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1. Alice and Bess are playing a game with an ordinary six-sided Alice’s target numbers are
1,2, 3, and Bess’ target numbers ates, 6. They take turns in rolling the die, with Alice going
first. If the one whose turn it is rolls a target number whick &las not previously rolled, she
gets toroll again; if she rolls a target number which she hegipusly rolled, or a number which
is not one of her target numbers, her turn ends. The winnéeisinist player to have rolled all
three of her target numbers (not necessarily all in the orm®.tuWhat is the probability that
Alice wins?

Solution.  Although it is implicit in the question that the game ends wioae of the players
wins, we can imagine them continuing to go through theirgwafter that point, until the total
number of rolls is some very large numb¥r It is clear that asv tends to infinity, the probabil-
ity that any number remains unrolled tends to zero. So it makedifference if we imagine the
players continuing to play the game forever, and we can assla@y both complete rolling their
target numbers at some stage. We want the probability the¢ Akhieves this before Bess.

Let p,, be the probability that the turn in which Alice completeding her three target num-
bers is hemth turn. We can calculatg, by thinking of the total sequence of humbers Alice
rolls, sayas, as, as, - - - where each; € {1,2,3,4,5,6}. If the last of her three target numbers
occurs first as,, thena; # a4 for i < d, and the two elements dfl, 2,3} \ {aq} definitely
occur in the sequenas, as, - - - , aq_1. Moreover, apart from the two first occurrences of these
elements of 1, 2,3} \ {aq}, every other roll in the sequeneg, as, - - - , a4 results in a new
turn being taken. Sa, is rolled in Alice’s (d — 2)th turn. Hence Alice rolls the last of her three
target numbers in herth turn if and only ifa, o € {1,2,3}, a; # a,42 fori < n+ 2, and the
two elements of1, 2,3} \ {a,2} definitely occur inay, as, - - - , a,41. The number ofn + 2)-
tuples(ay, - -+ ,a,12) € {1,2,3,4,5,6}" with these properties &5+ — 2 x 471 4 3n+l),
by a simple inclusion/exclusion count. So

D\ nt1 2. i1 Lo
X () = () ()
Of course, this is also the probability that the turn in whigdss completes rolling her three
target numbers is hetth turn. We clearly hav® < p, < 1, p, — 0 asn — oo, and
En21pn = 1.

Now Alice wins the game if the turn in which she completesingliher three target numbers
is hernth turn, and the turn in which Bess completes rolling herahaget numbers is her
mth turn, for some paifn, m) with n < m. The probability of this happening Is’, ... P»Dm.
where the sum is over all paifs, m) of positive numbers withh < m. Since -
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it suffices to calculate

1 25 4 1 5 1 1 5)
2 - T \n+1 “\n+1 “\n+2 n+l n+1 -  \n+1
625 36 16 9 1 4 25 9 1 3 25 12
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o7
4620

271 ) — 4891 (3hoyt53%).

Hence the probability of Alice winning |§ (1+ 3650) = 9210

. Determine all pairs of positive integessb such thati® 4 4° + 1 is an integer square.

Solution. Let4“ + 4° + 1 = n? for a positive integen, which is clearly odd. We can assume
without loss of generality that > b. Sincen? > 4% = (2%)?, we haven® > (2% + 1) =

4% 4 291 11,5020 > a + 1. On the other handp — 1)(n + 1) = 4°(47 + 1) is divisible
by 2. One ofn — 1 andn + 1 must be congruent td modulo4, so the other one is divisible
by 22-1. Hence4®(4*° + 1) = (n — 1)(n + 1) > 2%-1(22-1 — 2) = 4°(4*~1 — 1), which
forcesa — b > b —10r2b < a + 1. We conclude tha2b = a + 1. Converselyg = 2b — 1,

n = 2%-1 4 1 is a solution for any. So the solutions are precisdly, b)) = (2m — 1,m) and
(a,b) = (m,2m — 1) for positive integersn.

. Letm andn be positive integers with > n. Let A be then x n matrix with (i, j)-entry equal
to the binomial coefficienf{™’). Find the determinant of.

Solution.  If we use the standard convention th&) meanse(z — 1)---(z — i + 1)/i!,
then (”Zj) makes sense for all complex numbetsIn this way we can define the matrikfor
anym, whether or notn is a positive integep n, and the following argument applies to this
generality.

