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1. Let Z" denote the set of positive integers. If f : ZT — 7Z7* is a function and m € Z7, let
™ denote the composite function f o f o --- o f (with m copies of f). Find all functions
f: Z* — Z* with the property that f(™) (n) = f(mn) for all m,n € Z*.

Solution. Observe first that there are certainly going to be infinitely many solutions, since all
constant functions f have this property.

Suppose f : Z+ — Z satisfies the desired property. Setting n = 1, we see that f(™ ( ) =
f(m) for all m € Z*. Hence for any m,n € Z* with m > 2 we have f(m) = f(f(m — 1)),
and also

flmn) = f(n) = D (f(n)) = V(1) = D) = fm+n—1).

We claim that these properties force f(n) = f(3) for all n > 3. To show this it suffices to show
that f(n+ 1) = f(n) for all n > 3, for which we use induction. The base case holds because

f4)=f2x2)=f2+2-1)=f(3),

and if n > 4 and we assume that f(n) = f(n—1),then f(n+1) = f(f(n)) = f(f(n—1)) =
f(n) as required.

Now write A = f(1), B = f(2), C = f(n) for all n > 3. We must determine which
choices of A, B, C € Z* satisfy the desired property. Note that we always have B = f(A) and
C = f(B). We separate into cases.

Case1: C' = 1. Then we have A = f(C) = f(f(3)) = f(4) =1and B = f(A) = f(1) =
A =1 also, so f is in fact the constant function with value 1.

Case 2: C' = 2. Then we have B = f(C) = f(f(3)) = f(4) = 2 also, and 2 = f(A) which
forces A # 1. We can in fact let A = f(1) be any number bigger than 1, and set f(n) = 2 for
n > 2;itis easy to see that the desired property is satisfied.

From now on, C' > 3 so the desired property f™(n) = f(mn) is automatic when n > 3,
both sides equalling C. Its non-automatic content when n < 2 is simply the requirements
B = f(A) and C = f(B) that we have already observed; so it is enough to ensure that these
hold.

Case 3: C' > 3, B = 1. Then the requirement C' = f(B) says that A = C, and the
requirement B = f(A) gives a contradiction.

Case 4: C' > 3, B = 2. Then the requirement C' = f(B) gives a contradiction.

Case 5: C' > 3 and B = C. Then the requirement is just that C' = f(A), which holds exactly
when A > 1.

Case 6: C' > 3, B > 3, and B # C. Then the requirement C' = f(B) is automatic, and the
requirement that B = f(A) holds exactly when A = 2.

To sum up, the possible values of the triple (A, B, C') are as follows:

(1,1,1), (2,2,2), (a,2,2), (a,c,c), and (2,b,¢),

where a, b, c denote integers > 3 (not necessarily distinct).
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. Let n be a positive integer. Prove the inequality

3
Z\/rﬂ k2/n? — (k—1)2 < 2n +n.

Solution. In fact, one can easily prove smaller upper bounds for the left-hand side, hereafter
denoted LHS. Many entrants used the AM-GM inequality to do this; the Cauchy—Schwarz
inequality, as used below, gives a better bound.

Note that the £ = n term in LHS is zero, so we can rewrite it:

n—1
LHS =) " Vn2 — k\/n? — (k —1).
k=1

We can now apply the Cauchy—Schwarz inequality

(50 = (54) (£

n—1 n—1
LHS? < (Z n’® — k2> ( n® — (k — 1)2> .
k=1 k=1

In fact, for n > 3 the inequality is strict, because equality holds in the Cauchy—Schwarz in-
equality only when (aq,--- ,a,_1) and (b, - ,b,_1) are proportional (n — 1)-tuples, which it
is easy to see does not hold here.

Using the well-known formula 12 + 2% +. . .+ m? =

to find that

m(m+1)(2m+1)
6

LHS? < ((n_ 1)n? — (n—1)n(2n — 1)) ((n_ 1)n? (n—2)(n—1)(2n— 3))

, our upper bound becomes

6 6
_((n=1)n(4n+1) (n—1)(4n* + Tn — 6)
() ()
_ (n—1)’n(4n+1)(4n* + Tn — 6)
B 36
~16n° — 651" + 60n® — 5n* — 6n
36

It is easy to see that this upper bound for LHS? is less than the square of 207 +"

. Letn be a positive integer. A composition of n is an ordered k-tuple (nq, na, - - - , ny) of positive
integers satisfying ny + ng + - - - + ny = n. Let C(n) be the set of all compositions of n, where
the length k of the tuple is allowed to vary (it can be anything from 1 to n). Prove that

> (myrRmem g = 1L

(n1,n2, ng)eC(n)

Solution. It is convenient to prove a more general statement depending on two positive
integers, m and n:

> ) m ) (k=)™ = m

(n1,m2, ng)€C(n)
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The original problem is the m = 1 case.

