
Sydney University Mathematical Society Problem Competition 2013

1. Alice, Bess and Cath want to host seven parties in 2014, occurring on the seven different days

of the week. Alice writes down a list of seven dates in 2014, in which no day of the week is

repeated. Bess crosses out the first date on Alice’s list (a Wednesday) and replaces it with a

randomly chosen alternative date, without looking at the rest of the list. Cath now considers

each of the other dates on the list in turn, starting from the second one. If its day of the week

has not appeared earlier in the list, she leaves the date unchanged; and if its day of the week has

appeared earlier, she replaces it with a randomly chosen date whose day of the week has not

appeared earlier. What is the probability that she changes the last date on the list?

Solution. The year 2014 will start on a Wednesday (and is not a leap year!), so it will contain

53 Wednesdays and 52 of each other day of the week. Since all non-Wednesday days of the

week are equivalent, we can assume that the last date on Alice’s list is a Sunday.

Notice that if Bess chooses another Wednesday to replace the first date, then Cath makes

no changes to the rest of the list. Otherwise, Cath must choose a Wednesday at some point.

Moreover, since Cath only changes dates whose day of the week has been taken by her (or

Bess’s) previous change, from the point at which she first chooses a Wednesday there are no

further changes for her to make. Thus, the scenarios in which the last date on the list is changed

are exactly those in which either Bess or Cath chooses a Sunday before the first choice of a

Wednesday.

Since Bess definitely changes Alice’s first date, there are 52 possible Wednesdays she might

replace it with. So the probability that she writes down a Wednesday is 1/7, the same as the

probability that she writes down a Sunday. With probability 5/7 she writes down some other

day of the week, and then the determining factor is Cath’s choices. When Cath has to make a

choice in which both Wednesdays and Sundays are open to her, Wednesdays predominate over

Sundays in the ratio 53:52 (note that the question did not rule out Alice’s original Wednesday as

a possible choice for Cath). So the probability that she chooses a Sunday before her first choice

of a Wednesday is 52/105. Therefore the overall probability we are seeking is

1

7
+

5

7
× 52

105
=

73

147
.

2. David is also planning a party, at which there are to be 26 guests. Considering that a triple of

guests has ‘social potential’ if it contains a pair who have met each other before and also a pair

who haven’t met each other before, he wants at least half of all the
(

26

3

)

triples to have social

potential. What is the smallest number of previously-acquainted pairs that could possibly be

compatible with this requirement?

Solution. In the terminology of graph theory, we are considering simple graphs with 26
vertices, and we want to know the minimal number of edges among all graphs with the property

that at least half of the triples of vertices contain either 1 or 2 edges.
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Take a simple graph with 26 vertices, labelled 1, · · · , 26. Let di (1 ≤ i ≤ 26) denote the

degree (= number of adjacent vertices) of vertex i. Then
∑26

i=1
di = 2e where e is the number

of edges.

Let t be the number of triples of vertices that contain either 1 or 2 edges. Each such triple

gives rise to exactly two ordered triples (i, j, k) such that vertex i is adjacent to vertex j but not

to vertex k. For a fixed i, the number of ways to choose such j and k is clearly di(25 − di).
Hence

t =
1

2

26
∑

i=1

di(25− di) = 25e− 1

2

26
∑

i=1

d2i . (1)

Now we can show that the answer to the question is 65. Firstly, it is easy to see that it is

possible to have a graph with 26 vertices in which every vertex has degree 5; in this case e = 65
and equation (1) gives t = 25× 65− 13× 25 = 1300, so exactly half of the

(

26

3

)

= 2600 triples

of vertices contain either 1 or 2 edges.

Conversely, suppose that t ≥ 1300. Then (1) gives

26
∑

i=1

d2i ≤ 50e− 2600.

On the other hand, the Cauchy–Schwarz inequality implies that

26

26
∑

i=1

d2i ≥ (

26
∑

i=1

di)
2 = 4e2.

Putting these inequalities together we find that

e2 − 325e+ 16900 ≤ 0.

The left-hand side factorizes as (e− 65)(e− 260), so we deduce that 65 ≤ e ≤ 260.