First suppose that = 1. ThenA is an upper-triangular matrix, sin¢¢) = 0 if j < i where
¢ andj are positive integers. Moreover, the diagonal ent@sin this case are all, which
implies thatdet(A) = 1.

Now revert to the case of general. The (i, j)-entry of A is Y7, bi.(mj)*, whereb;,
denotes the coefficient af in the polynomial(;”) (which clearly has zero constant term when
i IS a positive integer). So by definition of matrix multipltcan, A = BC whereB is then x n
matrix whose(i, k)-entry isb,;,, andC is then x n matrix whose(k, j)-entry is(mj)*.

But it is clear thab;, = 0 unlessk < ¢, andb;; = 1/i! for all i. So the matrixB is lower tri-
angular with diagonal entriel'1!,1/2!, - - -, 1/n!. This implies thatlet(B) = (1!2!---n!)~!,
sodet(C') = 112!---nldet(A).

We now know that in then = 1 casedet(C) = 1!2!---n!. But the matrixC' for general
m is obtained from the matrig’ in them = 1 case simply by multiplying théth row by m?*.

Sodet(C) for generakm equalsl!2! - - -n!m!'m?---m". From this we deduce thakt(A) =

n2+n
m'm?---m" =m 2

n

. The power serieg cos(%) % converges for alk, to f(z) say. Letg a, 2" be the power

series expansion ofi about0. Prove that3,, = 0 for all positive integers:.

+2f(2)
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Solution. Letw = =1£Y3i andyw? = =15¥31 pe the two complex cube roots bf Then

exp(ig) = — = — 1), exp(=ig) = == 1).
Using de Moivre’s theorem, we obtain
™m. exp(i7') + exp(—iT*) VR BT 2 1y
cos(~-) = 5 =5l \/g) [(w—=1)"+ (v =1)"].

Substituting this in the definition of(z), and setting/ = — G5 gives

£(2) = 5lexp(—(w — )=2) + e~ ~ 1)) = S lexp((w — 1)y) + exp((? — 1)y)].
Hence the function whose power series we are interested in is
3 3
1+2f(2)  1+exp((w—1Dy) +exp((w? —1)y)
3exp(y)

 exp(y) + exp(wy) + exp(w?y)
exp(y) + wexp(wy) + w? exp(w?y)  exp(y) + w? exp(wy) + wexp(w?y)

=1+
exp(y) + exp(wy) + exp(w?y) exp(y) + exp(wy) + exp(w?y)

)

where the last step uses the fact that w + w? = 0. Let g;(y) and g»(y) be the fractions
appearing in the last line. Then

_exp(wy) + wexp(w?y) + w? exp(y)
G(wy) = exp(wy) + exp(w?y) + exp(y)

which means that in the power series expansiog @bout0, the only powerg™ which occur
with nonzero coefficient are those where= 2 (mod3). Similarly, in the power series expan-
sion of g, about0, the only powerg/™ which occur with nonzero coefficient are those where
m = 1 (mod3). So ingl(y):;r g2(y) there are ng/*™ terms forn > 1, and correspondingly

= w2gl(y),

there are na*” terms in

1+2f(2)

. 2011 is a prime number. LelN = 220! — 1, a606-digit number which can be shown to be
composite by computer calculations. Using elementary rexnteeory (and maybe a pocket
calculator), prove thal has no prime factors less th&é, 000.

Solution.  Let p be a prime factor ofV. Then2?°!! = 1 (modp), and since2011 is prime,
2011 must be the multiplicative order @ modulop. By Fermat’s Little Theorem2?~! = 1
(modp), so we conclude th&011 | p — 1, i.e.p = 1 + 2011k for some positive integet. We
must show thak > 40.

