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1. Alice and Bess are playing a game where Alice thinks of a number in the setA = {1, 2, 3, 4, 5, 6}
and Bess has to guess what it is. If she guesses correctly, shewins; if she guesses incorrectly,
Alice increases or decreases her number by1 (keeping it in the setA) before Bess’ next guess.
What is the smallest numberk such that Bess can guarantee to win withink guesses?

Solution. The answer isk = 8. A sequence of8 guesses which is guaranteed to win is:

2, 3, 4, 5, 5, 4, 3, 2.

The reason for this is as follows. Suppose first that Alice’s initial number is even.

• If the first guess2 is incorrect, Alice’s number at that time is either4 or 6, and must change
to either3 or 5.

• Then if the second guess3 is incorrect, Alice’s number at that time is5, and must change
to either4 or 6.

• Then if the third guess4 is incorrect, Alice’s number at that time is6, and must change to
5.

• So the fourth guess5 is guaranteed to be correct.

Therefore, if Bess has not won within the first four guesses, it must be that Alice’s initial number
was odd. Since her number changes parity after each unsuccessful guess, her number will again
be odd after four guesses.

• Then if the fifth guess5 is incorrect, Alice’s number at that time is either1 or 3, and must
change to either2 or 4.

• Then if the sixth guess4 is incorrect, Alice’s number at that time is2, and must change to
either1 or 3.

• Then if the seventh guess3 is incorrect, Alice’s number at that time is1, and must change
to 2.

• So then the eighth guess2 is guaranteed to be correct.

There is a generalization which is just as easy to prove: if wereplace6 by a general integer
n ≥ 3, the sequence of guesses2, 3, · · · , n− 1, n− 1, · · · , 3, 2 is guaranteed to win.

Now we must show that no sequence of fewer than8 (or, in the generalization,2n−4) guesses
is guaranteed to win. It is enough to show that no sequence where one of the ‘internal’ numbers
2, 3, 4, 5 occurs fewer than twice is guaranteed to win. Suppose that the number2 occurs fewer
than twice in the sequence of guesses (the argument for otherinternal numbers is analogous).
Alice’s numbers could conceivably alternate between2 and one of the neighbours of2 (that
is, 1 or 3 – not necessarily the same neighbour each time). In this case, even if there is one
occasion when Bess guesses2, Alice’s starting parity could have been such that she is at one of
the neighbours of2 at that time; and on any occasion when Bess guesses one of the neighbours
of 2, Alice could be either at2 or at the other neighbour of2. So it is possible that Alice evades
all of Bess’ guesses.
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2. Show that there exists an infinite setX of points in the plane such that no three points inX lie
on a line, and the distance between any two points inX is a rational number.

Solution. One solution constructsX as a subset of the upper half of the unit circle in the
complex plane, in which case it is obvious that no three points inX lie on a line. This semi-
circle consists of the numberse2iθ whereθ ∈ [0, π

2
]. Note that the distance betweene2iθ ande2iψ

is
√

(cos 2θ − cos 2ψ)2 + (sin 2θ − sin 2ψ)2 =
√

2− 2 cos 2(θ − ψ)

= ±2(sin θ cosψ − cos θ sinψ).

So it suffices to show that there are infinitely manyθ ∈ [0, π
2
] such thatcos θ andsin θ are both

rational. This follows from the fact that there are infinitely many primitive Pythagorean triples;
explicitly, we can havecos θ = m2−1

m2+1
andsin θ = 2m

m2+1
for any positive integerm.

If we changed “rational number” to “integer” in the statement of the problem, there would
be no solution; this result is known as the Erdös–Anning Theorem. It was observed by SUMS
entrant Matthew Kwan (UNSW) that any setX satisfying the requirements of the problem must
be countable. Indeed, if one fixes distinct pointsP andQ in the plane, the set of pointsR such
that the distances|PR| and|QR| are both rational is a countable set, since the set of pointsR
such that|PR| and|QR| have specified rational values has at most two elements.

3. Find the largest positive real numberα for which the sequence
(

1 +
α

n

)n+1

(for n = 1, 2, 3, · · · )
is monotonically decreasing.