3. Define a sequence by the initial value b1 = 3 and the recurrence relation bn+1 = b2n − 2 for

n ≥ 1. Evaluate the limit lim
m→∞

bm
b1b2 · · · bm−1

.

Solution. Clearly bn > 2 for all n, so we can define positive real numbers tn uniquely by

the condition that bn = 2 cosh tn. Then the recurrence becomes cosh tn+1 = 2 cosh2 tn − 1 =
cosh(2tn), impying that tn+1 = 2tn for all n ≥ 1, so tn = 2n−1t1. This means that

bn =
sinh(2tn)

sinh tn
=

sinh(2nt1)

sinh(2n−1t1)
,

so the product b1b2 · · · bm−1 telescopes, leaving

bm
b1b2 · · · bm−1

= 2 sinh(t1)
cosh(2m−1t1)

sinh(2m−1t1)
.

Since limx→∞
coshx
sinhx

= 1, the answer is

2 sinh t1 =
√

b21 − 4 =
√
5.
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4. Find the determinant of the n× n matrix whose (i, j)-entry is i if i 6= j, and is i+ 1 if i = j.

Solution. Let this matrix be Mn, and let In be the n× n identity matrix. Then Mn − In is the

matrix where the ith row is (i, i, · · · , i). Thus Mn − In has rank 1 and its null space (kernel)

is (n − 1)-dimensional, consisting of all vectors for which the coordinates sum to zero. This

means that 1 is an eigenvalue of Mn with multiplicity at least n − 1. Since the trace of Mn is
∑n

i=1
i + 1 = n2+3n

2
, and the trace is the sum of the eigenvalues, the final eigenvalue of Mn

is n2+3n
2

− (n − 1) = n2+n+2

2
. Therefore the determinant, the product of the eigenvalues, is

n2+n+2

2
.

5. Fix an integer n > 1 and consider the permutations of the set {1, 2, · · · , n}. Say that such

a permutation σ is self-inverse if σ(σ(i)) = i for all 1 ≤ i ≤ n. Say that σ is modest if

σ(i) > min{σ(i + 1), σ(i + 2)} for all 1 ≤ i ≤ n − 2. Prove that the number of self-inverse

permutations equals the number of modest permutations.

Solution. Let an and bn denote the number of self-inverse and modest permutations, respec-

tively, of [n] = {1, 2, · · · , n}. We have a2 = b2 = 2 and a3 = b3 = 4 by an easy count. It is

therefore enough to show that the two numbers satisfy the same recurrence relation, namely

an = an−1 + (n− 1)an−2 and bn = bn−1 + (n− 1)bn−2 for n ≥ 4.

To prove an = an−1 + (n − 1)an−2, note that a self-inverse permutation σ of [n] either has

σ(n) = n or σ(n) < n. If σ(n) = n, then the restriction of σ to [n − 1] is a self-inverse

permutation, and each such arises once only in this way, so the number of self-inverse σ with

σ(n) = n is an−1. If σ(n) < n, then there are n − 1 possibilities for σ(n). Whatever σ(n) is,

the restriction of σ to [n− 1] \ {σ(n)} is a self-inverse permutation, and each such arises once

only in this way, so the number of self-inverse σ with σ(n) < n is (n− 1)an−2.

To prove bn = bn−1 + (n − 1)bn−2, note that a modest permutation σ cannot have σ(i) = 1
for i ≤ n− 2, so it must have either σ(n) = 1 or σ(n− 1) = 1. If σ(n) = 1, then we obtain a

modest permutation τ of [n − 1] by setting τ(i) = σ(i)− 1, and each such arises once only in

this way, so the number of modest σ with σ(n) = 1 is bn−1. If σ(n−1) = 1, then there are n−1
possibilities for σ(n) (the modesty condition σ(n − 2) > min{σ(n − 1), σ(n)} is automatic).

Whatever σ(n) is, we obtain a modest permutation τ of [n − 2] by setting τ(i) = σ(i) − 1 if

σ(i) < σ(n) and τ(i) = σ(i)− 2 if σ(i) > σ(n), and each such arises once only in this way, so

the number of modest σ with σ(n) = 1 is (n− 1)bn−2.