Our proof is by induction on n (treating all m simultaneously). The n = 1 base case simply
says that m = m, so we can assume that n > 2 and that the result is known when n is replaced
by n—1. The idea of the inductive step is to write C(n) as the disjoint union of two subsets C(n)’

and C(n)”, where C(n)’ consists of those compositions (1, ng, - - - , n;) where ny > 2and C(n)’
consists of those compositions (n1, 79, -+ ,ng) where n; = 1. We clearly have a bijection
C(n)" — C(n — 1) sending (ny,ng,---,ng) to (ny — 1,n9,---,ny), and another bijection
C(n)" — C(n — 1) sending (nq,ng, -+ - ,ng) to (ng, n3, - - - , ng), which is well defined because

k cannot equal 1 in the latter case (since n > 2). These bijections, incidentally, show that
|C(n)| = 2|C(n — 1)|, which with the base case |C(1)| = 1 clearly implies that |C(n)| = 2"
For the present problem, the bijections and the induction hypothesis show that

S (D Emt m A 1) (m k- 1)

(n1,n2, ng)eC(n)

- —m > (=)D R =t 4 1) (m 4 ke — 1)™

2
:—m’

S D mtm o ) (o k1)

(n1,m2, ,ng)EC(N)"

=m Y (=) ED 1) (k- )
(n2,,nE)eC(n—1)

= m(m + 1)7

so the total sum is —m? + m(m + 1) = m, as required to complete the inductive step.

. If P is a convex polygon in the plane, let M (P) be the convex polygon whose vertices are the
midpoints of the edges of P. Say that P is periodic if M*(P) is similar to P for some positive
integer k, where M* denotes k applications of the operation M. For example, every triangle T’
is periodic, because M (T') is similar to T'; every parallelogram (@ is periodic, because M?(Q)
is similar to (). Show that there is a periodic pentagon in which no two edges have the same
length.

Solution. In fact, we will show that there are infinitely many similarity classes of pentagons
P with the property that no two edges have the same length and M (P) is similar to P.

Identify the plane with the set of complex numbers. A convex pentagon P can be specified
(non-uniquely) by listing its vertices in (say) anti-clockwise order, starting from an arbitrarily
chosen vertex. This gives a 5-tuple of complex numbers (aq, - -- , a5). Note that not every 5-
tuple of complex numbers corresponds to a convex pentagon. However, any scalar multiple
(aay,--- ,aas) of (ay,---,as) with a # 0 (another complex number) does correspond to a
convex pentagon, and one which is similar to P. To see this, write a = re?; multiplying by a
has the effect of dilating by a factor of r and rotating by 6.

If the 5-tuple associated to P as above is (ay, - - ,as), the 5-tuple associated to M (P) (or
rather one of the 5-tuples associated to M (P), namely that obtained by choosing as the first
vertex the midpoint opposite the first vertex of P) is

Tlay,- - ,as) = (

Hence, if (ay,- - ,as) is an eigenvector of this linear transformation 7' of C® for a nonzero
eigenvalue, i.e. T'(ay,- -+ ,a5) = a(ay, - -, as) with a # 0, then M (P) is similar to P.

a3+ a4 a4+ as a1 +as a1+ as Qs+ as
2 ’ 2 2 7 2 2
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A straightforward calculation shows that the characteristic polynomial of 7' is

162° —202° + 52 —1 (v —1)(4a® + 2z — 1)
16 B 16 '

To find this factorization, it helps to realize that 1 is an eigenvalue of 7" because 7'(1,1,1,1,1) =

(1,1,1,1,1). We conclude that the other eigenvalues of T" are %\/5, each repeated. If we let ¢
1+V5

denote the golden ratio ~—5~>
—¢/2and ¢~ /2.

One can see directly that —¢/2 is an eigenvalue of T, because if we start with a regular
pentagon with centre at the origin, we find that indeed T'(ay,--- ,a5) = (—¢/2)(ay, - ,as)
(this uses the fact that cos(7/5) = ¢/2). For example, this holds for the pentagon P, with
vertices equal to the five complex 5th roots of 1, namely 1, ¢, (2, (2, ( where ¢ = €2™/°. Of
course, this is not a solution to the problem, because all edges of F;) have equal length. However,
the fact that (1, ¢, ¢2, (2, () is an eigenvector of T for the (real) eigenvalue —¢/2 implies that so
is the complex conjugate vector (1,(, (2, (2, (), and hence so is any linear combination of the

form

as is customary, then these other eigenvalues of 7" can be written

(17 C? C27 C27 C) + 6(17 C’ C27 C27 C)?

where € is a nonzero complex number. If € is sufficiently small, then the resulting 5-tuple must
still correspond to a convex pentagon P with vertices listed in anti-clockwise order, which is
only a “small perturbation” of the regular pentagon F,. It is easy to see that for generic values
of €, P will have no two edges of the same length, so it solves the problem.

