
Sydney University Mathematical Society Problem Competition 2010

1. For any positive integern, let D(n) be the number obtained by writing next to each other the
usual decimal expressions for2n and forn, in that order. For example,D(10) = 2010 and
D(627) = 1254627. Show that there are infinitely manyn for whichD(n) is a perfect square.

Solution. By definition, we haveD(n) = (2× 10k +1)n, wherek is the number of (decimal)
digits ofn. This will be a perfect square if and only if we have

2× 10k + 1 = ma2, n = mb2,

for somem, a, b, so we try to find suchm, a, b. It is easy to see thata has to be at least7 (a
cannot be1, sincemb2 = n < 10k < ma2; and if 2 ≤ a ≤ 6, then2 × 10k + 1 can never be
divisible bya2). Taking powers of10 modulo49, we find that1019 ≡ 24 (mod49) and1042 ≡ 1
(mod49). (The latter is a special case of the Fermat–Euler theorem,becauseφ(49) = 42.) So
if k is any positive integer satisfyingk ≡ 19 (mod42), then

2× 10k + 1 ≡ 2× 24 + 1 ≡ 0 (mod49),

which means that we can definea = 7 andm =
2× 10k + 1

49
. If we then setb = 2 so that

n = 4m, then

10k−1 < n =
80

49
× 10k−1 +

4

49
< 2× 10k−1,

son does indeed havek digits (and, incidentally, its first digit is1). Since there are obviously
infinitely manyk such thatk ≡ 19 (mod42), this produces infinitely manyn such thatD(n) is
a perfect square.

2. Start with any nonempty string of (lowercase) letters. Apply the following operation: remove
the first letter, and then after every other letter in the string, insert the letter which succeeds
that letter in the alphabet, except that you should not insert anything afterz. For example,
the stringfsaazn becomesstababzno after applying this operation, and that becomes
tuabbcabbcznoop after applying the operation again. Show that, no matter what the initial
string is, repeating this operation eventually results in the empty string.

Solution. As one would imagine, this result has nothing to do with the specific 26-letter
alphabet that we customarily use. We will in fact prove it foran alphabet of any size, by
induction on the size of the alphabet. However, for notational convenience, we continue to let
z denote the last letter of the alphabet, and write the beginning of the alphabet asa,b, · · · .

The base case is clear: if the alphabet has only one letter, namely z, then we never insert
anything, so the operation is just removing the first letter,and if we repeat that we eventually
make the string empty. Hence we can assume that our alphabet has at least two letters, and that
the result is known for all smaller alphabets.

Now imagine applying the operation repeatedly to a string. Notice that the number ofa’s in
the string never increases, sincea is never inserted. Consider the portion of the string which
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comes before the firsta. Whatever is happening later in the string, the effect of theoperation on
this initial portion is just the same as if it were a word in itsown right; a word, moreover, which
uses the smaller alphabetb, · · · ,z. So by the induction hypothesis, this initial portion must
eventually become empty. At that point, the firsta is the first letter, which is removed in the
next application of the operation. So the number ofa’s in the string eventually does decrease,
and must in the long run become zero. At that point, the whole word uses the smaller alphabet
b, · · · ,z, and by the induction hypothesis it must eventually become empty. This completes
the induction step.

This operation (specifically, the number of iterations required to produce the empty word
from a string ofa’s) has been studied by W. Dison and T. Riley in their paper ‘Hydra groups’.

3. Definef(x) to be the sum of the series
sin x

12
+

sin 2x

22
+

sin 3x

32
+ · · · , which converges for all

realx. Show that for any positive integerm, the following equation holds for all realx:

f(x) + f(x+
2π

m
) + f(x+

4π

m
) + f(x+

6π

m
) + · · ·+ f(x+

2(m− 1)π

m
) =

1

m
f(mx).

Solution. The left-hand side of the desired equation is

m−1
∑

j=0

f(x+
2jπ

m
) =

m−1
∑

j=0

∑

n≥1

sin n(x+ 2jπ
m
)

n2

=
∑

n≥1

∑m−1
j=0 sin(nx+ j 2nπ

m
)

n2

=
∑

n≥1

sin(nx)
∑m−1

j=0 cos(j 2nπ
m

) + cos(nx)
∑m−1

j=0 sin(j 2nπ
m

)

n2
.

