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1. For any positive integen, let D(n) be the number obtained by writing next to each other the
usual decimal expressions f@r. and forn, in that order. For exampld)(10) = 2010 and
D(627) = 1254627. Show that there are infinitely mamyfor which D(n) is a perfect square.

Solution. By definition, we haveD(n) = (2 x 10* + 1)n, wherek is the number of (decimal)
digits of n. This will be a perfect square if and only if we have

2x 10" +1=ma®, n=mb?

for somem, a, b, so we try to find suchn, a,b. It is easy to see that has to be at least (a
cannot bel, sincemb? = n < 10* < ma?; and if2 < a < 6, then2 x 10¥ + 1 can never be
divisible bya?). Taking powers ot0 modulo49, we find thatl0'® = 24 (mod49) and10*? = 1
(mod49). (The latter is a special case of the Fermat—Euler thedbecguses(49) = 42.) So
if k& is any positive integer satisfying= 19 (mod42), then

2x 10" +1=2x 24+ 1 =0 (mod49),

. . 2 x 10F+1
which means that we can define= 7 andm = X7+. If we then seth = 2 so that

49
n = 4m, then %0 A
k—1 k—1 k—1
10 <n—49><10 +49<2><10 ,
son does indeed have digits (and, incidentally, its first digit i$). Since there are obviously
infinitely manyk such thatc = 19 (mod42), this produces infinitely many such thatD(n) is
a perfect square.

2. Start with any nonempty string of (lowercase) letters. Aqple following operation: remove
the first letter, and then after every other letter in thengtrinsert the letter which succeeds
that letter in the alphabet, except that you should not treseything afterz. For example,
the stringf saazn becomesst ababzno after applying this operation, and that becomes
t uabbcabbcznoop after applying the operation again. Show that, no matteit wisinitial
string is, repeating this operation eventually resulthisémpty string.

Solution. As one would imagine, this result has nothing to do with thecH 26-letter
alphabet that we customarily use. We will in fact prove it &r alphabet of any size, by
induction on the size of the alphabet. However, for notai@onvenience, we continue to let
z denote the last letter of the alphabet, and write the beggnaf the alphabet as, b, - - - .

The base case is clear: if the alphabet has only one letterelga, then we never insert
anything, so the operation is just removing the first leted if we repeat that we eventually
make the string empty. Hence we can assume that our alphadat Feast two letters, and that
the result is known for all smaller alphabets.

Now imagine applying the operation repeatedly to a stringtidé that the number &’s in
the string never increases, singas never inserted. Consider the portion of the string which
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comes before the first. Whatever is happening later in the string, the effect ofojperation on
this initial portion is just the same as if it were a word inatsn right; a word, moreover, which
uses the smaller alphablet- - - ,z. So by the induction hypothesis, this initial portion must
eventually become empty. At that point, the fiasts the first letter, which is removed in the
next application of the operation. So the numbeasfin the string eventually does decrease,
and must in the long run become zero. At that point, the whaelwses the smaller alphabet
b,---,z, and by the induction hypothesis it must eventually becompte. This completes
the induction step.

This operation (specifically, the number of iterations fiesphto produce the empty word
from a string ofa’s) has been studied by W. Dison and T. Riley in their paperdtdygroups’.

. . Sl in 2 in3 .
3. Define f(z) to be the sum of the serlesgz—x + 8122 ’ SH;)Q Tyl , which converges for alll

realz. Show that for any positive integet, the following equation holds for all reat

+ 2m = 1)7T) = %f(mx)

F@)+ Flat o)+ flo D) ot o) e [

m

Solution. The left-hand side of the desired equation is

o2 e )
Jj=0 7=0 n>1
_ ]B s1nm:+j2"—”)

sin(nz) ;nB cos(jzn—”) + cos(nx) Zm:) s1n(]2”—”)

_Z n2

n>1

Now if { denotes the complex numbetp (i 2"7”), we have{™ = 1. Hence
m—1 m—1
2 2
cos(j =) +isin(j ) = Y ¢
Jj=0 7=0
_m, if ( =1,
42”:11’ if ¢ #1,

_)m, if n = km for some integet,
~ )0, otherwise.