Solution. One way to answer this is to consider the functionf(x) = (x + 1) ln(1 +
α

x
) of a

positive real variablex, whereα is a positive real constant. Differentiating, we obtain

f ′(x) = ln(1 +
α

x
) +

x+ 1

1 + α
x

· −α
x2

= ln(1 +
α

x
)− α(x+ 1)

x(x+ α)
.

It is helpful to change the variable: define the functiong(y) of a positive real variabley by

g(y) = f ′(
α

y
) = ln(1 + y)− y(α+ y)

α(1 + y)
.

Note that lim
y→0+

g(y) = 0. Moreover,

g′(y) =
1

1 + y
− (α + 2y)(1 + y)− y(α+ y)

α(1 + y)2
=
y(α− 2− y)

α(1 + y)2
.

If α ≤ 2, we conclude thatg′(y) < 0 for all y > 0, so g(y) < 0 for all y > 0. This
shows thatf ′(x) < 0 for all x > 0, so f(x) is a strictly decreasing function, and hence so

is ef(x) =
(

1 +
α

x

)x+1

. In particular, the sequence
(

1 +
α

n

)n+1

is strictly decreasing when

α ≤ 2.
If α > 2, we conclude thatg′(y) > 0 when0 < y < α− 2, sog(y) > 0 when0 < y ≤ α− 2.

Thus f ′(x) > 0 for all x ≥ α

α− 2
, showing thatf(x) is a strictly increasing function on

the domainx ≥ α

α− 2
. In particular, the sequence

(

1 +
α

n

)n+1

is strictly increasing once

n ≥ α

α− 2
, and is therefore certainly not monotonically decreasing.So the answer isα = 2.
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Incidentally, what we have shown implies thatlim
n→∞

(

1 +
α

n

)n+1

exists for all positiveα. It

is easy to see (for example, using L’Hopital’s rule) that this limit equalseα. Whenα = 2, the
sequence begins

9, 8, 7.716 · · · , 7.59375, 7.529 · · · , converging toe2 = 7.389 · · · .

4. In this problem, aword means a string of letters drawn from the three-letter alphabet A,B,C.
Say that a word isdecent if it does not contain two consecutive identical letters, and also does
not containAB as a consecutive substring. Find the number of decent words of lengthn.

Solution. Let dn denote the number of decent words of lengthn. Note thatd1 = 3 andd2 = 5.
DefinedAn, d

B
n, d

C
n to be the number of decent words of lengthn ending in those respective letters.

Considering what possible second-last letters a decent word can have if its last letter is given,
we see that for alln ≥ 2,

dAn = dBn−1 + dCn−1,

dBn = dCn−1,

dCn = dAn−1 + dBn−1.

Hence for alln ≥ 3,

dn = dAn + dBn + dCn
= dAn−1 + 2dBn−1 + 2dCn−1

= dn−1 + dBn−1 + dCn−1

= dn−1 + dCn−2 + dAn−2 + dBn−2

= dn−1 + dn−2.

This is the same recurrence relation as is satisfied by the Fibonacci sequence. Sinced1 = F4

andd2 = F5 are consecutive terms of the Fibonacci sequence, we havedn = Fn+3 for all n ≥ 1.
An exact formula for the Fibonacci sequence is well known:

Fn =
1√
5

((

1 +
√
5

2

)n

−
(

1−
√
5

2

)n)

.

5. In this problem,S denotes a subset of the set of real numbers.

a) Suppose that1 ∈ S, S is closed under subtraction in the sense thata, b ∈ S ⇒ a− b ∈ S,
andS is closed under taking inverses in the sense that0 6= a ∈ S ⇒ a−1 ∈ S. Prove that
S is closed under multiplication in the sense thata, b ∈ S ⇒ ab ∈ S.

b) Show that the assumption1 ∈ S in a) is necessary: that is, give an example of anS that is
closed under subtraction and taking inverses, but not closed under multiplication.

Solution. Make the assumptions of a). Note thatS contains0 = 1− 1, and henceS is closed
under taking negatives, sincea ∈ S ⇒ −a = 0 − a ∈ S. It follows thatS is closed under
addition, sincea, b ∈ S ⇒ a + b = a− (−b) ∈ S. (In the language of abstract algebra,S is a
subgroup of the additive groupR.)
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If a ∈ S is not equal to0 or 1, thenS contains(a− 1)−1 − a−1 = (a2 − a)−1, soS contains
a2 − a and hence alsoa2. ThusS is closed under squaring. For any nonzeroa, b ∈ S, we know
thatS contains(a+ b)2 = a2 + 2ab+ b2 as well asa2 andb2, soS contains2ab and hence also
((2ab)−1 + (2ab)−1)−1 = ab. If either a or b is zero, it is obvious thatS containsab. So we
have shown thatS is closed under multiplication, as required. (This means thatS is a subfield
of the fieldR.)