Notice that this solution pentagon P is obtained from the regular pentagon F, by applying the
transformation z — 2z + €z of the complex plane, which is a linear transformation of the plane
thought of as a real vector space.

. Let F' be the field of integers modulo p, where p is a prime number. Define a finite set
X ={(z,y,2) € F?|2° +y* + 2> = 0}.

Show that | X| = p? if and only if p # 1 (mod 6).

Solution. Assume that p = 1 (mod 6). Then p # 1 (mod 3), since there are clearly no primes
congruent to 4 modulo 6. The p—1 nonzero elements of /' form a group F'* under multiplication
(in fact, a cyclic group), with identity element 1. The fact that 3 { p — 1 means that the only
y € Fsuchthaty® = 1pisy = 1 itself. So the group homomorphism F* — F'* : 4 s 3% has
trivial kernel and therefore must be injective, hence bijective because its codomain and domain
have the same finite size; this means that the map F' — F : y — 32 is also bijective. So X is in
bijection with the set
X' ={(z,y,2) € F*|2° + ¢y + 2> =0}

via the map X — X' : (z,y,2) — (x,93, 2). Itis clear that X’ is in bijection with F'? via the
map X' — F?: (x,y,2) = (2,2),50 | X| = | X'| = |F?| = p°.
If p = 1 (mod 6), then consider the following element of the field F":

S = Z (2% + o3 + 2P L

(z,y,2)€F3
On the one hand, for any nonzero a € F we have a?~! = 1, so

S=(p*—|X|)-1p (meaning 1y + 1p + ---+ 1 with p* — | X| terms).
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In other words, S is the integer —| X | interpreted modulo p.
On the other hand, we can expand the trinomial and obtain

Z Z (Z ; i) gy 2

(z,y,2)€EF3  a,b,ceN

a+b+c=p—1
- 2 (a b, c) <Z $6a> (Zygb> <Z ZQC)
a+céﬁ,§§§71 zeF yeFr zeF

Now > . p 2 =p-1p=0.If1 < e < p— 2, we claim that Y zep ¢ = 0also. The simplest
proof is that, since F'* is cyclic, there exists some iy € F'* such that y© # 1z, whereas we have

(ye_lF)er:Z(xy)e_Z$e: Z(x/)e_zxezo.

zeF zeF zel z'eF zeF

So the product of the three sums Y- . 2%, 3> . y™, 3", 2° can only be nonzero if

—1 —1 —1
a>P = p>P T ande>2 -

6 3
The constraint that @ + b + ¢ = p — 1 then forces a = %, b= p%l, and ¢ = p—;l; sincep =1
(mod 6), these are indeed all integers. Note that > 2! = (p—1)-1p = —1p. We conclude
that )

p —
S = (p_l p=1 p_l) - (=1r)?,
6’ 3 2

and hence

1
X = (;p 1 ,,__1) (mod p).
6

p—1
) 3 1 9
The trinomial coefficient here is a divisor of (p — 1)!, which is not divisible by p. Thus | X| # 0
(mod p), which obviously implies | X| # p? as required.

. Define a function f : (—oo0,1) — R by

! V2—x
V1 — 521 — xs2

Show that f(z) has a global minimum at x = 0.

flx) = ds.

Solution. (Due to entrant Terence Harris, University of New South Wales). Fix z € (—o0, 1).
The change of variable s = sin %t gives

flx) = 2_:6/ (1—=x smzt) )2 dt.

Notice that 1 — z(sin ) > 0, so (1 — x(sin Z£)?)~"/2 is well defined. Since the function
y +— y Y2 is convex on its domain (0,00), we can apply the integral version of Jensen’s



SUMS Problem Competition 2015 Page 6

inequality to obtain

fa) > V2T (/01 1 — a(sin %t)th) o

>
- 2
— ~1/2
:u<1—z/ll—cos7rtdt> /
2 2 Jo
oom 2—x<1_£)—1/2
2 2
e
T2
= f(0),

as desired.

. Let( = e™/% = ? + %i, and let Z[(] denote the set of integer linear combinations of the powers
of ¢. Suppose that u,v € Z[(] satisfy |u|?> = v/3 |v|?> + 1 and v # 0. Show that |v|> > 2 + /3,
and find when equality occurs.