Thus our expression becomes

msin(nz) msin(kmz) 1
2T T e = ()
=, =

as required.

The function f(z), which up to a slight scaling of variables is known as ttabachevsky
function, has several interesting properties. It is the imaginany p&Li,(e™®), where Li,
denotes the dilogarithm functiabi»(z) = >, ., ;. There is an integral formula

f(x) = —2/011n|281n( )| dé.



SUMS Problem Competition 2010 Page 3

In particular,f'(z) = —2In [2sin(3)| wheneverr is not an integer multiple atr.

. The Catalan numbers are defined by the recursiafn = coc,_1 + c1¢p_2 + - - - + ¢_1¢0, With

C
= 1. Determine the sum of the seri S
0 ;E:o 241(2n + 3)

Solution. Itis a well-known fact in analysis that the binomial poweriege

1-3-5---(2n —3)
—1 n
= (3)e =1 e 9,
n>0

has radius of convergendeand valuey/1 + x. (Although we won't need this, Abel's theorem

implies that it actually converges uniformly t@1 + = on the whole closed interva-1, 1],

sinceY”,., 222%2=3) converges by Raabe’s test.) Foralt (—1,1), we have

2
1
1+l‘: 1+Z( 2 )xn+1>
( = n+1

1 n—1 1 1
-1 9 2 n+1 2 n+1
i Z(n ) +Z< <m+1)<n—m)>‘” ’
n>0 n>0 \m=0

o) (n+1) =iy (m+1)( ) for all n > 1. Comparing this with the Catalan recurrence,
one can easily prove by induction that

1 _1\n
< 2 ):( D) ¢, foralln >0,

N

n + 1 22n+1
which is equivalent to the well-known formudg = o +1)) Hence the binomial power series
can be rewritten
1 + Z 22n+1
n>0
It follows that the power series
Cn  onio
1- Z 92n+1 x
n>0

also has radius of convergencand value/1 — x2 (again, the convergence is actually uniform
on the whole of—1, 1]). Applying fol/Q term-by-term, we get

1 —
5 224n+4 2n+3 / 1 —a?de
sin™' £+ 24/1—(3)?
B 2
_m V3
12 8
Multiplying through by16 gives the desired result:
g 9/3-

«24"(2n + 3)

n=
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. Fix an integem > 3.

a) Construct a subset C {1,2,---,n} which is as large as possible such that among any
three elements of, there are two which have no common factor greater than

b) Construct a subsét C {1,2,---,n} which is as large as possible such that among any
three elements df’, there are two which have a common factor greater than

In each part, you must prove that no subset with more elenmastghe specified property.

Solution. In part (a), the following subset obviously satisfies theursgfl property:

So = {1} U{p1, pi} U{p2, 03} U+ U {pi, 0} U {prsa } U - - U {pe},

wherepy, ps, p3, - - - denotes the sequence of prime numbkgrs; 7 (y/n) is maximal such that
pi < n,and? = wr(n) is maximal such that, < n. The size of this subsetigy/n) +m(n) + 1.

We now aim to show tha$ is as large as possible subject to the constraint in parii&).
in fact show something a bit stronger: any subsetf {1,2,---,n} with the property that no
three elements of have a common prime factor has at moét/n) + =(n) + 1 elements. For
everys € S with s # 1, let f(s) denote the smallest prime factor af This clearly defines
a functionf : S\ {1} — {p1, -+ ,pc}. By the property satisfied by, | f~'(p;)| < 2 for all
i=1,--- k. Butalso|f~!(p;)| < 1fori=Fk+1,--- ¢ sinceifp? > n thenp; is the only
element of{2, 3, - - - ,n} whose smallest prime factor is. Hence|S| < 1+ 2k + ({ — k) =
m(yv/n) +m(n) + 1, as claimed.

