THE UNIVERSITY OF
SYDNEY

Sydney University Mathematical Society Problem Competition 2012

1. Alice and Bess are playing a game where Alice thinks of a nuiintibe setA = {1,2,3,4,5,6}
and Bess has to guess what it is. If she guesses correctlywishgif she guesses incorrectly,
Alice increases or decreases her numbet fyeeping it in the setl) before Bess’ next guess.
What is the smallest numbérsuch that Bess can guarantee to win withiguesses?

Solution. The answer ig = 8. A sequence 08 guesses which is guaranteed to win is:
2,3,4,5,5,4,3, 2.

The reason for this is as follows. Suppose first that Alicefsal number is even.

o Ifthe first guesg is incorrect, Alice’s number at that time is eithieor 6, and must change
to either3 or 5.

e Then if the second guesss incorrect, Alice’s number at that time s and must change
to either4 or 6.

e Then if the third guess is incorrect, Alice’s number at that times and must change to
5.

e So the fourth guessis guaranteed to be correct.

Therefore, if Bess has not won within the first four guesgesust be that Alice’s initial number
was odd. Since her number changes parity after each unsiidogisess, her number will again
be odd after four guesses.

e Then if the fifth guess$ is incorrect, Alice’s number at that time is eithieor 3, and must
change to eithet or 4.

e Then if the sixth guessis incorrect, Alice’s number at that time2s and must change to
either1 or 3.

e Then if the seventh gues8ss incorrect, Alice’s number at that time isand must change
to 2.

e So then the eighth gue&ss guaranteed to be correct.

There is a generalization which is just as easy to prove: ifepdacet by a general integer
n > 3, the sequence of guesses3, --- ., n—1,n—1, ---, 3, 2is guaranteed to win.

Now we must show that no sequence of fewer théor, in the generalizatior2n —4) guesses
is guaranteed to win. It is enough to show that no sequenceevame of the ‘internal’ numbers
2,3, 4,5 occurs fewer than twice is guaranteed to win. Suppose teatdimber occurs fewer
than twice in the sequence of guesses (the argument for iotieenal numbers is analogous).
Alice’s numbers could conceivably alternate betw@esnd one of the neighbours af(that
is, 1 or 3 — not necessarily the same neighbour each time). In this easa if there is one
occasion when Bess guesgeg\lice’s starting parity could have been such that she isataf
the neighbours o at that time; and on any occasion when Bess guesses one ditfidaurs
of 2, Alice could be either & or at the other neighbour @f So it is possible that Alice evades
all of Bess’ guesses.
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. Show that there exists an infinite s€tof points in the plane such that no three pointsirie
on a line, and the distance between any two pointX i3 a rational number.

Solution.  One solution constructX as a subset of the upper half of the unit circle in the
complex plane, in which case it is obvious that no three gdmiX lie on a line. This semi-
circle consists of the number3? whered € [0, Z]. Note that the distance betweetf ande*?

is

V/ (cos 20 — cos 2¢)2 + (sin 20 — sin 219)2 = /2 — 2cos 2(0 — 1))
= +2(sin 0 cos1p) — cos O sin ).

So it suffices to show that there are infinitely mahg [0, 7| such thatos § andsin ¢ are both
rational. This follows from the fact that there are infinytehany primitive Pythagorean triples;
explicitly, we can haveos = Zi;} andsin f = mzﬁl for any positive integem.

If we changed “rational number” to “integer” in the staternefthe problem, there would
be no solution; this result is known as the Erdos—Anningofém. It was observed by SUMS
entrant Matthew Kwan (UNSW) that any s€tsatisfying the requirements of the problem must
be countable. Indeed, if one fixes distinct poiftand( in the plane, the set of poinfs such
that the distancels’ R| and|QR| are both rational is a countable set, since the set of péints

such that PR| and|Q R| have specified rational values has at most two elements.

n+1
. Find the largest positive real numhefor which the sequencél + g) (forn=1,2,3,---)
n
is monotonically decreasing.

Solution. One way to answer this is to consider the functfgm) = (x + 1) In(1 + 2) of a
X
positive real variable,, wherex is a positive real constant. Differentiating, we obtain
a, r+1 -« a,  alxz+1)

f’(:p):ln(1+5)+1+% ?:ln(lJr;)—x(x_i_a).

