
Sydney University Mathematical Society Problem Competition 2011

1. Alice and Bess are playing a game with an ordinary six-sided die. Alice’s target numbers are
1, 2, 3, and Bess’ target numbers are4, 5, 6. They take turns in rolling the die, with Alice going
first. If the one whose turn it is rolls a target number which she has not previously rolled, she
gets to roll again; if she rolls a target number which she has previously rolled, or a number which
is not one of her target numbers, her turn ends. The winner is the first player to have rolled all
three of her target numbers (not necessarily all in the one turn). What is the probability that
Alice wins?

Solution. Although it is implicit in the question that the game ends when one of the players
wins, we can imagine them continuing to go through their turns after that point, until the total
number of rolls is some very large numberN . It is clear that asN tends to infinity, the probabil-
ity that any number remains unrolled tends to zero. So it makes no difference if we imagine the
players continuing to play the game forever, and we can assume they both complete rolling their
target numbers at some stage. We want the probability that Alice achieves this before Bess.

Let pn be the probability that the turn in which Alice completes rolling her three target num-
bers is hernth turn. We can calculatepn by thinking of the total sequence of numbers Alice
rolls, saya1, a2, a3, · · · where eachai ∈ {1, 2, 3, 4, 5, 6}. If the last of her three target numbers
occurs first asad, thenai 6= ad for i < d, and the two elements of{1, 2, 3} \ {ad} definitely
occur in the sequencea1, a2, · · · , ad−1. Moreover, apart from the two first occurrences of these
elements of{1, 2, 3} \ {ad}, every other roll in the sequencea1, a2, · · · , ad−1 results in a new
turn being taken. Soad is rolled in Alice’s(d− 2)th turn. Hence Alice rolls the last of her three
target numbers in hernth turn if and only ifan+2 ∈ {1, 2, 3}, ai 6= an+2 for i < n + 2, and the
two elements of{1, 2, 3} \ {an+2} definitely occur ina1, a2, · · · , an+1. The number of(n+2)-
tuples(a1, · · · , an+2) ∈ {1, 2, 3, 4, 5, 6}n+2 with these properties is3(5n+1− 2× 4n+1+3n+1),
by a simple inclusion/exclusion count. So

pn =
3(5n+1 − 2× 4n+1 + 3n+1)

6n+2
=

1

2
× (

5

6
)n+1 − (

2

3
)n+1 + (

1

2
)n+2.

Of course, this is also the probability that the turn in whichBess completes rolling her three
target numbers is hernth turn. We clearly have0 ≤ pn ≤ 1, pn → 0 asn → ∞, and
∑

n≥1
pn = 1.

Now Alice wins the game if the turn in which she completes rolling her three target numbers
is hernth turn, and the turn in which Bess completes rolling her three target numbers is her
mth turn, for some pair(n,m) with n ≤ m. The probability of this happening is

∑

n≤m pnpm,
where the sum is over all pairs(n,m) of positive numbers withn ≤ m. Since

1 = (
∑

n≥1

pn)
2 = −

∑

n≥1

p2n + 2
∑

n≤m

pnpm,
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it suffices to calculate

∑

n≥1

p2n =
∑

n≥1

1

4
× (

25

36
)n+1 + (

4

9
)n+1 + (

1

4
)n+2 − (

5

9
)n+1 − (

1

3
)n+1 +

1

2
× (

5

12
)n+1

=
625

5184
× 36

11
+

16

81
× 9

5
+

1

64
× 4

3
− 25

81
× 9

4
− 1

9
× 3

2
+

25

288
× 12

7

=
271

4620
.

Hence the probability of Alice winning is1
2
(1 + 271

4620
) = 4891

9240
(about53%).