Since(21096)2 = 22012 = 9 (modp), 2 is a quadratic residue mad It is well known that this
forcesp = +1 (mod8). Since2011 = 3 (mod38), this tells us that = 0 (mod8) ork = 2
(mod8). Also, from the facts that £ 0 (mod3), p # 0 (mod5), p = 0 (mod7), we deduce
thatk £ 2 (mod3), £ £ 4 (mod5), k #Z 3 (mod7). The only values of less thantO which
satisfy all these congruences @re- 16 andk = 18. But1 + 2011 x 16 = 32177 is a multiple
of 23, and1 + 2011 x 18 = 36199 is a multiple of53. So we must havé > 40.
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. Letn > 3 be an integer. Consider thgn — 1) ordered pairgi, j), wherei, j € {1,2,--- ,n}
andi # j. Show that there is a way to arrange these pairs around &,caglally spaced, so
that for any distinct, j, k € {1,2,---,n}, the arc from(, j) to (j, k) which passes through
(1, k) is less than half the circumference of the circle. For examiple first of the following
pictures forn = 3 has this property; the second does not, because (to naméd tadadings)
the arc from(1, 3) to (3, 2) which passes througii, 2) is equal to half the circumference.

(2,3) (1,3) (2,3) (1,3)
(2,1) Q (1,2) (2,1) Q (1,2)
(3,1) (3,2) (3,2) (3,1)

Solution. We claim that the following arrangement works: going clo@evrom an arbitrary
starting point, put

(17 2>7 (17 3>7 (27 3>7 (17 4)7 (27 4)7 (374)7 Ty (17 n), (2,71), ) (n - 17”)7
and then the reversals of all these pairs in the same ordeelgpa
(27 1>7 (37 1>7 (37 2>7 (47 1>7 (47 2>7 (47 3)7 ) (n, 1)7 (n, 2)7 ) (n,n - 1)-

Notice that the first semicircle we filled contains all therpdi, j) with i < j, and the second
semicircle contains all the paifs, j) with i > j. Moreover,(i, j) and(j,¢) are diametrically
opposed for alf # ;.

We must check the condition stated in the question, which vllecall C(7, j, k), for any
disjointi, j, k. It is convenient to divide into cases based on the relatigeraofi, j, k. Because
rotating by180° reverses every pai€/(, j, k) holds if and only ifC(k, j, i) holds, so we only
need to consider three of the six possible orders.

Casel: i < j < k. Then(i,j), (i, k), (4, k) are all in the first semicircle, and our construction
placed them in that clockwise order, with k) between(i, j) and(j, k). SoC'(4, j, k) holds.
Case2: i < k < j. Then by Case 1, j) lies betweer(i, k) and(k, 5) in the first semicircle.
Hence if we follow the semicircular arc froitk, 7) to its opposite pointj, k) which passes
through (4, j), we will reach(i, k) after reachingi, j). So the sub-arc fronfi, j) to (j, k)
contains(i, k) and is less than half the circumference, as required’farj, k) to hold.

Case3: j < i < k. Then by Case 1, k) lies betweer(j, ) and(z, k) in the first semicircle.
Hence if we follow the semicircular arc froity, i) to its opposite pointi, j) which passes
through(j, k), we will reach(i, k) after reaching(j, k). So the sub-arc fronfj, k) to (i, )
contains(i, k) and is less than half the circumference, as required’farj, k) to hold.

Notice that in our first semicircle we could have used any oad¢he pairs which satisfied
Case 1 (that is, such that, k) is between(i, j) and (j, k) wheneveri < j < k), as long
as we used the same order for the reversed pairs in the seeamdirsle. There are also
arrangements satisfying the conditiarig, j, k) which do not have the property th@t ;j) and
(7,1) are diametrically opposed for dlk~ j: for example, take the above arrangementifer 4
and swap the adjacent pairks 2) and(4, 3).

. For a positive integer, letb, denote the number of binary strings consisting @eroes ana
ones which have no three consecutive zeroes and no threective ones. Show that

2 (G5 G E)
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where the binomial coefficier(f;) is defined to be zero if < 0 orj > k.

Solution. For any nonnegative integers, n, leta,, ,, be the number of binary strings consist-
ing of m zeroes and ones which start with a zero and have the property that thereathree
consecutive zeroes and no three consecutive ongs=fn = 0, we setu,, = 1, thus declaring
that the empty string does “start with a zero”. We hayg = 0 for n > 1, anda,,, = 0 for
m > 3, with a; o = as o = 1. For convenience, sef,,, =0if m = -1 orn = —1.