Solution.  Since the minimal polynomial of ¢ is z* — 2% + 1, any element of Z[(] can be
written uniquely as a + b + ¢ + d(? where a, b, ¢, d € Z. Finding real and imaginary parts,

we see that 3 /3
3. 1 1 3
a+bl+cC*+d¢® = (a+7b+§c)+(§b+70+d)i,

SO

V3

3 1 1
la 4+ bC + e+ dCP)* = (a + §b+ 5c)2+ (§b+ 7c+d)2

= (a® + ac+ A + 0% + bd + d*) + (ab + be + cd)V/3.

Thus, if we let u = a+b(+c(?+d¢? and v = o'+ C+ CP4-d'¢3 where a, b, e, d, ', b, c,d' € Z,
the equation |u|?> = /3 |v|> 4 1 becomes the following two equations:

a>+ac+ A+ +bd+d* =143V +bd +Jd), (1)

and
ab+bc+cd=ad?*+dd +*+V?+0d +d”° (2)

Now the quadratic form 2% 4 zy + y? is positive-definite, since
A2+ 2y +9°) = (r —y)* + 3(z +y)* 3)

Since a? + ac + ¢? is an integer, we have a® + ac + ¢ > 1 unless a = ¢ = 0, and similarly
b> +bd + d?> > 1unless b = d = 0. If eithera = ¢ = 0 or b = d = 0, then the left-hand side
of (2) vanishes, forcing the right-hand side of (2) to vanish, which then by the same positive-
definiteness forces a’ = b’ = ¢ = d’ = 0, contrary to the assumption that v # 0. We conclude
that a® + ac + ¢ > 1 and b? + bd + d*> > 1, meaning that the left-hand side of (1) is at least
2. Hence the right-hand side of (1) is at least 2, implying that a'b’ + b'¢’ + ¢/d’ > 1. This in
turn implies that it is not true that ' = ¢ = Q or that ¥ = d’ = 0, so a’*> + a’¢’ + ¢*> > 1 and
b2 4+ b d + d? > 1. Hence we have

W2 = (@?+d'd + P+ V24 Vd +d?%) + (' + 6+ d)V3 > 2+ V3,
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as claimed.

For equality to hold, i.e. to have |[v]* = 2 + V3, we need a',V,c,d € Z to be such that
a?+a'd+c?=1and b? +bd +d? = 1, in addition to a’'t/ + V'’ +/d’ = 1. Using (3) we see
that @’ + a/c’ + ¢> = 1 forces either @’ = £1, ¢ = Florad' = +1,¢ =0ord =0, ¢ = +1.
The same trichotomy holds for &’ and d’. Applying the final condition a’d’ + b/d’ + dd’ = 1, we
get the following twelve possibilities for (a, ¥, ¢/, d’) (and thus for v):

(@, V,c,d) e {+(1,0,—1,—1),4+(1,1,—-1,—-1),+(1,1,0,0),
+(1,1,0,—1), +(0,1,1,0), £(0,0,1, 1)}.

Since || = 1, all these possible values of v can be obtained from just one (say, v = 1 + () by
multiplying by the twelve distinct powers of (.

We also need to have |u|? = 4 + 21/3, i.e. we need a, b, c,d € Z to be such that a®> + ac +
2+ b? + bd + d*> = 4 and ab + bc + cd = 2. Considering (3) modulo 3, we see that we cannot
have a? + ac + ¢ = 2, so the only possibilities are a®> + ac + ¢> = 1 and b> + bd + d?> =
ora? + ac + ¢ = 3 and b? + bd + d*> = 1. In the first of these cases, we have the trichotomy
for a and c as above, whereas b> + bd + d?> = 3 forces either b = d = £l orb = +£2,d = F1
or b = 1, d = F2. Applying the final condition ab + bc + cd = 2, we get the following
possibilities for (a, b, ¢, d) (and thus for w):

(a,b,c,d) € {£(1,1,-1,-2),4+(1,2,0,—1),£(0,1,1,1)}.
The other case gives the following possibilities for (a, b, ¢, d) (and thus for u):
(a,b,c,d) € {£(2,1,-1,—-1),+(1,0,—-2,—-1),£(1,1,1,0)}.

So there are twelve possibilities for v in all; again, they can be obtained from just one (say,
u=1+2¢ — ¢* =1+ /3) by multiplying by the twelve distinct powers of (.