2. Determine all pairs of positive integersa, b such that4a + 4b + 1 is an integer square.

Solution. Let 4a + 4b + 1 = n2 for a positive integern, which is clearly odd. We can assume
without loss of generality thata ≥ b. Sincen2 > 4a = (2a)2, we haven2 ≥ (2a + 1)2 =
4a + 2a+1 + 1, so2b ≥ a + 1. On the other hand,(n − 1)(n + 1) = 4b(4a−b + 1) is divisible
by 22b. One ofn − 1 andn + 1 must be congruent to2 modulo4, so the other one is divisible
by 22b−1. Hence4b(4a−b + 1) = (n − 1)(n + 1) ≥ 22b−1(22b−1 − 2) = 4b(4b−1 − 1), which
forcesa − b ≥ b − 1 or 2b ≤ a + 1. We conclude that2b = a + 1. Conversely,a = 2b − 1,
n = 22b−1 + 1 is a solution for anyb. So the solutions are precisely(a, b) = (2m − 1, m) and
(a, b) = (m, 2m− 1) for positive integersm.

3. Letm andn be positive integers withm ≥ n. LetA be then× n matrix with (i, j)-entry equal
to the binomial coefficient

(

mj

i

)

. Find the determinant ofA.

Solution. If we use the standard convention that
(

x

i

)

meansx(x − 1) · · · (x − i + 1)/i!,
then

(

mj

i

)

makes sense for all complex numbersm. In this way we can define the matrixA for
anym, whether or notm is a positive integer≥ n, and the following argument applies to this
generality.

First suppose thatm = 1. ThenA is an upper-triangular matrix, since
(

j

i

)

= 0 if j < i where
i andj are positive integers. Moreover, the diagonal entries

(

i

i

)

in this case are all1, which
implies thatdet(A) = 1.

Now revert to the case of generalm. The (i, j)-entry of A is
∑n

k=1
bik(mj)k, wherebik

denotes the coefficient ofxk in the polynomial
(

x

i

)

(which clearly has zero constant term when
i is a positive integer). So by definition of matrix multiplication,A = BC whereB is then×n
matrix whose(i, k)-entry isbik, andC is then× n matrix whose(k, j)-entry is(mj)k.

But it is clear thatbik = 0 unlessk ≤ i, andbii = 1/i! for all i. So the matrixB is lower tri-
angular with diagonal entries1/1!, 1/2!, · · · , 1/n!. This implies thatdet(B) = (1!2! · · ·n!)−1,
sodet(C) = 1!2! · · ·n! det(A).

We now know that in them = 1 case,det(C) = 1!2! · · ·n!. But the matrixC for general
m is obtained from the matrixC in them = 1 case simply by multiplying thekth row bymk.
Sodet(C) for generalm equals1!2! · · ·n!m1m2 · · ·mn. From this we deduce thatdet(A) =

m1m2 · · ·mn = m
n
2+n

2 .

4. The power series
∞
∑

n=0

cos(
πn

6
)
zn

n!
converges for allz, to f(z) say. Let

∞
∑

n=0

an z
n be the power

series expansion of
3

1 + 2f(z)
about0. Prove thata3n = 0 for all positive integersn.
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Solution. Let ω = −1+
√
3i

2
andω2 = −1−

√
3i

2
be the two complex cube roots of1. Then

exp(i
π

6
) = − 1√

3
(ω2 − 1), exp(−iπ

6
) = − 1√

3
(ω − 1).

Using de Moivre’s theorem, we obtain

cos(
πn

6
) =

exp(iπn
6
) + exp(−iπn

6
)

2
=

1

2
(− 1√

3
)n[(ω − 1)n + (ω2 − 1)n].

Substituting this in the definition off(z), and settingy = − z√
3
, gives

f(z) =
1

2
[exp(−(ω − 1)

z√
3
) + exp(−(ω2 − 1)

z√
3
)] =

1

2
[exp((ω − 1)y) + exp((ω2 − 1)y)].