It is helpful to change the variable: define the functign) of a positive real variablg by

oy yla+y)
9(y) —f(g) =In(l+y) - a(lty)

Note thatlim ¢(y) = 0. Moreover,
y—0t

1 (a+2y)(1+y) —ylaty) yla—2-y)

9(y) = 14y a(l +y)? ol +y)?

If « < 2, we conclude thay'(y) < 0 forally > 0, sog(y) < 0 forally > 0. This
shows thatf’(z) < 0 for all z > 0, so f(x) is a strictly decreasing function, and hence so

n+1

z+1
is ef(®) = (1 + 2) . In particular, the sequenc(el + g) is strictly decreasing when
X n
a < 2.
If « > 2, we conclude thag’(y) > 0 when0 < y < o —2, s0g(y) > 0when0 <y < o —2.

Thus f'(z) > 0 for all z > a 5 showing thatf(x) is a strictly increasing function on
a —

. « . a\n+l . . .
the domainz > p—t In particular, the sequenc(el + —) is strictly increasing once
n

n > a 5 and is therefore certainly not monotonically decreasBmthe answer is = 2.

o —
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n+1
Incidentally, what we have shown implies thhain (1 + 2) exists for all positiver. It

n—oo n
Is easy to see (for example, using L'Hopital’s rule) thas it equalse®. Whena = 2, the
sequence begins

9,8, 7.716---, 7.59375, 7.529 - .- , converging ta:> = 7.389 - - - .

. In this problem, avord means a string of letters drawn from the three-letter alphalB, C.
Say that a word islecent if it does not contain two consecutive identical letters] also does
not containAB as a consecutive substring. Find the number of decent wotdagthn.

Solution. Letd, denote the number of decent words of lengtiNote thatd; = 3 andd, = 5.
Defined?, dB, d< to be the number of decent words of lengtanding in those respective letters.

n)'n) 'n

Considering what possible second-last letters a decertt waom have if its last letter is given,
we see that for alh > 2,

dy = dp_y +dy_y,
ds = dgflv

dg - dﬁ—l + dg—r
Hence for alln > 3,
d, = dh+d5 + dS
= dﬁfl + stfl + Zdel
=d, 1 +d5 | +dS
=dpy+dS o+ d) y+dy
= dn—l + dn—2-
This is the same recurrence relation as is satisfied by thenkidxi sequence. Sindg = F}

andd, = Fj are consecutive terms of the Fibonacci sequence, wedyaveF,, 5 foralln > 1.
An exact formula for the Fibonacci sequence is well known:

(05 - (59)

. In this problem,S denotes a subset of the set of real numbers.

a) Suppose that € S, S is closed under subtraction in the sense thate S = a—b € S,
andS is closed under taking inverses in the sense@hate € S = a~! € S. Prove that
S is closed under multiplication in the sense that € S = ab € S.

b) Show that the assumptidne S in a) is necessary: that is, give an example ofahat is
closed under subtraction and taking inverses, but not dlosder multiplication.

Solution. Make the assumptions of a). Note tltacontain®) = 1 — 1, and henceé is closed
under taking negatives, sineee S = —a = 0 —a € S. It follows thatS is closed under
addition, sincer,b € S = a+ b =a — (=b) € S. (In the language of abstract algebfais a

subgroup of the additive group.)
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If « € Sis not equal td) or 1, thensS contains(a — 1)~ —a~! = (a* — a)~!, s0S contains
a® — a and hence als@’. ThusS is closed under squaring. For any nonzerb € S, we know
thatS contains(a + b)? = a* + 2ab + b* as well as:* andb?, s0.5 contain2ab and hence also
((2ab)™ + (2ab)~')~! = ab. If eithera or b is zero, it is obvious thaf containsab. So we
have shown tha$ is closed under multiplication, as required. (This meaas $hs a subfield
of the fieldR.)

One example for part b) iS = {av/2|a € Q}. Itis clear thatS is closed under subtraction.

Since/2 is irrational,v/2” = 2 ¢ S which shows thas is not closed under multiplication.
However, S is closed under taking inverses, because i Q is nonzero ther{ay/2)~! =

LV2¢€8S.

. Let x be a positive real number. Define a sequefGgz), a;(z),as(z),---) by the initial

an_1(7)?

conditionay(z) = x and the recursion,,(z) = for all n > 1. For whichz does this

sequence converge?

Solution. It is obvious that, whem is positive, all terms.,,(x) of the sequence are positive.
Since the functioR.y — R : y — % is increasing for alh > 1, the equivalence < y <
a,(x) < a,(y) holds for alln. Moreover,x can be recovered uniquely from a specifiednd a
given value ofu, ().