From any string of the type counted by, ,, wherem,n > 1, we obtain a smaller one by
removing the initiaD or 00 and the subsequentor 11. Hence we have a recurrence relation

Amn = Am—1,n—1 + Am—1,n-2 + Am—2,n—1 + m—2,n—2, for all m,n > 1.

We can use this to determine the generating functén,y) = >_ - am2™y", a formal
power series in the indeterminatesndy. We have

Alz,y) =14z +2° + Z A ™Y

m,n>1

=14+2+2"+ Y (Gm-tn1+ Gnotn-2+ Gn-2n-1 + Gn_2n2)z"y"

m,n>1

=14+ 2" + (zy + 2y’ + 2%y + 2%y°) Az, y),
which implies that
Alz,y) = 1+ +2*) (1 -2yl +2)(1+y)™"

= (I+z+2") ) 1+ 1+
k>0

Extracting the coefficient ofy", we deduce that

e =2 () (o) (ha) ()
S () (L)) ()

Now for a positive integen, the binary strings counted Iby divide evenly into those that begin
with a zero and those that being with a one, so

bnzzan,ﬁ?;((nfk) * (nfﬁl)) (nﬁk)
SR
) k>0 (nﬁk)QJrkzzo (nfzil):;Q(nﬁk) (”Ezil)

:kzo((ni)*(ﬁil))z-

It is clear that every term with > n is zero, so we get the formula in the question.
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. Let(z1,11), -, (zn,yn) ben distinct points in the plane with < z; < 1 and0 < y; < 1 for
alli. LetV be the set of all integer translates of these points, i.atpofif the form(z; +a, y;+b)
forl1 <i <mn,a,be Z. A periodic hexagon tessellatiomith vertex setl” consist of a set of
continuous curves in the plane calledgessuch that:

¢ the endpoints of each edge are distinct elements,@nd edges do not intersect except at
their endpoints,

e every element of/ is the endpoint of exactly three edges,

e every one of the regions between the edges has exactly sesegts boundary, and

e whenevelC' is an edge, every integer translétet (a, b) for a,b € Z is also an edge.
Show that a periodic hexagon tessellation with verteX/sekists if and only ifn is even.

Solution. We first assume that we have a periodic hexagon tessellatibrvertex set”, and
show thatn is even. LetE be the set of edges of the tessellation which have both entpioi
the squares = [0, 1] x [0, 1], and letE’ be the set of edges which have exactly one endpoint in
S. Since every endpoint ifi is one of then points(x;, y;), and each such point is the endpoint
of exactly three edges, we ha%e = 2|E| + |E’|. We have a map from £’ to itself defined
as follows. ForC' € F’, let (z;, y;) be the endpoint of” which lies inS. The other endpoint of
C has the form(z; + a,y; + b) wherea, b € Z are not both zero. By periodicity; — (a, b) is
also an edge, with endpoints; — a,y; — b) and(z;,y;), and hence belonging t&’. We set
7(C) = C — (a,b). Clearlyr(C) # C, and7(7(C)) = (C — (a,b)) — (—a,—b) = C. SOF’

is partitioned inta2-element subsetsC, 7(C')}, and|E’| is even. Henc@&n = 2|E| + |E'| is
even, forcingn to be even.

Conversely, letn be even; we will show there exists a periodic hexagon tesgmil with
vertex setl’. Set(z},y/) = (%1, 1), and letV’ be the set of integer translates of these points.
There is a homeomorphism from the squi@xd] x [0, 1] to itself which fixes the boundary and
sends(x;, y;) to (z},y!) for all i. Applying such a homeomorphism to every integer translate
of the square would transform a periodic hexagon tessatiatith vertex set” into one with
vertex setl/’, and applying the inverse homeomorphism would do the reve&> we may
assume thatz;, y;) = (25, y.).

Assume for a moment that= 2. It is easy to see that in this case we have a periodic hexagon
tessellation with vertex sét whose edges are all the integer translates of the followingget
line segments: that joiningt, 1) to (2, 1), that joining(3, 3) to (2, 2), and that joining, 1)
to(—1,—1).

For4gen2eral even, we obtain a periodic hexagon tessellation with verteX/sby taking the
tessellation constructed for tlhee= 2 case and dividing every-coordinate by. /2. The result
is indeed preserved by addition @f, b) for anya,b € Z, because the = 2 tessellation is
preserved by addition dfa, b).