Hence the function whose power series we are interested in is

3

1 + 2f(z)
=

3

1 + exp((ω − 1)y) + exp((ω2 − 1)y)

=
3 exp(y)

exp(y) + exp(ωy) + exp(ω2y)

= 1 +
exp(y) + ω exp(ωy) + ω2 exp(ω2y)

exp(y) + exp(ωy) + exp(ω2y)
+

exp(y) + ω2 exp(ωy) + ω exp(ω2y)

exp(y) + exp(ωy) + exp(ω2y)
,

where the last step uses the fact that1 + ω + ω2 = 0. Let g1(y) andg2(y) be the fractions
appearing in the last line. Then

g1(ωy) =
exp(ωy) + ω exp(ω2y) + ω2 exp(y)

exp(ωy) + exp(ω2y) + exp(y)
= ω2g1(y),

which means that in the power series expansion ofg1 about0, the only powersym which occur
with nonzero coefficient are those wherem ≡ 2 (mod3). Similarly, in the power series expan-
sion of g2 about0, the only powersym which occur with nonzero coefficient are those where
m ≡ 1 (mod3). So ing1(y) + g2(y) there are noy3n terms forn ≥ 1, and correspondingly

there are noz3n terms in
3

1 + 2f(z)
.

5. 2011 is a prime number. LetN = 22011 − 1, a 606-digit number which can be shown to be
composite by computer calculations. Using elementary number theory (and maybe a pocket
calculator), prove thatN has no prime factors less than80, 000.

Solution. Let p be a prime factor ofN . Then22011 ≡ 1 (modp), and since2011 is prime,
2011 must be the multiplicative order of2 modulop. By Fermat’s Little Theorem,2p−1 ≡ 1
(modp), so we conclude that2011 | p− 1, i.e.p = 1 + 2011k for some positive integerk. We
must show thatk ≥ 40.

Since(21006)2 = 22012 ≡ 2 (modp), 2 is a quadratic residue modp. It is well known that this
forcesp ≡ ±1 (mod8). Since2011 ≡ 3 (mod8), this tells us thatk ≡ 0 (mod8) or k ≡ 2
(mod8). Also, from the facts thatp 6≡ 0 (mod3), p 6≡ 0 (mod5), p 6≡ 0 (mod7), we deduce
thatk 6≡ 2 (mod3), k 6≡ 4 (mod5), k 6≡ 3 (mod7). The only values ofk less than40 which
satisfy all these congruences arek = 16 andk = 18. But 1 + 2011× 16 = 32177 is a multiple
of 23, and1 + 2011× 18 = 36199 is a multiple of53. So we must havek ≥ 40.
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6. Let n ≥ 3 be an integer. Consider then(n− 1) ordered pairs(i, j), wherei, j ∈ {1, 2, · · · , n}
andi 6= j. Show that there is a way to arrange these pairs around a circle, equally spaced, so
that for any distincti, j, k ∈ {1, 2, · · · , n}, the arc from(i, j) to (j, k) which passes through
(i, k) is less than half the circumference of the circle. For example, the first of the following
pictures forn = 3 has this property; the second does not, because (to name one of its failings)
the arc from(1, 3) to (3, 2) which passes through(1, 2) is equal to half the circumference.

b

bb

b

b b

(1, 2)

(1, 3)(2, 3)

(2, 1)

(3, 1) (3, 2)

b

bb

b

b b

(1, 2)

(1, 3)(2, 3)

(2, 1)

(3, 2) (3, 1)

Solution. We claim that the following arrangement works: going clockwise from an arbitrary
starting point, put

(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), · · · , (1, n), (2, n), · · · , (n− 1, n),

and then the reversals of all these pairs in the same order, namely

(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), · · · , (n, 1), (n, 2), · · · , (n, n− 1).

Notice that the first semicircle we filled contains all the pairs (i, j) with i < j, and the second
semicircle contains all the pairs(i, j) with i > j. Moreover,(i, j) and(j, i) are diametrically
opposed for alli 6= j.

We must check the condition stated in the question, which we will call C(i, j, k), for any
disjoint i, j, k. It is convenient to divide into cases based on the relative order ofi, j, k. Because
rotating by180◦ reverses every pair,C(i, j, k) holds if and only ifC(k, j, i) holds, so we only
need to consider three of the six possible orders.
Case 1: i < j < k. Then(i, j), (i, k), (j, k) are all in the first semicircle, and our construction
placed them in that clockwise order, with(i, k) between(i, j) and(j, k). SoC(i, j, k) holds.
Case 2: i < k < j. Then by Case 1,(i, j) lies between(i, k) and(k, j) in the first semicircle.
Hence if we follow the semicircular arc from(k, j) to its opposite point(j, k) which passes
through(i, j), we will reach(i, k) after reaching(i, j). So the sub-arc from(i, j) to (j, k)
contains(i, k) and is less than half the circumference, as required forC(i, j, k) to hold.
Case 3: j < i < k. Then by Case 1,(j, k) lies between(j, i) and(i, k) in the first semicircle.
Hence if we follow the semicircular arc from(j, i) to its opposite point(i, j) which passes
through(j, k), we will reach(i, k) after reaching(j, k). So the sub-arc from(j, k) to (i, j)
contains(i, k) and is less than half the circumference, as required forC(i, j, k) to hold.