Alternative solution. We can construct a bijection between self-inverse and modest permuta-

tions of {1, 2, · · · , n} as follows. Given a self-inverse permutation σ, write it in cycle notation

with the 1-cycles included, each 2-cycle written with the smaller element first, and the cycles

put in decreasing order of their smallest element. For example, when n = 7 we might consider

the self-inverse permutation (7)(4)(3 6)(2 5)(1), which fixes 1, 4, 7 and interchanges 2 with 5
and 3 with 6. Then deleting the parentheses, we have a listing of the elements of {1, 2, · · · , n}
in some order, which we can interpret as σ′(1)σ′(2) · · ·σ′(n) for some permutation σ′. In our

example, σ′ sends 1 to 7, 2 to 4, 3 to 3, 4 to 6, 5 to 2, 6 to 5 and 7 to 1. It is easy to see that σ′

is always modest: if σ′(i) is the smaller element of a 2-cycle of σ then σ′(i + 2) is the smaller

element of the next cycle, so by our choice of ordering we have σ′(i) > σ′(i+2); and similarly,

if σ′(i) is a 1-cycle or the larger element of a 2-cycle of σ then we have σ′(i) > σ′(i + 1). To

show that this map σ 7→ σ′ is a bijection from self-inverse to modest permutations, we must

show that, given a modest permutation σ′ written out as σ′(1)σ′(2) · · ·σ′(n), there is a unique

way to insert parentheses to break it into 1-cycles and 2-cycles that satisfy the ordering conven-

tion. This is also easy: work from left to right, and make a 2-cycle whenever there is an ascent

from one place to the next.
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6. Let f(x) be a polynomial function with rational coefficients and degree at least 2. Show that

there are infinitely many rational numbers that are not equal to f(x) for any rational x.

Solution. Multiplying f by a nonzero rational scalar or adding to f a rational constant doesn’t

affect the property we need to prove, so we can assume that f has integer coefficients, positive

leading coefficient and zero constant term. Thus

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x

for some integers d ≥ 2 and a1, · · · , ad, with ad > 0. We will then show that there are infinitely

many integers that are not equal to f(x) for any rational x.

If d is even, then as a function of a real variable, f(x) → ∞ as x → ±∞, so f(x) attains

some global minimum value M . The claim is then obvious because there are infinitely many

integers less than M . So we could assume that d is odd, but it makes no difference to the

following argument whether we do or not.

Since d ≥ 2, we have f(x) → ∞ as x → ∞ and also f ′(x) → ∞ as x → ∞. There is then

some N > 0 such that:

a) f(x) ≥ f(N) ⇒ x ≥ N ;

b) x ≥ N ⇒ f ′(x) > ad (in particular, f is increasing on [N,∞)).

If f(q) = t is an integer for some rational q = r
s
, where r, s are integers with gcd(r, s) = 1,

then by the rational roots theorem we have s | ad, so q ∈ 1

ad
Z. If the integer t also satisfies

t ≥ f(N), we have q ≥ N by property (1), so f ′(x) > ad for all x in the interval [q, q + 1

ad
] by

property (2), so f(q + 1

ad
) > t+ 1, so t+ 1 is not of the form f(q′) for any rational q′. In other

words, no two consecutive integers ≥ f(N) can both be of the form f(q) for q rational; clearly

this means that there are infinitely many integers not of this form.

With a bit more work, one can show that the set of rational numbers that are not equal to f(x)
for any rational x is not just infinite but dense.

7. For any positive integer n, let An be the 2 × 2 matrix

[

n
n+1

2
2n
n+1

1

]

. Define Bn = A1A2 · · ·An.

Show that the entries in the bottom row of Bn are integers.

Solution. Let cn, dn be the entries in the bottom row of Bn, so Bn =

[

? ?
cn dn

]

. By definition,

the sequences cn, dn are determined by the initial conditions

c0 = 0, d0 = 1,

and the following recurrence relations for n ≥ 1:

cn = (
n

n+ 1
)cn−1 + (

2n

n+ 1
)dn−1,

dn = 2cn−1 + dn−1.