. Let d be a fixed integer, at least 2. If P(z) is a polynomial in z, let [ P(x)] be the polynomial
obtained by rounding up each exponent of x to the nearest multiple of d, so that [P(z)] is a
polynomial in z¢. For example, if d = 3 then

[2 + 52 + 42% + 2] = 2+ 52° 4+ 423 + 2% = 2 4+ 923 4 2°.

Suppose that all we know about P(z) is that it has nonnegative real coefficients. Show that if
we are given all of the polynomials [P(z)], [P(z)?], [P(z)?], ..., we can determine P(z).

Solution. The intention of the question, as stated by a clarification on the competition web-
page, was that the integer d was also to be regarded as given.

The wording “Show that ... we can determine P(z)” was also ambiguous. On one interpre-
tation, it simply requires us to show that there cannot be two different polynomials P(x) with
nonnegative real coefficients that give rise to the same sequence of polynomials ([ P(x)™])m>1.
As pointed out by entrant Terence Harris (University of New South Wales), this follows from
the fact that for any fixed real number y > 1,

P(y)™ < [P(y)™] <y™'Py)™,
and hence

lim [P(y)™1"™ = P(y).

m—0o0
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However, on another interpretation, “determining P(x)” requires a finite algorithm (in particu-
lar, not involving limits) to determine the various coefficients of the polynomial P(x) from the
coefficients of the known polynomials [ P(z)™]. Such an algorithm follows.

A trivial but vital observation is that the operation [-] is linear, in the sense that [aQ(z) +
bR(z)] = a[Q(z)] + b]R(x)] for any polynomials Q(z), R(x) and numbers a, b. Also note
that [2*¢Q(x)] = 2*¢[Q(z)] for all nonnegative integers k. We will use these rules henceforth
without further comment.

If Q(z) is any polynomial, write Q(x)[z7] for the coefficient of 27 in Q(z). We first show that
it suffices to prove the claim in the case when P(z)[z°] = 0 (i.e. P(x) has no constant term).
The reason is that if we know [ P(z)™] for all m > 0, then we know P(x)[z°] = [P(z)][z"],
and so we also know

m

[(P(x) — )" = 3 (

J=0

Z”) (—P(2)[2°))™[P(x)'] forallm > 0.
So assuming we can solve the problem for polynomials with no constant term, we can determine
P(x) — P(z)[«°] and hence the original P(x).

Now it is enough to prove the following claim for all nonnegative integers n: for a polynomial
P(z) with P(z)[z?] > 0 for all j and P(x)[z°] = 0, if we know [P(x)™] for all m > 0, then
we can determine P(z)[z"]. We prove this claim by induction on n, the n = 0 case being
obvious. So we can assume that n > 1 and that the claim is true when 7 is replaced by a smaller
nonnegative integer.

The inductive hypothesis implies that from the assumed knowledge of [ P(z)™] for all m > 0,
we can determine the coefficients P(z)[x!],- -+, P(x)[z"!]. If these coefficients are all zero
(or if n = 1), then (P(z)%)[z7] = 0 for all j < nd and (P(z)%)[z"] = (P(z)[z"])% So
[P(x)?[2™] = (P(z)[z"])¢ also, and hence we know (P (z)[z"])? and can determine P(z)[z"]
by taking the dth root. Here is where it matters that we are dealing with nonnegative real
numbers.

Otherwise, we have P(x)[r!] = --- = P(2)[z""!] = 0 and P(z)[z'] > 0 for some positive
integer ¢ < n. In particular, z—*P(z) is a polynomial in  with constant term P(z)[z’]. Define

Q(z) = (¢7'P(x))? = (P(2)[2'])? and  R(z) = 27'P(z) - P(x)[z],

two other polynomials in z with nonnegative real coefficients and no constant term. By assump-
tion we know

m

Q=3 (T) (—(P() )" T [ PP forall m > 0.

So by the inductive hypothesis we can determine the coefficient Q(z)[z"~*]. By definition,
Q)" = ((R(x) + P(x)[2']) = (P()[a"])) =" "]
(1) Pl R

k=1

Now if k& > 2 and we write the coefficient R(x)*[z"‘] as a function of the coefficients
R(z)[z'] = P(z)[z"™], R(z)[2?] = P(x)[z""?], -+ of R(z), we see that it cannot involve
any coefficient R(x)[z%] = P(x)[z*"] fora > n — i, because k — 1 +a > n —i. So in
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the above expression for Q(x)[x"~], all the terms of the sum with k& > 2 involve only coeffi-
cients of P(x) that have already been determined. Thus we can detemine the remaining & = 1
term, which is d(P(z)[z!])¢"1 P(z)[2"]. Since P(x)[z'] # 0 by assumption, we can determine
P(z)[z"] from this, completing the inductive step.