In part (b), the following subset obviously satisfies theuiegg property:

To = {1 < m < n|mis divisible by either or 3}.

The size of this subsetis; | + %] — | &].

We now aim to show thalj is as large as possible subject to the constraint in partib):
other words, that in any subskt C {1,2,---,n} which has at least3 | + [5] — 5] +1
elements, there exist three elements which are pairwisengeplt is easy to check that this is
true for3 < n < 8. We can then prove it in general by induction, assuming thastatement

Is known whem is replaced by, — 6. Notice that

n—~6 n—~6 n—~6 n n n
— 1=1]= |l —=1=] =
soifUN{1,2,---,n — 6} has at least this many elements, we are done. OtherWiseyst

contain at least five elements 6f — 5,n — 4,n — 3,n — 2,n — 1,n}. If U contains three
consecutive numbers in the pattern odd—even-odd, then evdaare, so the only remaining
cases to consider are where

Un{n—5.n—4,n—3.n—2.n—1,n} = {{n —5n—4n-3n—1n}, wheren ?s odd, or
{n—5n—4,n—-2n—1,n}, whereniseven.
If n is odd, them andn — 4 are coprime (because their differencd ighich is coprime to both
of them). Ifn #Z 1 (modulo3), thenn — 1 is coprime to botm andn — 4; if n = 1 (modulo3),
thenn — 3 is coprime to botm andn — 4. So the case of odd is finished. Ifn is even, then
n — 1 andn — 5 are coprime. Ifn £ 2 (modulo3), thenn — 2 is coprime to botlm — 1 and
n — 5; if n = 2 (modulo3), thenn — 4 is coprime to botm — 1 andn — 5. So the case of even
n is finished.
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. The sisters Alice, Bess and Cath need to share a circulaa pibich has been divided intn
pieces (each a circular sector having an angl# rf180° at the centre of the pizza), whetas
some integer greater thdn An allocation of the2n pieces to the three girls is acceptable if:

a) there is some diameterof the pizza (that is, some line through the centre of theg)izz
such that Alice’s pieces all lie on the same sideof

b) there is no diameter of the pizza such that all the pieces on one side @b to Bess;
C) every sister gets at least one piece.

Show that there are just as many acceptable allocationsichv@ath gets an even number of
pieces as there are in which she gets an odd number of pieces.

Solution. Let X denote the set of pieces. Specifying an allocation of thegsi¢o the three
sisters is equivalent to specifying two subsdts3 of X such thatd C B: namely, we can
let A denote the set of pieces allocated to Alice, &hthe set of pieces allocated to Alice and
Cath together. In this framework \ B denotes the set of pieces allocated to Bess,/add
denotes the set of pieces allocated to Cath. D dde the set of subsets of for which there
exists a diameter of the pizza such that all the pieces inuhset lie on the same side of that
diameter (we allow the empty set to be a membebPhf Then the acceptability conditions can
be rewritten:

a AeD;

b) B ¢ D;

c) A#(,B+# X (andB # A, which is automatic from (1) and (2)).
Now the fact we are asked to prove is equivalent to the equatio

> (nPvi=o,

A,BCX
ACB
A€ED,A#)
B¢D,B#X

since the left-hand side equals the number of acceptaloleadilbns in which Cath gets an even
number of pieces, minus the number of acceptable allocatiowhich she gets an odd number
of pieces. Notice that for a fixed subsétC X, not equal taX, we have

| X\A

Z (=1)/B\AI = Z (—1)17 = Z (\Xli A\) (—1)* =0,

ACBCX ECX\A k=0

by the Binomial Theorem, and hence

Z (=1)IBVAl = (1)l

ACB#X

Similarly, for a fixedB C X, not equal td), we have

Z (=) = —(—1)IBI,

0+ACB
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Another obvious fact is thak' ¢ D, and that ifA C B, it is impossible to have botd ¢ D
andB € D. Hence

Z (=)l = Z (=)l Z (=)l Z (—1)IB\Al

AABQX AABQX AABQX AABQX
CB CB CB CB
AED,A#D AH( AZD AdD
B¢D,B#£X B#X BeD B#X
- _ Z (1)1 Z (=1)1B + Z (—1)lx\Al
0£A£X BED,B£) A¢D A#X
S CILEED MCHETED DI CE
0AA#£X AED,A#D A¢D,A£X
=0,

where in the second-last line we used the fact fidtis even. Notice that we did not need to
use the specific definition @p.