Now let Cn and Dn be the coefficients of xn+1 and xn respectively in (x2+x+1)n. Obviously

Cn and Dn are integers (one could give formulas for them as sums of multinomial coefficients,

but this is unnecessary for the present argument). We claim that in fact cn = Cn and dn = Dn,

which solves the problem. To show this, it suffices to show that Cn, Dn satisfy the same initial

conditions and recurrence relations as cn, dn. The initial conditionsC0 = 0, D0 = 1 are obvious.
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For n ≥ 1, consider the coefficient of xn in
d

dx
(x2+x+1)n. On the one hand, it is (n+1)Cn.

On the other hand, it is the coefficient of xn in n(2x + 1)(x2 + x+ 1)n−1, which is 2nDn−1 +
nCn−1. So (n+ 1)Cn = 2nDn−1 + nCn−1, which rearranges to the first recurrence relation.

From (x2+x+1)n = (x2+x+1)(x2+x+1)n−1, we see that Dn is the sum of the coefficients

of xn−2, xn−1, and xn in (x2 + x+1)n−1. But the coefficients of (x2 + x+1)n−1 are obviously

symmetric about the middle xn−1 term, so the coefficient of xn−2 equals the coefficient of xn.

Thus Dn = 2Cn−1 +Dn−1, the second desired recurrence relation.

8. Let a and c be positive real numbers. Evaluate

∫ c+i∞

c−i∞

az

z2
dz.

Here
∫ c+i∞

c−i∞
denotes a contour integral in the complex plane, along the vertical line Re (z) = c

traversed upwards.

Solution. Let f(z) = az

z2
. Note that f is defined on the whole complex plane except at 0,

where it has a pole of order 2 with residue

Res(f, 0) = lim
z→0

d

dz
(z2f(z)) = lim

z→0

d

dz
(az) = lim

z→0
az log a = log a.

The answer to the question is that

∫ c+i∞

c−i∞

f(z) dz =

{

2πi log a if a > 1,

0 if 0 < a ≤ 1.

First consider the case where a > 1. Fix R > c. Let γR denote the left semicircle centred at

c with radius R, parametrized by γR(t) = c + Reit with t ∈ [π/2, 3π/2]. Let LR be the line

segment from c − iR to c + iR. For z ∈ γR, we have Re (z) ≤ c and |z|2 ≥ (R − c)2 so that

|az| = aRe z ≤ ac and |z|−2 ≤ (R− c)−2. It follows that

∣

∣

∣

∣

∫

γR

az

z2
dz

∣

∣

∣

∣

≤
∫

γR

ac(R − c)−2 dz = ac(R− c)−2πR → 0 as R → ∞.

Therefore,
∫

γR
f(z) dz → 0 as R → ∞. On the other hand, the Residue Theorem applied to f

on the contour LR ∪ γR says that

∫

γR

f(z) dz +

∫ c+iR

c−iR

f(z) dz = 2πiRes (f, 0) = 2πi log a.

By taking R → ∞, we obtain that
∫ c+i∞

c−i∞
f(z) dz = 2πi log a.

Next consider the case where a ≤ 1. Again fix R > c. Now let γ̃R denote the right semicircle

centred at c with radius R, parametrized by γ̃R(t) = c + Reit with t ∈ [−π/2, π/2]. Let L̃R be

the line segment from c + iR to c − iR. For z ∈ γ̃R, we have Re z ≥ c and |z|2 ≥ R2 + c2 so

that |az| = aRe z ≤ ac (since 0 < a ≤ 1) and |z|−2 ≤ (R2 + c2)−1. It follows that

∣

∣

∣

∣

∫

γR

az

z2
dz

∣

∣

∣

∣

≤
∫

γR

ac(R2 + c2)−1 dz = ac(R2 + c2)−1πR → 0 as R → ∞.
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Hence, as before,
∫

γR
f(z) dz → 0 as R → ∞. Inside the contour L̃R ∪ γ̃R, f has no pole. By

Cauchy’s Theorem, we have

∫

γ̃R

f(z) dz −
∫ c+iR

c−iR

f(z) dz = 0.