One example for part b) isS = {a
√
2 | a ∈ Q}. It is clear thatS is closed under subtraction.

Since
√
2 is irrational,

√
2
2
= 2 /∈ S which shows thatS is not closed under multiplication.

However,S is closed under taking inverses, because ifa ∈ Q is nonzero then(a
√
2)−1 =

1
2a

√
2 ∈ S.

6. Let x be a positive real number. Define a sequence(a0(x), a1(x), a2(x), · · · ) by the initial

conditiona0(x) = x and the recursionan(x) =
an−1(x)

2

n
for all n ≥ 1. For whichx does this

sequence converge?

Solution. It is obvious that, whenx is positive, all termsan(x) of the sequence are positive.
Since the functionR>0 → R>0 : y 7→ y2

n
is increasing for alln ≥ 1, the equivalencex < y ⇔

an(x) < an(y) holds for alln. Moreover,x can be recovered uniquely from a specifiedn and a
given value ofan(x).

Suppose the sequence(an(x)) converges to the real numberL. We must haveL = 0, for
suppose for a contradiction thatL > 0. Then there is some positive integerN such thatL/2 <
an(x) < 3L/2 for all n ≥ N , which implies in particular that

L

2
< an+1(x) =

an(x)
2

n+ 1
<

9L2

4(n+ 1)
for all n ≥ N,

which rearranges to the absurd statementL > 2
9
(n+ 1) for all n ≥ N .

Now we claim that(an(x)) converges to0 if and only if am(x) ≤ 1 for somem ≥ 1.
The “only if” direction is obvious. For the “if” direction, suppose thatam(x) ≤ 1 for some
m ≥ 1. Thenam+1(x) ≤ am(x)

m+1
≤ 1, am+2(x) ≤ am+1(x)

m+2
≤ am+1(x)

m+1
≤ 1, and so forth, giving

an(x) ≤ am(x)
(m+1)n−m for all n ≥ m, which clearly implies that(an(x)) converges to0.

For anym ≥ 1, let xm denote the unique positive real number such thatam(xm) = 1. From
what we have shown, we know that(an(x)) converges if and only ifx ≤ xm for somem ≥ 1.
By definition, we have

am(xm) = 1,

am−1(xm) =
√
m,

am−2(xm) =

√

(m− 1)
√
m,

am−3(xm) =

√

(m− 2)
√

(m− 1)
√
m,

leading to the formula

xm =

m
∏

i=1

i2
−i

, or equivalentlylog(xm) =
m
∑

i=1

log(i)

2i
.

We have that(an(x)) converges if and only iflog(x) ≤ log(xm) for somem ≥ 1.
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Now the series
∑∞

i=1
log(i)
2i

has positive terms and converges by the ratio test, since

log(i+ 1)

2i+1
/
log(i)

2i
=

1

2

log(i+ 1)

log(i)
≤ 2

3
for i sufficiently large.

LetL =
∑∞

i=1
log(i)
2i

. Then the sequence of partial sumslog(xm) is strictly increasing and tends
to L, so the condition thatlog(x) ≤ log(xm) for somem ≥ 1 is equivalent to the condition
that log(x) < L. Therefore the answer is that(an(x)) converges if and only iflog(x) < L, or
equivalentlyx < eL =

∏∞

i=1 i
2−i

.

7. A tree is a connected simple graph with no cycles. For a treeT , let s(T ) denote the number of
nonempty subsetsX of the set of vertices ofT such that for any two vertices inX, there is a
path inT joining them that only passes through vertices inX. For a positive integern, find the
minimum and maximum values ofs(T ) asT ranges over all trees withn vertices.

Solution. ClearlyX is such a subset if and only ifX, together with the edges ofT between
vertices inX, is a tree; in other words,X defines a sub-tree ofT . So an alternative description
of s(T ) is that it counts the sub-trees ofT .