7. Find all real numbers, y, z, t such that
cHy+r+t=a?+ P+ 2+ =+ P+ B =ty 4

Solution. There arel6 obvious solutions where each ofy, z, t is either0 or 1. These are in
fact the only solutions, even if we neglect the constrainteny + z + t. The reason is that the
other two equalities imply

- 1?4+ (y— 1)+ 22— 1)+ 2t — 1) =2t =22 4 22 -t — 287 4 4P
=@yttt 2@ P A )+ (@ R )
=0,

from which it is clear that, y, z,t € {0, 1}.

This provides a simpler proof of the= 4 case of Problem 10 in the 2006 SUMS Competition
(the same argument would also work for> 4). The connection is as follows. ¢fdenotes the
common value of the power sumast y + z +t, 2% + y* + 2% + 2, etc., then Newton’s Formula
implies that the elementary symmetric polynomialsin, z, t are as follows:

r+y+z+t=c,

cle—1)
ry+axz+at+yz+yt+ 2zt = 7
clc—=1)(c—2)
xyz +zyt + x2t + Yzt = G ,
cle—=1)(c=2)(c—3)

t =

The conclusion is that the polynomi@X + z)(X + y)(X + 2)(X + t) equals

X4 ex? 4 c(c2— 1)X2 N c(c— 123(6_2))(—1— c(c — 1)(02; 2)(0—3)7

and we have shown that the only values:dbr which this polynomial factorizes completely
into linear factors over the real numbers are 0, 1, 2, 3, 4.
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. Considem x n matrices with entries in the field, of integers modul@, wherep is some prime
number. IfM is such a matrix, itsharacteristic polynomial is defined to belet(z/ — M) where
I denotes the identity matrix, and we say tiAdtis unipotent if its characteristic polynomial
equals(z — 1)™ (that is, M has a single eigenvaluewith multiplicity »). Find, in terms ofn
andp, the smallest positive integersuch that\V/* = [ for all unipotent matriced/.

Solution. First, note why the question makes senseMifis unipotent then it must be
invertible, so it belongs to the finite groupL,(Z,) of invertiblen x n matrices with entries
in Z,. Therefore it has a finite ordef /), which is defined to be the smallest exponent such
that M) = I (and is bounded above by the size of the group); for geretal® = I if and
only if e is a multiple ofe( /). So the minimal exponentin the question is well defined, and
equals the least common multiple of the ordei&/) of unipotent matriced/.

The key result is the Jordan canonical form theorem, whigh 8aat any unipotent matrix/
is similar to one which is block-diagonal, where every diagjdlock is of the form

1 100 0 0
0110 0 0
0011 0 0
J,=10001 .- 00 (anm x m matrix).
0o00O0 -+~ 11
0000 - -- 01

If two matricesA and B are similar, sayB = XAX !, thenA* = I if and only if B* = I,
becauseB* = XA*X~1; soe(A) = e(B). Moreover, if B is block-diagonal with diagonal
blocks By, Bs, - - -, B,, then B¥ is block-diagonal with diagonal blockBY, B%. ... B, so
B = I'if and only if B¥ = I for all i, which means that(B) = lem{e(B;)}. Therefore the
guantity we seek is

a=lem{e(J,) |1 <m <n}.

Note thate(.J;) = 1, so we can assume henceforth that- 2.

It is easy to prove by induction that ti¢h powerJ* is an upper-triangular matrix where
the entries on each diagonal strip are the same: the entrigtgealiagonal passing through the
(1,7 + 1) entry are all equal to the binomial coefficie(r’jl), interpreted modulp. So

e(Jm):min{kzl ’ (];) zO(modp)foralllgjgm—l}.