Notice that in our first semicircle we could have used any order of the pairs which satisfied
Case 1 (that is, such that(i, k) is between(i, j) and (j, k) wheneveri < j < k), as long
as we used the same order for the reversed pairs in the second semicircle. There are also
arrangements satisfying the conditionsC(i, j, k) which do not have the property that(i, j) and
(j, i) are diametrically opposed for alli 6= j: for example, take the above arrangement forn = 4
and swap the adjacent pairs(1, 2) and(4, 3).

7. For a positive integern, let bn denote the number of binary strings consisting ofn zeroes andn
ones which have no three consecutive zeroes and no three consecutive ones. Show that

bn =
n

∑

k=0

((

k

n− k

)

+

(

k + 1

n− k − 1

))2

,
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where the binomial coefficient
(

k

j

)

is defined to be zero ifj < 0 or j > k.

Solution. For any nonnegative integersm,n, letam,n be the number of binary strings consist-
ing ofm zeroes andn ones which start with a zero and have the property that there are no three
consecutive zeroes and no three consecutive ones. Ifm = n = 0, we seta0,0 = 1, thus declaring
that the empty string does “start with a zero”. We havea0,n = 0 for n ≥ 1, andam,0 = 0 for
m ≥ 3, with a1,0 = a2,0 = 1. For convenience, setam,n = 0 if m = −1 or n = −1.

From any string of the type counted byam,n wherem,n ≥ 1, we obtain a smaller one by
removing the initial0 or 00 and the subsequent1 or 11. Hence we have a recurrence relation

am,n = am−1,n−1 + am−1,n−2 + am−2,n−1 + am−2,n−2, for all m,n ≥ 1.

We can use this to determine the generating functionA(x, y) =
∑

m,n≥0
am,nx

myn, a formal
power series in the indeterminatesx andy. We have

A(x, y) = 1 + x+ x2 +
∑

m,n≥1

am,nx
myn

= 1 + x+ x2 +
∑

m,n≥1

(am−1,n−1 + am−1,n−2 + am−2,n−1 + am−2,n−2)x
myn

= 1 + x+ x2 + (xy + xy2 + x2y + x2y2)A(x, y),

which implies that

A(x, y) = (1 + x+ x2)(1− xy(1 + x)(1 + y))−1

= (1 + x+ x2)
∑

k≥0

xkyk(1 + x)k(1 + y)k.

Extracting the coefficient ofxmyn, we deduce that

am,n =
∑

k≥0

((

k

m− k

)

+

(

k

m− k − 1

)

+

(

k

m− k − 2

))(

k

n− k

)

=
∑

k≥0

((

k

m− k

)

+

(

k + 1

m− k − 1

))(

k

n− k

)

.

Now for a positive integern, the binary strings counted bybn divide evenly into those that begin
with a zero and those that being with a one, so

bn = 2an,n = 2
∑

k≥0

((

k

n− k

)

+

(

k + 1

n− k − 1

))(

k

n− k

)

= 2
∑

k≥0

(

k

n− k

)2

+
∑

k≥0

2

(

k

n− k

)(

k + 1

n− k − 1

)

=
∑

k≥0

(

k

n− k

)2

+
∑

k≥0

(

k + 1

n− k − 1

)2

+
∑

k≥0

2

(

k

n− k

)(

k + 1

n− k − 1

)

=
∑

k≥0

((

k

n− k

)

+

(

k + 1

n− k − 1

))2

.