Taking R → ∞, we conclude that
∫ c+i∞

c−i∞
f(z) dz = 0.

9. Let N = {0, 1, 2, · · · }. Call a subset A ⊆ N special if it satisfies:

a) 0 ∈ A,

b) a ∈ A ⇒ a + 10 ∈ A,

c) a ∈ A ⇒ a + 2013 ∈ A.

How many special subsets A ⊆ N are there?

Solution. Replace the numbers 10 and 2013 with the general positive integers p and q
respectively. As long as p and q are coprime (which 10 and 2013 certainly are), we claim that

the number of special subsets is 1

p+q

(

p+q

p

)

. So the answer to the original question is 1

2023

(

2023

10

)

.

Firstly, it is a standard fact that every integer N > pq − p − q can be written as ap + bq for

some a, b ∈ N. The proof of this is as follows. By elementary number theory we can write

N as a′p + b′q for some a′, b′ ∈ Z, and clearly one of a′, b′ must be positive. Without loss of

generality, assume that a′ > 0 and write a′ = mq + a where m ∈ N and 0 ≤ a ≤ q − 1.

Set b = b′ + mp. Then N = ap + bq, and we cannot have b ≤ −1 since this would imply

N ≤ (q − 1)p− q, contrary to assumption.

From the definition it is obvious that a special subset of N must contain every integer of the

form ap + bq for a, b ∈ N. Consequently, a special subset must contain all the integers greater

than pq − p− q. This already shows that the number of special subsets is finite.

If A is a special subset, say that an element i ∈ A is basic if i− p− q /∈ A. For example, the

element 0 is guaranteed to be basic. Note that i ∈ A ⇒ i+ k(p + q) ∈ A for all k ∈ N, so i is

basic if and only if it is the smallest element in its congruence class modulo p + q to belong to

A. Since A contains representatives of each congruence class modulo p+ q, A contains exactly

p+ q basic elements. Note that the set of basic elements of A determines the whole of A.

Let X be the set of pairs (A, i) where A is a special subset of N and i ∈ A is basic. It

suffices to show that |X| =
(

p+q

p

)

. To do this, we construct a bijection between X and a set Y

whose cardinality is obviously
(

p+q

p

)

, namely the set of (p+ q)-tuples (a1, a2, · · · , ap+q) where

ai ∈ {−p, q} for all i, and ai = −p for exactly q values of i.
The map f : X → Y is defined as follows. If j is basic in a special subset A, then there is a

unique basic element k of A congruent to j + q modulo p + q. Since j + q ∈ A, we certainly

have k ≤ j + q. But also j − 2p − q /∈ A (or else j − p − q ∈ A contrary to assumption), so

k ≥ j − p. We conclude that k is either j − p or j + q. Now given (A, i) ∈ X , we can define

f(A, i) = (a1, a2, · · · , ap+q) by the rule that i+ a1 is the basic element of A congruent to i+ q,

i + a1 + a2 is the basic element of A congruent to i + 2q, and so on, including the stipulation

that i+ a1 + · · ·+ ap+q is the basic element of A congruent to i, which is equivalent to saying

that a1 + · · ·+ ap+q = 0. By what we have seen, each ai equals either −p or q. If s of the ai’s
equal −p, then we must have s(−p)+(p+q−s)q = 0, which forces s = uq and p+q−s = up
for some u ∈ Z (since p and q are coprime), leading to u = 1 and s = q. So (a1, a2, · · · , ap+q)
does indeed belong to Y .

The inverse map g : Y → X is defined as follows. Given (a1, a2, · · · , ap+q) ∈ Y , consider

the set B of partial sums {0, a1, a1+a2, · · · , a1+ · · ·+ap+q−1}. Each congruence class modulo
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p+ q is represented exactly once in B, for if there were two different elements of B congruent

modulo p + q, then we would have s(−p) + tq = u(p + q) for some s, t ∈ N and u ∈ Z with

0 < s+ t < p+ q, leading to s+ u = vq, t− u = vp for some v ∈ Z and then a contradiction.