It is well known that("”f) is divisible byp if and only if there is at least one carry when the
numbers; andk — j are added in bage In particular, ifk has a nonzerg® digit in its basep
expression, there is obviously no carry whérandk — p® are added, s()]f) is not divisible by

p. So to have the property thé(]i) is divisible byp for all 1 < 7 < m — 1, we must have that
k has zero digits in the position8, p!, p?, - - - , pleee(m=DI sok > pllegp(m=DI+1 — 4log,(m)]
(the smallest power gf which is greater than or equal ta). Conversely, ifc = pllog (™)1
there is a carry whempandk — j are added forall < j <m — 1. So

e(Jm) = pﬂogp(mﬂ’ |mp|y|ng thata — pDng(nﬂ )

Note that these formulas give the correct answer whea 1 andn = 1 also.
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. Aring is a setR with two binary operationgr, s) — r + s and(r,s) — rs, an operation
r — —r, and an elemertt € R, satisfying the following axioms:

r+(s+t)=r+s)+t, r+s=s+r, r+0=r, r+(—r)=0,
r(st) = (rs)t, r(s+t)=rs+rt, (r+s)t=rt+ st

for all r, s,t € R. Show that ifR is a ring with the property that' = r for all » € R, thenR is
commutative in the sense thats = sr for all r, s € R.

Solution. We will take for granted the elementary consequences ofrtigeaixioms which can
be found in any algebra textbook. Here we are concerned iltonsequences of the extra
assumption that* = z for all z € R. We will prove a number of properties &fin succession,
leading up to the desired commutativity.

First note that for any: € R we haver = z* = (—z)* = —=z, so R has characteristig,
meaning that subtraction is the same as addition.

We use the notatiofx, y| for the commutator:y — yx = xy + yz; notice thatlz, y] = 0 if
and only ifx andy commute, and thay, «| = [z, y] always. We have the identities

(z+y)?=2>+y*+ [2,y] and [z, [z,y]] = [°,y],

valid for all z,y € R.
Let S denote the subsdtr € R|z? = x} (which obviously containg). We can generate
elements of5' as follows: for anyr € R, we have

(r+22)2 =2+ +|z,2°) =2 +2, sox+2?c8S.

We will not need it, but it is also easy to see thatc S.
We claim that ifr € R andy € S, then[z,y] = 0. To see this, note that

(zy + yay)® = zyzy + yry’zy + [zy, yry] = vyzy + yryzy + [zy, yry] = 0.

Hencery + yzy = (zy + yzy)* = 0, soxy = yxy. By an almost identical argument one can
show thatyx = yxy, soxy = yx as required.
It now follows thatS is a subring ofR. Forif z,y € S, then

(z+y)’=z+y+zyl=c+y, (vy)’=ayry=2a(zy)y =2y,

soxr +y,xy € S.
We now prove that any, y € R commute. Since + 2%,y +v%, (z + ) + (z +y)? € S and
S'is a subring,
[zyl =c+ 2 +y+y*+ (e +y) + (2 +y)° €S

This implies that{z?,y] = [z, [z,y]] = 0. But also[z + 2?,y] = 0 sincez + z* € S, s0
[z,y] = [z + 22, y] + [z, y] = 0 as required.

This result is a very special case of a more general theoremodiacobson, which states that
if Risaringinwhich every elementequals one of its powers' for n > 1 (wheren is allowed
to depend omx), then R is commutative. See T. Y. Lamf First Course in Noncommutative
Rings, Theorem 12.10.

a b
c d

(u) =s (a) +1 (b) for somes,t € Z}.
v c d

10. For any2 x 2 integer matrixA = (

)<=

) , define thentegral column space C'(A) of A to be
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a) Suppose thatl;, A,,--- , A, are2 x 2 integer matrices such thatt(Ay) # 0 for every
k, and the uniorC'(A;) U C(Ag) U--- U C(A,,) is all of Z%. Show that

1 1 1
|det(Ay)| | det(Ay)] | det(A,)|

> 1.

b) Show that for any > 0, there is a sequencé;, A,, A3, - - - of 2 x 2 integer matrices such
thatdet(Ay) # 0 for everyk, the unionC'(A;) U C(A4y) UC(A3) U --- is all of Z?, and

1 1 1
+ +
|det(Ay)|  |det(A2)] | det(As)]

+...§€.