Suppose the sequen¢e,(z)) converges to the real numbér We must have, = 0, for
suppose for a contradiction that> 0. Then there is some positive integ€rsuch that. /2 <
a,(z) < 3L/2foralln > N, which implies in particular that

L an(x)? 92

— < ap = <
3 < @) = 2o < T

foralln > N,

which rearranges to the absurd statenfent 2(n + 1) foralln > N.
Now we claim that(a,(z)) converges td if and only if a,,(x) < 1 for somem > 1.
The “only if” direction is obvious. For the “if” direction,gppose that,,(z) < 1 for some

m > 1. Thena,,;1(z) < ”;nm—ﬁ) < 1, apaa(x) < “";rjigx) < “'Zjﬂm) < 1, and so forth, giving

an(v) < il for all n > m, which clearly implies thata,(x)) converges to.
For anym > 1, letz,, denote the unique positive real number such thdtr,,) = 1. From
what we have shown, we know that,(x)) converges if and only it < z,, for somem > 1.

By definition, we have

leading to the formula

m

i . " log(i
zm = [[i*, or equivalentlylog(z,,) = _ 08(i)
i=1

i=1

We have thata, (x)) converges if and only ifog(z) < log(z,,) for somem > 1.
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Now the series"°, 1°§fi) has positive terms and converges by the ratio test, since

log(i + 1)
9it1

log (s 1log(i + 1 2 -
/ Oi@ =3 Oiﬁ;(t) ) < 3 for ¢ sufficiently large.

LetL => 7, logﬁ Then the sequence of partial sutvg(z,, ) is strictly increasing and tends
to L, so the condition thabg(z) < log(z,,) for somem > 1 is equivalent to the condition
thatlog(z) < L. Therefore the answer is that,(z)) converges if and only ifog(z) < L, or
equivalentlyr < e® = T]2,*"

. A treeis a connected simple graph with no cycles. For afreket s(7") denote the number of
nonempty subset& of the set of vertices df’ such that for any two vertices i, there is a
path inT" joining them that only passes through verticeXinFor a positive intege, find the
minimum and maximum values of7") asT" ranges over all trees with vertices.

Solution. Clearly X is such a subset if and only X, together with the edges @f between
vertices inX, is a tree; in other wordsy defines a sub-tree @f. So an alternative description
of s(7") is that it counts the sub-treesbf

Any vertex of T is itself a sub-tree, so we getsingleton sub-trees. For any two distinct
vertices ofT’, there is a unique path ifi from one to the other. This path is a sub-tree, so we get
(5) sub-trees of this kind. ThugT) > n + () = 1(n* + n). Equality in this lower bound is
attained exactly wheff’ is itself a path; otherwisd contains a vertex of degree 3 and thus
contains a sub-tree (consisting of this vertex and thretsafaighbours) that is not a singleton
or a path.

It is well known that7 hasn — 1 edges. A non-singleton sub-tree is clearly determined
by its (nonempty) set of edges, so the number of non-singletb-trees is bounded above by
271 — 1. Thuss(T) < 2" ! + n — 1. Equality in this upper bound is attained exactly when
T is a ‘star’ with one vertex adjacent to every other; otheewis contains two edges with no
vertices in common, and these two edges do not constitute-ase.

. Inthis problem, lefl” denote &-regular tree (3-regular” means that every vertex is adjacent to
3 others). The vertex set @f is infinite, but this picture gives an indication of part of it

As shown here]" can be embedded in the plane so that the edges at each vertaixaanrgles

of 120°, and the whole tree is symmetric under reflection in the dditee. That reflectionr

is one example of aautomorphism of 7' (a permutation of the vertices under which adjacent
vertices map to adjacent vertices). Another is the ‘rotatjg which fixesa, sendsh to ¢, ¢

to d, andd to b, and rotates the direction of each edgelBy° clockwise, though it does not
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preserve the lengths of edges. Ahowable automorphism ofl” is one that may be obtained
by repeatedly performing ando in some order. Show that for any two vertieceandw of T,
there are exactly three allowable automorphisms that s¢oad.

Solution. Sincep! = p? ando~! = o, the allowable automorphisms form a subgraipf
the group of automorphisms @f(the subgroup generated pyndo). If V' is the set of vertices
of T, thenG acts onl/. Part of what we must show is that this action is transitiveaning that
for any vertexv of 7', there is an allowable automorphism that sentisa.