It is clear that every term withk > n is zero, so we get the formula in the question.
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8. Let (x1, y1), · · · , (xn, yn) ben distinct points in the plane with0 < xi < 1 and0 < yi < 1 for
all i. LetV be the set of all integer translates of these points, i.e. points of the form(xi+a, yi+b)
for 1 ≤ i ≤ n, a, b ∈ Z. A periodic hexagon tessellationwith vertex setV consist of a set of
continuous curves in the plane callededgessuch that:

• the endpoints of each edge are distinct elements ofV , and edges do not intersect except at
their endpoints,

• every element ofV is the endpoint of exactly three edges,

• every one of the regions between the edges has exactly six edges on its boundary, and

• wheneverC is an edge, every integer translateC + (a, b) for a, b ∈ Z is also an edge.

Show that a periodic hexagon tessellation with vertex setV exists if and only ifn is even.

Solution. We first assume that we have a periodic hexagon tessellation with vertex setV , and
show thatn is even. LetE be the set of edges of the tessellation which have both endpoints in
the squareS = [0, 1]× [0, 1], and letE ′ be the set of edges which have exactly one endpoint in
S. Since every endpoint inS is one of then points(xi, yi), and each such point is the endpoint
of exactly three edges, we have3n = 2|E| + |E ′|. We have a mapτ from E ′ to itself defined
as follows. ForC ∈ E ′, let (xi, yi) be the endpoint ofC which lies inS. The other endpoint of
C has the form(xj + a, yj + b) wherea, b ∈ Z are not both zero. By periodicity,C − (a, b) is
also an edge, with endpoints(xi − a, yi − b) and(xj , yj), and hence belonging toE ′. We set
τ(C) = C − (a, b). Clearlyτ(C) 6= C, andτ(τ(C)) = (C − (a, b)) − (−a,−b) = C. SoE ′

is partitioned into2-element subsets{C, τ(C)}, and|E ′| is even. Hence3n = 2|E| + |E ′| is
even, forcingn to be even.

Conversely, letn be even; we will show there exists a periodic hexagon tessellation with
vertex setV . Set(x′

i, y
′
i) = (2i−1

2n
, 1

2
), and letV ′ be the set of integer translates of these points.

There is a homeomorphism from the square[0, 1]× [0, 1] to itself which fixes the boundary and
sends(xi, yi) to (x′

i, y
′
i) for all i. Applying such a homeomorphism to every integer translate

of the square would transform a periodic hexagon tessellation with vertex setV into one with
vertex setV ′, and applying the inverse homeomorphism would do the reverse. So we may
assume that(xi, yi) = (x′

i, y
′
i).

Assume for a moment thatn = 2. It is easy to see that in this case we have a periodic hexagon
tessellation with vertex setV whose edges are all the integer translates of the following three
line segments: that joining(1

4
, 1
2
) to (3

4
, 1

2
), that joining(1

4
, 1

2
) to (3

4
, 3
2
), and that joining(1

4
, 1

2
)

to (−1

4
,−1

2
).

For general evenn, we obtain a periodic hexagon tessellation with vertex setV by taking the
tessellation constructed for then = 2 case and dividing everyx-coordinate byn/2. The result
is indeed preserved by addition of(a, b) for any a, b ∈ Z, because then = 2 tessellation is
preserved by addition of(n

2
a, b).

9. By a word in this problem we mean a (possibly empty) string of lowercase letters in the usual
alphabeta–z. If W1 andW2 are words then we writeW1W2 for the concatenation ofW1 and
W2. We say that there is anelementary transitionbetween two wordsW andW ′ if W has
the formW1W2W3 andW ′ equalsW1W2W2W3 (in other words,W ′ is obtained fromW by
repeating some sub-word), or ifW has the formW1W2W2W3 andW ′ equalsW1W2W3 (in
other words,W ′ is obtained fromW by deleting one copy of a repeated sub-word). We say
that two wordsW andW ′ areequivalentif they are connected by a finite sequence of such
elementary transitions. For example,barbaric is equivalent tobaariric because of the
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following sequence of elementary transitions:

barbaric←→ baric←→ baaric←→ baariric

Find the number of equivalence classes of words in which every letter of the alphabet appears.