Solution. Note thatC'(A) is exactly{A({)| () € Z?}, or in other words the image of
the Z-linear mapZ? — 72 represented byl. This is a subgroup of the additive grod.

If det(A) # 0 (i.e. the linear ma@.? — Z? represented byl is injective), then the index of
the subgroup”'(A) is |det(A)], in the sense that the quotient grodp/C(A) has|det(A)|
elements. To prove this, one can use the standard fact @& e some matrices andY
with determinant:1 such thatY AY = (¢ . ) is diagonal; then it is easy to see that/C(A)

is isomorphic to

7 |C(XAY) =72 )(Zay © Zay) = 7.)7a, & 7] Zay, Which hasla,ay| = | det(A)| elements.

Thus, in a loose sense, if you choose an elemeffaft random, the probability that it lies in
C(A)is m. This is why the result of (a) is to be expected, and the regli) is somewhat
surprising: every element lies in one of the subgétd,), and yet the sum of the probabilities
of its lying in the various” (A)’s is arbitrarily small.

The subtlety comes from the infiniteness (or more accuratiedynon-compactness) @f,
which means it is impossible to make strict sense of thedegtbties as stated. The best one
can do is to make statements about associated finite setex&mple, in the intersection @
with the squaré— N, N|] x [—N, N| for some positiveV, the probability that an element lies

in C(A) is indeed approximatelym (“approximately” because of boundary effects, which

would become more negligible a6 gets larger). Alternatively, in a finite quotient grodp/ H
whereH is a subgroup contained ifi(A), the probability that an element lies @A)/ H is
exactlym, because of the isomorphisié?/H)/(C(A)/H) = Z?/C(A).

To prove part (a), we could use either of these two ideas; dtierlis easier. Lefl be
the intersectionC'(A4;) N C(Ay) N --- N C(A,,), which is another subgroup &?2. By in-
duction onm, one can easily prove thaf has finite index, or more precisely tha?/H| <
| det(A;)|| det(As)|- - - | det(A,,)|. The assumption th&? = C'(A;) U C(Az) U---UC(An)
implies thatZ?/H = C(A,)/H U C(Ay)/HU---UC(A,,)/H, so

C(A)/H| +|C(As)/H| + -+ |C(An)/H| > |2°/H|.

Dividing both sides byZ?/H| and using the isomorphist#?/H)/(C(Ay)/H) = 72/ C(Ay)
mentioned above, we obtain the result. Note that the sanueremngt would work for an infinite
sequence of matriced;, A,, - - - if it happened that the intersecti@n(A;) N C(Ay)--- had
finite index.

The key to part (b) is the observation that for evéty € Z?, there are matriced such that
(¥) € C(A) for which | det(A)| is arbitrarily large. Ifu = v = 0 this is obvious. Otherwise,
let z,y € Z be any integers such thay — vz # 0, and setd = (¥ %j) for a positive integer
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N; one hag det(A)| = N|uy — vx| which can be made arbitrarily large by choosiNdarge
enough.

SinceZ? is countable, we can list its elementspasp,, ps, - - -, and choosel;, to be a matrix
such thap, € C(Ay) and|det(Ay)| > 2¢M whereM is some overall positive constant. Then
it is obvious thatZ? = C'(A4;) U C'(A4y) U C(A3) U -- -, and yet

RS N SRNRPRE SRS SRS SR
|det(Ay)|  |det(As)| | det(As)] B

1
oM " 4aM " 8M M’

where-- can be made arbitrarily small by choosinglarge enough.

L
M