Any vertex ofT is itself a sub-tree, so we getn singleton sub-trees. For any two distinct
vertices ofT , there is a unique path inT from one to the other. This path is a sub-tree, so we get
(

n

2

)

sub-trees of this kind. Thuss(T ) ≥ n +
(

n

2

)

= 1
2
(n2 + n). Equality in this lower bound is

attained exactly whenT is itself a path; otherwise,T contains a vertex of degree≥ 3 and thus
contains a sub-tree (consisting of this vertex and three of its neighbours) that is not a singleton
or a path.

It is well known thatT hasn − 1 edges. A non-singleton sub-tree is clearly determined
by its (nonempty) set of edges, so the number of non-singleton sub-trees is bounded above by
2n−1 − 1. Thuss(T ) ≤ 2n−1 + n − 1. Equality in this upper bound is attained exactly when
T is a ‘star’ with one vertex adjacent to every other; otherwise,T contains two edges with no
vertices in common, and these two edges do not constitute a sub-tree.

8. In this problem, letT denote a3-regular tree (“3-regular” means that every vertex is adjacent to
3 others). The vertex set ofT is infinite, but this picture gives an indication of part of it:

a

d

c

b

As shown here,T can be embedded in the plane so that the edges at each vertex are at angles
of 120◦, and the whole tree is symmetric under reflection in the dotted line. That reflectionσ
is one example of anautomorphism of T (a permutation of the vertices under which adjacent
vertices map to adjacent vertices). Another is the ‘rotation’ ρ, which fixesa, sendsb to c, c
to d, andd to b, and rotates the direction of each edge by120◦ clockwise, though it does not



SUMS Problem Competition 2012 Page 6

preserve the lengths of edges. Anallowable automorphism ofT is one that may be obtained
by repeatedly performingρ andσ in some order. Show that for any two verticesv andw of T ,
there are exactly three allowable automorphisms that sendv tow.

Solution. Sinceρ−1 = ρ2 andσ−1 = σ, the allowable automorphisms form a subgroupG of
the group of automorphisms ofT (the subgroup generated byρ andσ). If V is the set of vertices
of T , thenG acts onV . Part of what we must show is that this action is transitive, meaning that
for any vertexv of T , there is an allowable automorphism that sendsv to a.

It is convenient to label vertices according to the left or right turns taken along the path froma
to the vertex. For example, the stringbLRRLL would represent the vertex reached by starting
at a, moving tob, then taking a left turn, then two right turns, then two left turns. With this
convention, the labels of vertices other thana are exactly the finite strings where the first digit
is eitherb, c, or d, and every other digit is eitherL orR.

The rotationρ gives the following permutation on vertices, whereX denotes any string ofLs
andRs:

a 7→ a

bX 7→ cX

cX 7→ dX

dX 7→ bX

The reflectionσ gives the following self-inverse permutation on vertices:

a↔ b

cX ↔ bRX

dX ↔ bLX

whereX denotes the string obtained fromX by replacing everyL with anR and vice versa.
We can then prove the transitivity statement by induction onthe length of the label ofv (in

other words, the number of edges in the path froma to v). The base case is clear: each ofb, c, d
is mapped toa by some allowable automorphism. Given any vertexv different froma, b, c, d,
there is an allowable automorphism that sendsv to a vertexv′ with a shorter label: namely, we
can use some power ofρ to change the first digit tob, and thenσ to reduce the length by1. By
the induction hypothesis, we can then apply some allowable automorphism to arrive ata, so the
induction step is complete.

Since the action is transitive, it follows from basic results in group theory that we can assume
v = w = a in the more precise statement of the problem. That is, we needto show thatρ, ρ2,
and the identity(= ρ3) are the only three allowable automorphisms that fix the vertex a.