. By aword in this problem we mean a (possibly empty) string of loweedatters in the usual
alphabeta—z. If W; andWW; are words then we writ&/; 1/, for the concatenation dfi’; and

W5. We say that there is aelementary transitiodetween two word$y and W’ if W has

the form W, WyW5 and W' equalsiW; Wy, W3 (in other words, )V’ is obtained fromid/ by
repeating some sub-word), orli¥” has the formi; WW,W,W5 and W’ equalsiW; W, W3 (in
other words, W’ is obtained fromiV by deleting one copy of a repeated sub-word). We say
that two wordslV and W’ are equivalentif they are connected by a finite sequence of such
elementary transitions. For examphbar bar i ¢ is equivalent tdbaar i ri ¢ because of the
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following sequence of elementary transitions:
barbaric «— baric +— baaric+—baariric

Find the number of equivalence classes of words in whichydetter of the alphabet appears.

Solution.  This problem was first solved in the paper ‘On semi-groupshictvz”™ = 2z’ by
J. A. Green and D. ReeByoc. Camb. Philos. Sod8 (1952).

We need to identify various features of a word which are ungkd by an elementary tran-
sition. The first, implicit in the question, is the set of & which appear in the word, which
we will call the contentof the word. The content is not altered by repeating a suldveor
deleting one copy of a repeated sub-word, so two equivalerdsymust have the same content.
For examplebar bar i c andbaari ri c both have contenta, b, c,i ,r }. Itis clear that the
number of equivalence classes of words with a fixed corttetpends only on the cardinality
|C|; let f(n) be the number of equivalence classes of words with coritewhere|C| = n.
The question asks fof(26), but there is nothing special abdt, so we will find a formula for
f(n). Our formula will initially be recursive, so we aim to relatén) to f(n — 1). As the base
case we note that(0) = 1 (there is a unique empty word).

In any wordW with nonempty content’, there is one of the letters ifi which is the last to
appear as you read the world from left to right; we call this letter théeft-last letter of IV,
written £(1V). For example/(f al af el ) = e. A moment’s thought reveals that the order in
which the letters first appear as you rd&dfrom left to right is unchanged by an elementary
transition. In particular, two equivalent words must hdwe $ame left-last letter.

Define theleft prefixof W, written L(1V), to be the sub-word obtained by starting at the
left-hand end ofi¥ and reading up to, but not including, the left-last letteror Example,
L(f al af el ) = f al af . Note thatZ(W) is a word with content' \ {¢(1/)}. We claim that
the equivalence class @f(WW) is unchanged under an elementary transition. We can assume
thatiW = W, W,W5 and the elementary transition is W&’ = W, W,W,Ws;. If the left-last
letter of W occurs inW; or Wy, thenL(W) = L(W’). If the left-last letter ofit” does not
occur inW; or Wy, then L(WW) has the formiV; W,W, whereW, is a sub-word ofi¥;, and
L(W") = WiW,y,WoW,, soL(W) and L(W') are equivalent. It follows that i andW’ are
equivalent, ther.(W) and L(W’) are equivalent.

We can also define thight-last letterr(17) of IV to be the letter which is last to appear as
you readiV from right to left, and theight prefix R(1/) to be the sub-word to the right of this
letter. For example;(f al af el ) = a andR(f al af el ) = f el . By the same argument as
for the left versions, two equivalent words must have theesaght-last letter, and equivalent
right prefixes.

We can now prove a recursive criterion for when two words ap@valent. Our claim is
that if W and W’ are words with the same nonempty contéhtthenV and W' are equiv-
alent if and only if¢(W) = (W), r(W) = r(W'), L(W) and L(W') are equivalent, and
R(W) and R(W"’) are equivalent. We have already shown the “only if” directiso what re-
mains is the “if” direction: assuming that the four condi$ohold, we must show that” is
equivalent tolV’. The assumption certainly implies thatW )¢(W)r(W)R(W) is equivalent
to LW e(W")r(W")R(W’), since we can perform the elementary transitions neededrie-t
form L(W) into L(W’) while leaving the remaindek W )r(W)R(1V') unchanged, and then the
elementary transitions needed to transfael’) into R(W").