Solution. This problem was first solved in the paper ‘On semi-groups in which xr = x’ by
J. A. Green and D. Rees,Proc. Camb. Philos. Soc.48 (1952).

We need to identify various features of a word which are unchanged by an elementary tran-
sition. The first, implicit in the question, is the set of letters which appear in the word, which
we will call the contentof the word. The content is not altered by repeating a sub-word or
deleting one copy of a repeated sub-word, so two equivalent words must have the same content.
For example,barbaric andbaariric both have content{a,b,c,i,r}. It is clear that the
number of equivalence classes of words with a fixed contentC depends only on the cardinality
|C|; let f(n) be the number of equivalence classes of words with contentC where|C| = n.
The question asks forf(26), but there is nothing special about26, so we will find a formula for
f(n). Our formula will initially be recursive, so we aim to relatef(n) to f(n− 1). As the base
case we note thatf(0) = 1 (there is a unique empty word).

In any wordW with nonempty contentC, there is one of the letters inC which is the last to
appear as you read the wordW from left to right; we call this letter theleft-last letter ofW ,
written ℓ(W ). For example,ℓ(falafel) = e. A moment’s thought reveals that the order in
which the letters first appear as you readW from left to right is unchanged by an elementary
transition. In particular, two equivalent words must have the same left-last letter.

Define theleft prefix of W , written L(W ), to be the sub-word obtained by starting at the
left-hand end ofW and reading up to, but not including, the left-last letter. For example,
L(falafel) = falaf. Note thatL(W ) is a word with contentC \ {ℓ(W )}. We claim that
the equivalence class ofL(W ) is unchanged under an elementary transition. We can assume
thatW = W1W2W3 and the elementary transition is toW ′ = W1W2W2W3. If the left-last
letter ofW occurs inW1 or W2, thenL(W ) = L(W ′). If the left-last letter ofW does not
occur inW1 or W2, thenL(W ) has the formW1W2W4 whereW4 is a sub-word ofW3, and
L(W ′) = W1W2W2W4, soL(W ) andL(W ′) are equivalent. It follows that ifW andW ′ are
equivalent, thenL(W ) andL(W ′) are equivalent.

We can also define theright-last letterr(W ) of W to be the letter which is last to appear as
you readW from right to left, and theright prefixR(W ) to be the sub-word to the right of this
letter. For example,r(falafel) = a andR(falafel) = fel. By the same argument as
for the left versions, two equivalent words must have the same right-last letter, and equivalent
right prefixes.

We can now prove a recursive criterion for when two words are equivalent. Our claim is
that if W andW ′ are words with the same nonempty contentC, thenW andW ′ are equiv-
alent if and only ifℓ(W ) = ℓ(W ′), r(W ) = r(W ′), L(W ) andL(W ′) are equivalent, and
R(W ) andR(W ′) are equivalent. We have already shown the “only if” direction, so what re-
mains is the “if” direction: assuming that the four conditions hold, we must show thatW is
equivalent toW ′. The assumption certainly implies thatL(W )ℓ(W )r(W )R(W ) is equivalent
to L(W ′)ℓ(W ′)r(W ′)R(W ′), since we can perform the elementary transitions needed to trans-
formL(W ) intoL(W ′) while leaving the remainderℓ(W )r(W )R(W ) unchanged, and then the
elementary transitions needed to transformR(W ) intoR(W ′).

So it suffices to show thatW is equivalent toL(W )ℓ(W )r(W )R(W ). Note thatW has the
form L(W )ℓ(W )W1 for some wordW1. Let a1, a2, · · · , as be any sequence of letters fromC.
Sincea1 occurs somewhere in the wordL(W )ℓ(W ), we can repeat a sub-word ofW beginning
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with a1 and finishing with the first occurrence ofℓ(w), to give an elementary transition from
W to a word of the formL(W )ℓ(W )a1W2, whereW2 is some word. Sincea2 occurs some-
where in the wordL(W )ℓ(W ), we can repeat a sub-word ofL(W )ℓ(W )a1W2 beginning with
a2 and finishing with the lettera1 succeeding the first occurrence ofℓ(W ), to give an elemen-
tary transition fromL(W )ℓ(W )a1W2 to L(W )ℓ(W )a1a2W3, whereW3 is some word. Then
there is an elementary transition fromL(W )ℓ(W )a1a2W3 to L(W )ℓ(W )a1a2a3W4, and so on.
HenceW is equivalent to a word of the formL(W )ℓ(W )a1a2 · · · asWs+1. Since our sequence
a1, a2, · · · , as was an arbitrary sequence of letters fromC, this shows in particular thatW is
equivalent toL(W )ℓ(W )r(W )R(W )W ′ for some wordW ′. The same argument, but starting
with the wordL(W )ℓ(W )r(W )R(W ) and using the expression ofW asbs · · · b2b1r(W )R(W ),
shows thatL(W )ℓ(W )r(W )R(W ) is equivalent toW ′′W for some wordW ′′.