It is convenient to label vertices according to the left ghtiturns taken along the path fram
to the vertex. For example, the strih§RR L L would represent the vertex reached by starting
at a, moving tob, then taking a left turn, then two right turns, then two lefirts. With this
convention, the labels of vertices other thaare exactly the finite strings where the first digit
Is eitherb, ¢, ord, and every other digit is eithdr or R.

The rotatiornp gives the following permutation on vertices, wheéfedenotes any string afs
andRs:

av>a
bX — cX
cX —dX
dX — bX

The reflections gives the following self-inverse permutation on vertices:

a<b
cX < bRX
dX < bLX

whereX denotes the string obtained fraki by replacing every. with an R and vice versa.

We can then prove the transitivity statement by inductioritenlength of the label of (in
other words, the number of edges in the path froto v). The base case is clear: eachhaf, d
is mapped ta: by some allowable automorphism. Given any ventedifferent froma, b, ¢, d,
there is an allowable automorphism that sendis a vertexo’ with a shorter label: namely, we
can use some power pfto change the first digit tb, and therv to reduce the length biy. By
the induction hypothesis, we can then apply some allowalitenaorphism to arrive at, so the
induction step is complete.

Since the action is transitive, it follows from basic resutt group theory that we can assume
v = w = a in the more precise statement of the problem. That is, we teesdow thatp, p?,
and the identity= p*) are the only three allowable automorphisms that fix the xerte

Sincep® = ¢? = identity, any allowable automorphism other than theseetleam be written
in the following form:

pioo.pilo. .. _O.pikﬂo-pik’

wherek > 1, dp,i, € {0,1,2}, 41, ,ix—1 € {1,2}. Consider what happens we apply this
expression (composing from right to left as usual) to theexes. We haveop'(a) = b. If
i € {1,2}, thenop'(bX) = b?X where? denotes eithef, or R; in particular,op’(bX) = bY
where the length of" is 1 more than the length of. Consequentlyyp®o - - - op-top™(a) is
of the formbX whereX has lengtht — 1. The finalp®® may change the initial letter toor d,
but it cannot produce the vertex
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. For a permutatiom of {1,2,3,--- ,n}, abreak of ¢ is an elemenk of {1,2,--- ,n — 1} such
thato({1,---,k}) = {1,--- ,k}. Thescore of ¢ is the square of the number of breaks. Show
that the average score of all permutationg bf2, 3, - - - ,n} tends ta) asn tends to infinity.

Solution. Let .S, denote the set (or rather group) of permutation§lo®, - - -, n}, and write
b(o) for the number of breaks of € S,,. Sinceb(d)? = b(o) + 2(”(2‘7)), it suffices to show that

1 .1 b(o)
Jirgomgb(a)—o and nlggoﬁ;( ) )_0.

Now . b(o) is the number of pairgéo, k) wheres € S, k € {1,---,n — 1}, andk is a
break ofo. Counting these pairs byinstead, we see that

> blo) = i kl(n — k).

€S

Thek = 1 andk = n— 1 terms of this sum both equat — 1)!. Every termwith2 < k < n —2
satisfies:!(n — k)! < 2(n — 2)!, since
20 —-2)  (n—-2)(n—3)---(n—k+1) n—-2n-3 n—k+1

> 1.
kl(n — k)| k(k—1)---3 k k-1 3 -

Hence for alln > 3 we have

n—1

k=1

Since this last quantity clearly tends@asn — oo, we deduce the first of our desired limit
statements.

The proof of the second is similar. Note tha} o (”(;)) is the number of triplego, i, j)
whereo € 5,,,1 <i < j <n—1,andi, j are both breaks af. Counting these triples by j

instead, we see that
3 (b(;)) = Y G- in -

oc€Snh 1<i<j<n—1

Note that the latter sum h4% ') terms. There are three of these terms that are eqgaH-a)!,
namelythei =n — 2,5 =n —1term,thei = 1,5 = n — 1 term, and the = 1, = 2 term.
We claim that every other term satisfigsj — i)!(n — j)! < 2(n —3)!. Ifany ofi,j —i,n — j
equalsl, this follows immediately from the inequality shown in theepious part; otherwise, it
still follows from that inequality, via

2(n —3)! 27 -2 2(n—4)! n-3

AG—Dn—) G- G- 2 "
Hence for alln > 4 we have
1 Lo 3 =2+ (") = 3)2(n = 3)! n? — 10
n! Z Hi =l =J) < (n‘) :n(n—l)(n—Z)'

T I<i<j<n—1

Since this last quantity clearly tendsi@sn — oo, we deduce the second of our desired limit
statements.