Sinceρ3 = σ2 = identity, any allowable automorphism other than these three can be written
in the following form:

ρi0σρi1σ · · ·σρik−1σρik ,

wherek ≥ 1, i0, ik ∈ {0, 1, 2}, i1, · · · , ik−1 ∈ {1, 2}. Consider what happens we apply this
expression (composing from right to left as usual) to the vertex a. We haveσρik(a) = b. If
i ∈ {1, 2}, thenσρi(bX) = b?X where? denotes eitherL orR; in particular,σρi(bX) = bY
where the length ofY is 1 more than the length ofX. Consequently,σρi1σ · · ·σρik−1σρik(a) is
of the formbX whereX has lengthk − 1. The finalρi0 may change the initial letter toc or d,
but it cannot produce the vertexa.
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9. For a permutationσ of {1, 2, 3, · · · , n}, abreak of σ is an elementk of {1, 2, · · · , n− 1} such
thatσ({1, · · · , k}) = {1, · · · , k}. Thescore of σ is the square of the number of breaks. Show
that the average score of all permutations of{1, 2, 3, · · · , n} tends to0 asn tends to infinity.

Solution. Let Sn denote the set (or rather group) of permutations of{1, 2, · · · , n}, and write
b(σ) for the number of breaks ofσ ∈ Sn. Sinceb(σ)2 = b(σ) + 2

(

b(σ)
2

)

, it suffices to show that

lim
n→∞

1

n!

∑

σ∈Sn

b(σ) = 0 and lim
n→∞

1

n!

∑

σ∈Sn

(

b(σ)

2

)

= 0.

Now
∑

σ∈Sn
b(σ) is the number of pairs(σ, k) whereσ ∈ Sn, k ∈ {1, · · · , n − 1}, andk is a

break ofσ. Counting these pairs byk instead, we see that

∑

σ∈Sn

b(σ) =
n−1
∑

k=1

k!(n− k)!.

Thek = 1 andk = n−1 terms of this sum both equal(n−1)!. Every term with2 ≤ k ≤ n−2
satisfiesk!(n− k)! ≤ 2(n− 2)!, since

2(n− 2)!

k!(n− k)!
=

(n− 2)(n− 3) · · · (n− k + 1)

k(k − 1) · · ·3 =
n− 2

k

n− 3

k − 1
· · · n− k + 1

3
≥ 1.

Hence for alln ≥ 3 we have

1

n!

n−1
∑

k=1

k!(n− k)! ≤ 2(n− 1)! + (n− 3).2(n− 2)!

n!
=

4n− 8

n(n− 1)
.

Since this last quantity clearly tends to0 asn → ∞, we deduce the first of our desired limit
statements.

The proof of the second is similar. Note that
∑

σ∈Sn

(

b(σ)
2

)

is the number of triples(σ, i, j)
whereσ ∈ Sn, 1 ≤ i < j ≤ n− 1, andi, j are both breaks ofσ. Counting these triples byi, j
instead, we see that

∑

σ∈Sn

(

b(σ)

2

)

=
∑

1≤i<j≤n−1

i!(j − i)!(n− j)!.

Note that the latter sum has
(

n−1
2

)

terms. There are three of these terms that are equal to(n−2)!,
namely thei = n − 2, j = n − 1 term, thei = 1, j = n − 1 term, and thei = 1, j = 2 term.
We claim that every other term satisfiesi!(j − i)!(n− j)! ≤ 2(n− 3)!. If any of i, j − i, n− j
equals1, this follows immediately from the inequality shown in the previous part; otherwise, it
still follows from that inequality, via

2(n− 3)!

i!(j − i)!(n− j)!
=

2(j − 2)!

i!(j − i)!

2(n− 4)!

(j − 2)!(n− j)!

n− 3

2
> 1.

Hence for alln ≥ 4 we have

1

n!

∑

1≤i<j≤n−1

i!(j − i)!(n− j)! ≤ 3(n− 2)! + (
(

n−1
2

)

− 3).2(n− 3)!

n!
=

n2 − 10

n(n− 1)(n− 2)
.

Since this last quantity clearly tends to0 asn → ∞, we deduce the second of our desired limit
statements.

Generalizing this reasoning, one can show that the same result would hold if the score were
defined to be any polynomial function of the number of breaks.
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10. Let S denote the polynomial ringC[x1, x2, x3, · · · ]. Define a linear operator∆ onS by

∆(p) =
∑

r≥0

(

∑

m1+2m2+···+rmr=r

xm1

1 xm2

2 · · ·xmr

r

1m1m1! 2m2m2! · · · rmrmr!

)

∂p

∂xr+1

.