Let b = minB (a nonpositive integer) and translate to obtain a subset B−b ⊆ N with minimum

element 0, in which each congruence class modulo p+ q is represented exactly once. Let A be

the union of the sets j + N(p + q) as j runs over B − b. We claim that A is special. To prove

this claim, it suffices to show that j + p, j + q ∈ A for any j ∈ B − b. But by definition of

B, if j + b ∈ B then either j + b + p or j + b − q belongs to B (this is a1 + · · ·+ ai−1 where

j+ b = a1+ · · ·+ ai for 1 ≤ i ≤ p+ q) and also either j+ b− p or j+ b+ q belongs to B (this

is a1 + · · ·+ ai where j + b = a1 + · · ·+ ai−1 for 1 ≤ i ≤ p + q), so our claim follows. Note

that the set of basic elements of A is exactly B − b. Hence we can define g(a1, a2, · · · , ap+q) to

be the pair (A, i) where A is as above and i = −b.
It is easy to check that g◦f is the identity on X: for (A, i) ∈ X , if we define (a1, a2, · · · , ap+q)

as in the definition of f , then B + i is the set of basic elements of A, so minB = −i and

g(a1, a2, · · · , ap+q) = (A, i). It is also easy to check that f ◦ g is the identity on Y : for

(a1, a2, · · · , ap+q) ∈ Y , if we define (A, i) as in the definition of g, then the set of basic elements

of A is B + i = {i, i + a1, i + a1 + a2, · · · }, which implies that f(A, i) = (a1, a2, · · · , ap+q).
The proof is finished.

10. Let A,B,C,D be matrices over the complex numbers satisfying the following conditions:

a) A,B are n× n matrices that are nilpotent (so An = Bn is the zero matrix);

b) C is an n× 2 matrix and D is a 2× n matrix;

c) A+B = CD.

Show that DAiC + (−1)i+1DBiC is a scalar matrix for all nonnegative integers i.

Solution. It is convenient to work in the ring Mat2(C[z]) of 2× 2 matrices whose entries are

polynomials in the variable z. We define two elements of this ring:

F (z) = I +
∑

i≥0

DAiC zi+1,

G(z) = I +
∑

i≥0

(−1)i+1DBiC zi+1.

The entries are indeed polynomials because A and B are nilpotent, so all terms with i ≥ n
vanish. Observe that

F (z)G(z) = I +
∑

j≥0

(

(−1)j+1DBjC +

j−1
∑

i=0

(−1)j−iDAiCDBj−i−1C +DAjC

)

zj+1

= I +
∑

j≥0

(

(−1)j+1DBjC +

j−1
∑

i=0

(−1)j−iDAi(A+B)Bj−i−1C +DAjC

)

zj+1

= I +
∑

j≥0

(

(−1)j+1DBjC +

j−1
∑

i=0

(−1)j−iDAiBj−iC

+

j−1
∑

i=0

(−1)j−iDAi+1Bj−i−1C +DAjC

)

zj+1

= I (by pairwise cancellation of terms).
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Now elements of Mat2(C[z]) have determinants, defined in the usual way, which are polyno-

mials in z. The fact that F (z)G(z) = I implies as usual that det(F (z)) det(G(z)) = 1 (the

constant polynomial). If the product of two polynomials is 1, they must be constant; since the

constant term of det(F (z)) is det(F (0)) = 1, we conclude that det(F (z)) = det(G(z)) = 1.

We have the usual formula for the inverse of a 2 × 2 matrix with determinant 1, showing

that if H(z) ∈ Mat2(C[z]) has det(H(z)) = 1, then H(z) + H(z)−1 is a scalar matrix (off-

diagonal entries zero, diagonal entries equal). So F (z)+G(z) is a scalar matrix. Extracting the

coefficient of zi+1, this means that DAiC + (−1)i+1DBiC is a scalar matrix for all i ≥ 0, as

required.

The argument also shows something about traces: if H(z) ∈ Mat2(C[z]) has det(H(z)) = 1,

then tr(H(z)−1) = tr(H(z)), so we can conclude that tr(DAiC) = tr((−1)i+1DBiC).