Generalizing this reasoning, one can show that the sam# vesuid hold if the score were
defined to be any polynomial function of the number of breaks.
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. Let S denote the polynomial rin@[xz1, 2, 23, - - - |. Define a linear operatak on S by

mi ., m2

R R op
A — 1 2 r
<p) Z ( Z 1m1m1! 2m2m2! . vam ) 81‘7»_,_1

r>0 \mi1+2mao+---+rm,=r

Here the outer sum, over nonnegative integermakes sense because each .S involves only
finitely many of the variables, sgfrpT = 0 for sufficiently larger. The inner sum is over all
r-tuples(my, ms, - - -, m,.) Of NnOnnegative integers satisfying the stated conditign- 2m, +
-+ rm, = r. (There is an emptg-tuple, so the- = 0 term isg—gfl.)
k—1
a) Foreach integet > 2, letp, = 2(k — 1)z — lexk,l Show thatA(py) = 0.
=1
b) Show that the kernel oA consists exactly of the polynomialsin, ps, p4, - - -

Solution. Note first thatA is a derivation ofS, meaning thai\ (pq) = A(p)q + pA(q) for all
p,q € S. Also, for anyr > 0 we have

mi ,.1m2 myr

A X s
A(xr—i—l) _ Z 1 2 r

1mimy12memy! - pmem, |

mi1+2mao+--+rmy=r

This gives a generating function identity

Z Axpqq)2" = Hexp (%zs> = FE(z), say.

r>0 s>1
We have
r—+1
ZA Pri2)? = ZA ( (r+1)a, 0 — Zﬂfﬂfwz z) Z"
r>0 r>0 i=1
r—+1 r—+1
=2 Z(T + DA(zp12)2" — Z Z A(x)Tpyoi2" — Z Z TiN(Tyy9-i)2
r>0 r>0 i=1 r>0 i=1
=2F'(z) — E(2)X(2) — X(2)E(2),
where
= Z Tri12".
r>0
But B(2) J
z T
= —1 —S S —
E(z) dz og(E T dz Z ©

S0 .~o A(pr42)2" vanishes, implying that\ (p, ) = 0 for all » > 0. This finishes part a).

To prove part b), note that sinceis a derivationker(A) is not just a linear subspace $fout
a subalgebra (i.e. it is closed under multiplication). Sb denotes the subalgebra generated by
P2, p3, - - - (i.e. the set of all polynomial expressions in these polyiads), part a) implies that
L C ker(A). We aim to show thater(A) C L.

From the definition ofy, it is clear thatz, (for £ > 2) can be expressed as a polynomial
in x1,x9,23, -+ ,T_1,pk. By an easy induction, one deduces that(for £ > 2) can be
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expressed as a polynomialin, po, p3, - - - , pr. Hence every element of can be expressed as
a polynomial in the new variables, p,, p3, - - -.

Moreover, we claim that these new variables are algebhaigadiependent, meaning that
there is no nontrivial polynomial expression in them thatadg zero. To prove this, assume
for a contradiction that there is such an expression innglIv , po, ps, - - - , pr, Wherek > 2 is
chosen to be minimal. Then we have an equation of the form

Qv(1,p2s - - ,pk_l)pi + Qp—1(z1,p2, - - - 7pk—1)pz_1 + -+ Qolx1, pa, -+, pr—1) = 0,

whereb > 1 andQ,, - - - , ), are some polynomials in— 1 variables, with®), being nontrivial.
Now the left-hand side is a polynomial in the variablgsz,, - - - , z;, where the variable;,
occurs only in the powers gf,. So it can be rewritten in the form

Qu(21, P2, pr_1)(2(k — 1))°2% + terms involving lower powers afy,,

showing thatQy,(z1, p2, - - - , pr—1) = 0 in contradiction to the minimality of.
It follows that every element of can be writteruniquely as a polynomial in:q, ps, p3, - - -.
Hence every element ¢f can be written uniquely in the form

b=l 4. 41y, whereb > 0,7q,--- , 1, € L, 7 # 0.

rbxl{ + ryq1x
SinceA(z}) =iz} ' andL C ker(A), applyingA to this element gives
broad ™t 4+ (b— Dy 4 - 47

By the uniqueness of such expressions, this vanishes orén k- 0. Henceker(A) C L as
required.



