Please mark your entry SUMS Problem
Competition 2006, and include your name, university, student number, course and year, term
address and telephone number. Prizes will be awarded towards the end of the academic year.

The SUMS committee is grateful to all those who have provided problems. We are always keen
to get more. Send any, with solutions, to Dr Henderson at the above address.

1. For any positive real number x, let 〈x〉 denote the fractional part of x, i.e. the unique element
of [0, 1) such that x− 〈x〉 is an integer. If N is a positive integer, the scale based on x and N is
the set {0, 〈x〉, 〈2x〉, · · · , 〈Nx〉, 1}. This has at most N +2 distinct elements, possibly fewer. If
we list the distinct elements of the scale in order, 0 = s0 < s1 < · · · < sk = 1, the intervals in
the scale are the differences s1 − s0, s2 − s1, · · · , sk − sk−1. Prove that there are at most three
different intervals.

2. Find the volume of the region in R
3 defined by the inequalities

|x|2/3 + |y|2/3 ≤ 1, |x|2/3 + |z|2/3 ≤ 1, |y|2/3 + |z|2/3 ≤ 1.

3. Let D be a regular dodecahedron with edges of length 1. Find the shortest possible length of a
path on the surface of D starting at one vertex and finishing at the antipodal vertex.

4. In this problem, ‘number’ means positive integer. Suppose we consider two numbers to be
essentially equal (written ≈) if they become the same when all zeroes are deleted from their
decimal expression (for instance, 1023 ≈ 120030). For consistency with multiplication, we had
better extend the notion of essential equality so that

a ≈ b ⇐⇒ a × c ≈ b × c, for any numbers a, b, c.

(For instance, the fact that 2 × 6 = 12 ≈ 102 = 17 × 6 implies that 2 ≈ 17.) Of course, we
also stipulate that a ≈ b and b ≈ c together imply a ≈ c. Show that for any number a, there is
another number b such that a × b ≈ 1.
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5. Let n be a positive integer. Show that the average of the numbers (tan π
2n+1

)2, (tan 2π
2n+1

)2, · · · ,
(tan nπ

2n+1
)2 equals their product.

6. Fix positive integers n, k such that k ≤ n − 1. A permutation a1, · · · , an of the numbers
1, 2, · · · , n is called a k-shuffle if 1, 2, · · · , k occur in the correct order and k + 1, k + 2, · · · , n

occur in the correct order. For example, the 2-shuffles of 1, 2, 3, 4 are those permutations where
1 precedes 2 and 3 precedes 4, namely (omitting the commas) 1234, 1324, 1342, 3124, 3142,
and 3412. For any distinct complex numbers x1, · · · , xn, show that

∑

a1,··· ,an

a k-shuffle

1

(xa1
− xa2

)(xa2
− xa3

) · · · (xan−1
− xan

)
= 0.

7. Suppose we have m white balls and n black balls, indistinguishable apart from their colour. We
put them in a bag to hide the colour, and then draw out b of the m + n balls, chosen at random.
For any a, let P (a; b, m, n) denote the probability that at least a of these b balls are white. On
the assumption that a and b are nonnegative integers satisfying 0 ≤ b ≤ m + n, 0 ≤ a ≤ m,
and 0 ≤ b − a ≤ n, prove that

P (a + 1; b, m, n) < P (a + 1; b + 1, m + 1, n + 1) < P (a; b, m, n).

8. Let A be the set of rational numbers r such that 0 < r < 1. It is well known that A is countable,
i.e. the elements of A can be listed r1, r2, r3, · · · so that every element appears exactly once on
the list. Given such a listing, we define a function f : R → R by

f(x) =
∑

n≥1
rn≤x

2−n.

a) Show that there exists a listing of A for which the corresponding function f takes no
rational values other than 0 and 1.

b) Show that there exists a listing of A for which f takes infinitely many rational values.
9. Fix a positive integer n and let x1, · · · , xn be indeterminates. For any permutation a1, · · · , an

of 1, · · · , n, define a polynomial in x1, · · · , xn:

Πa1,··· ,an
= (xa1

−xa2
)(xa1

+xa2
−xa3

)(xa1
+xa2

+xa3
−xa4

) · · · (xa1
+xa2

+· · ·+xan−1
−xan

).

Prove that each of these polynomials is a linear combination, with integer coefficients, of the
polynomials attached to permutations where a1 = 1.

10. Fix an integer n ≥ 2. Determine for which real numbers c the following polynomial has n real
roots (counting multiplicities):

xn + cxn−1 +

(

c

2

)

xn−2 +

(

c

3

)

xn−3 + · · ·+

(

c

n

)

,

where
(

c
s

)

means c(c−1)(c−2)···(c−s+1)
s!

.