Here the outer sum, over nonnegative integersr, makes sense because eachp ∈ S involves only
finitely many of the variables, so∂p

∂xr+1
= 0 for sufficiently larger. The inner sum is over all

r-tuples(m1, m2, · · · , mr) of nonnegative integers satisfying the stated conditionm1 + 2m2 +
· · ·+ rmr = r. (There is an empty0-tuple, so ther = 0 term is ∂p

∂x1
.)

a) For each integerk ≥ 2, let pk = 2(k − 1)xk −
k−1
∑

i=1

xixk−i. Show that∆(pk) = 0.

b) Show that the kernel of∆ consists exactly of the polynomials inp2, p3, p4, · · · .

Solution. Note first that∆ is a derivation ofS, meaning that∆(pq) = ∆(p)q + p∆(q) for all
p, q ∈ S. Also, for anyr ≥ 0 we have

∆(xr+1) =
∑

m1+2m2+···+rmr=r

xm1

1 xm2

2 · · ·xmr

r

1m1m1!2m2m2! · · · rmrmr!
.

This gives a generating function identity

∑

r≥0

∆(xr+1)z
r =

∏

s≥1

exp
(xs
s
zs
)

= E(z), say.

We have

∑

r≥0

∆(pr+2)z
r =

∑

r≥0

∆

(

2(r + 1)xr+2 −
r+1
∑

i=1

xixr+2−i

)

zr

= 2
∑

r≥0

(r + 1)∆(xr+2)z
r −

∑

r≥0

r+1
∑

i=1

∆(xi)xr+2−iz
r −

∑

r≥0

r+1
∑

i=1

xi∆(xr+2−i)z
r

= 2E ′(z)−E(z)X(z) −X(z)E(z),

where
X(z) =

∑

r≥0

xr+1z
r.

But
E ′(z)

E(z)
=

d

dz
log(E(z)) =

d

dz

∑

s≥1

xs
s
zs = X(z),

so
∑

r≥0∆(pr+2)z
r vanishes, implying that∆(pr+2) = 0 for all r ≥ 0. This finishes part a).

To prove part b), note that since∆ is a derivation,ker(∆) is not just a linear subspace ofS but
a subalgebra (i.e. it is closed under multiplication). So ifL denotes the subalgebra generated by
p2, p3, · · · (i.e. the set of all polynomial expressions in these polynomials), part a) implies that
L ⊆ ker(∆). We aim to show thatker(∆) ⊆ L.

From the definition ofpk, it is clear thatxk (for k ≥ 2) can be expressed as a polynomial
in x1, x2, x3, · · · , xk−1, pk. By an easy induction, one deduces thatxk (for k ≥ 2) can be
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expressed as a polynomial inx1, p2, p3, · · · , pk. Hence every element ofS can be expressed as
a polynomial in the new variablesx1, p2, p3, · · · .

Moreover, we claim that these new variables are algebraically independent, meaning that
there is no nontrivial polynomial expression in them that equals zero. To prove this, assume
for a contradiction that there is such an expression involvingx1, p2, p3, · · · , pk, wherek ≥ 2 is
chosen to be minimal. Then we have an equation of the form

Qb(x1, p2, · · · , pk−1)p
b
k +Qb−1(x1, p2, · · · , pk−1)p

b−1
k + · · ·+Q0(x1, p2, · · · , pk−1) = 0,

whereb ≥ 1 andQ0, · · · , Qb are some polynomials ink−1 variables, withQb being nontrivial.
Now the left-hand side is a polynomial in the variablesx1, x2, · · · , xk, where the variablexk
occurs only in the powers ofpk. So it can be rewritten in the form

Qb(x1, p2, · · · , pk−1)(2(k − 1))bxbk + terms involving lower powers ofxk,

showing thatQb(x1, p2, · · · , pk−1) = 0 in contradiction to the minimality ofk.
It follows that every element ofS can be writtenuniquely as a polynomial inx1, p2, p3, · · · .

Hence every element ofS can be written uniquely in the form

rbx
b
1 + rb−1x

b−1
1 + · · ·+ r0, whereb ≥ 0, r0, · · · , rb ∈ L, rb 6= 0.

Since∆(xi1) = ixi−1
1 andL ⊆ ker(∆), applying∆ to this element gives

brbx
b−1
1 + (b− 1)rb−1x

b−2
1 + · · ·+ r1.

By the uniqueness of such expressions, this vanishes only whenb = 0. Henceker(∆) ⊆ L as
required.