We are now reduced to showing that if two wordsW andY are such thatW is equivalent to
YW ′ andY is equivalent toW ′′W for some wordsW ′ andW ′′, thenW andY are equivalent.
This holds by the following chain of equivalences:

W ∼ YW ′ ∼ Y Y W ′ ∼ Y W ∼W ′′WW ∼W ′′W ∼ Y.

As a consequence of our recursive criterion for equivalence, specifying an equivalence class
of words with nonempty contentC amounts to choosing two lettersℓ, r ∈ C (possibly equal)
to be the left-last and right-last letters, an equivalence class of words with contentC \ {ℓ} to be
the left prefixes, and an equivalence class of words with contentC \{r} to be the right prefixes.
These choices can be made arbitrarily, since for anyℓ, r ∈ C and any wordsW1 with content
C \ {ℓ} andW2 with contentC \ {r}, the wordW = W1ℓrW2 hasℓ(W ) = ℓ, r(W ) = r,
L(W ) = W1, R(W ) = W2.

Consequently, we have a recurrence relationf(n) = n2f(n−1)2, valid for alln ≥ 1. Iterating
this recursion gives:

f(n) = f(n− 1)2n2

= f(n− 2)4(n− 1)4n2

= f(n− 3)8(n− 2)8(n− 1)4n2

...

= 12
n

22
n−1

32
n−2 · · · (n− 2)2

3

(n− 1)2
2

n21 .

This number grows quite fast:f(3) = 18.24.32 = 144, f(4) = 116.28.34.42 = 341056.

10. Let A be a finite set. Suppose we have a real-valued functionf on the set of subsets ofA with

the property that
∑

i∈I
f(I \ {i}) = 0 for everyI ⊆ A. Prove thatf(I) = 0 whenever|I| < |A|

2
.

Solution. (Based on the solution submitted by Oliver Chambers, University of Melbourne.)
Let I1 be a subset ofA such that|I1| = k, |A| = n > 2k. For anyj ∈ {0, 1, · · · , k}, define

fj =
∑

I⊂A
|I|=k

|I∩I1|=j

f(I).

We will prove thatfj = 0 for all j. Sincefk = f(I1), this includes the desired resultf(I1) = 0.
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For anyj ∈ {0, 1, · · · , k}, we know that

∑

J⊂A
|J |=k+1

|J∩I1|=j

∑

i∈J
f(J \ {i}) = 0.

Now every term in this left-hand side isf(I) for somek-element subsetI ⊂ A such that either
|I ∩ I1| = j or |I ∩ I1| = j − 1 (the latter being impossible ifj = 0). If |I ∩ I1| = j, then the
termf(I) occursn − 2k + j times, becauseJ must be obtained by adding toI an element of
A \ (I ∪ I1) which has cardinalityn− (2k − j). If |I ∩ I1| = j − 1, then the termf(I) occurs
k − j + 1 times, becauseJ must be obtained by adding toI an element of(A \ I) ∩ I1 which
has cardinalityk − (j − 1). So the equation becomes

(n− 2k + j)fj + (k − j + 1)fj−1 = 0,

wheref−1 is defined to be0. Sincen > 2k, the coefficient offj in this equation is nonzero. So
thej = 0, 1, · · · , k cases of this equation imply successively thatf0 = 0, f1 = 0, · · · , fk = 0.