So it suffices to show thal’ is equivalent taL(W)¢(W)r(W)R(W). Note thatiW has the
form L(W)¢(W )W, for some wordiV;. Letay,as, - - - , as be any sequence of letters frath
Sincea,; occurs somewhere in the wofdW)¢(WW), we can repeat a sub-word Bf beginning



10.

SUMS Problem Competition 2011 Page 8

with a; and finishing with the first occurrence 6fw), to give an elementary transition from
W to a word of the formZL(WW)¢(W)a,; W,, whereW, is some word. Since, occurs some-
where in the word.(1W)¢(1W'), we can repeat a sub-word 6fW)¢(W)a, W, beginning with
a, and finishing with the lettes; succeeding the first occurrence/@fl’), to give an elemen-
tary transition fromL(W)¢(W)a, Wy to L(W)E(W )aa2W3, whereWs is some word. Then
there is an elementary transition frabi )¢(W)a,asWs to L(W )¢(W )ayasas Wy, and so on.
HencelV is equivalent to a word of the forth(W)¢(W)ayas - - - asWs41. Since our sequence
a,as, - -+ ,as Was an arbitrary sequence of letters framthis shows in particular that” is
equivalent toL(W)¢(W)r(W)R(W)W' for some wordi¥’. The same argument, but starting
with the wordL(W)¢(W)r(W)R(W) and using the expression bf asb - - - bobyr(W)R(W),
shows thatl.(W)¢(W)r(W)R(W) is equivalent tdV"”W for some word/V”.

We are now reduced to showing that if two woldsandY are such thatV is equivalent to
YW’ andY is equivalent tdV”W for some wordsV’ andW”, thenWW andY are equivalent.
This holds by the following chain of equivalences:

WAaYW ~YYW ~ YW~ WWW ~W'W ~Y.

As a consequence of our recursive criterion for equivalesigecifying an equivalence class
of words with nonempty conterit amounts to choosing two lettefsr € C (possibly equal)
to be the left-last and right-last letters, an equivalenasscof words with contertt' \ {¢} to be
the left prefixes, and an equivalence class of words witherdiit \ {r} to be the right prefixes.
These choices can be made arbitrarily, since for@anyc C' and any words/; with content
C'\ {¢} and W, with contentC' \ {r}, the wordW = WylrW, hast(W) = ¢, r(W) = r,
L(W) =Wy, R(W) = Wa.

Consequently, we have a recurrence relafion = n? f(n—1)2, valid for alln > 1. Iterating
this recursion gives:

f(n) = f(n—1)"n?
f(n—2)*(n —1)'n?
f(n—=3)%(n —2)%n —1)*n?

=122 (n =2 (n— 1)¥n?.

This number grows quite fasfi(3) = 18.24.3% = 144, f(4) = 1'6.28.3*.42 = 341056.

Let A be a finite set. Suppose we have a real-valued fungtion the set of subsets &f with

the property thaE f(I\{i}) =0foreveryl C A. Prove thatf(I) = 0 whenevet!| < %

i€l
Solution. (Based on the solution submitted by Oliver Chambers, Usitsenf Melbourne.)
Let I; be a subset oft such that/,| = k, |A| = n > 2k. Foranyj € {0,1,--- , k}, define

fi= Y. f).

ICA
|I|=k
[INI|=j

We will prove thatf; = 0 for all j. Sincef;, = f(1;), this includes the desired reslt/;) = 0.
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Foranyj € {0,1,--- , k}, we know that

> fUN =0

JCA ieJ
|J|=k+1
|JNI1|=5

Now every term in this left-hand side j§ 1) for somek-element subset C A such that either
[IN1|=jor|INI|=j—1(the latter being impossible jf= 0). If |I N I;| = j, then the
term f(I) occursn — 2k + j times, becausé must be obtained by adding foan element of
A\ (I U 1) which has cardinality, — (2k — j). If [ N I;| = j — 1, then the termy (/) occurs
k — j + 1 times, becausé must be obtained by adding foan element of A \ 7) N I; which
has cardinalitys — (7 — 1). So the equation becomes

(n—2k+4)f;+(k—j+1)fi_1=0,

wheref_, is defined to b&®. Sincen > 2k, the coefficient off; in this equation is nonzero. So
the; =0,1,--- , k cases of this equation imply successively that 0, f{ =0,---, fr = 0.