Now if ζ denotes the complex numberexp(i2nπ
m

), we haveζm = 1. Hence

m−1
∑

j=0

cos(j
2nπ

m
) + i sin(j

2nπ

m
) =

m−1
∑

j=0

ζj

=

{

m, if ζ = 1,
ζm−1
ζ−1

, if ζ 6= 1,

=

{

m, if n = km for some integerk,

0, otherwise.

Thus our expression becomes
∑

n≥1
n=km

m sin(nx)

n2
=
∑

k≥1

m sin(kmx)

k2m2
=

1

m
f(mx),

as required.
The functionf(x), which up to a slight scaling of variables is known as theLobachevsky

function, has several interesting properties. It is the imaginary part of Li2(eix), whereLi2
denotes the dilogarithm functionLi2(z) =

∑

n≥1
zn

n2 . There is an integral formula

f(x) = −2

∫ x

0

ln |2 sin(θ
2
)| dθ.



SUMS Problem Competition 2010 Page 3

In particular,f ′(x) = −2 ln |2 sin(x
2
)| wheneverx is not an integer multiple of2π.

4. TheCatalan numbers are defined by the recursioncn = c0cn−1 + c1cn−2 + · · · + cn−1c0, with

c0 = 1. Determine the sum of the series
∞
∑

n=0

cn
24n(2n+ 3)

.

Solution. It is a well-known fact in analysis that the binomial power series
∑

n≥0

( 1
2

n

)

xn = 1 +
∑

n≥1

(−1)n−11 · 3 · 5 · · · (2n− 3)

2nn!
xn

has radius of convergence1 and value
√
1 + x. (Although we won’t need this, Abel’s theorem

implies that it actually converges uniformly to
√
1 + x on the whole closed interval[−1, 1],

since
∑

n≥1
1·3·5···(2n−3)

2nn!
converges by Raabe’s test.) For allx ∈ (−1, 1), we have

1 + x =

(

1 +
∑

n≥0

(

1
2

n+ 1

)

xn+1

)2

= 1 + 2
∑

n≥0

(

1
2

n + 1

)

xn+1 +
∑

n≥0

(

n−1
∑

m=0

(

1
2

m+ 1

)(

1
2

n−m

)

)

xn+1,

so
( 1

2

n+1

)

= −1
2

∑n−1
m=0

( 1

2

m+1

)( 1

2

n−m

)

for all n ≥ 1. Comparing this with the Catalan recurrence,
one can easily prove by induction that

(

1
2

n+ 1

)

=
(−1)n

22n+1
cn for all n ≥ 0,

which is equivalent to the well-known formulacn = (2n)!
(n+1)!n!

. Hence the binomial power series
can be rewritten

1 +
∑

n≥0

(−1)ncn
22n+1

xn+1.

It follows that the power series

1−
∑

n≥0

cn
22n+1

x2n+2

also has radius of convergence1 and value
√
1− x2 (again, the convergence is actually uniform

on the whole of[−1, 1]). Applying
∫ 1/2

0
term-by-term, we get

1

2
−
∑

n≥0

cn
24n+4(2n+ 3)

=

∫ 1/2

0

√
1− x2 dx

=
sin−1 1

2
+ 1

2

√

1− (1
2
)2

2

=
π

12
+

√
3

8
.

Multiplying through by16 gives the desired result:
∞
∑

n=0

cn
24n(2n+ 3)

= 8− 2
√
3− 4π

3
.
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5. Fix an integern ≥ 3.

a) Construct a subsetS ⊆ {1, 2, · · · , n} which is as large as possible such that among any
three elements ofS, there are two which have no common factor greater than1.

b) Construct a subsetT ⊆ {1, 2, · · · , n} which is as large as possible such that among any
three elements ofT , there are two which have a common factor greater than1.

In each part, you must prove that no subset with more elementshas the specified property.

Solution. In part (a), the following subset obviously satisfies the required property:

S0 = {1} ∪ {p1, p21} ∪ {p2, p22} ∪ · · · ∪ {pk, p2k} ∪ {pk+1} ∪ · · · ∪ {pℓ},

wherep1, p2, p3, · · · denotes the sequence of prime numbers,k = π(
√
n) is maximal such that

p2k ≤ n, andℓ = π(n) is maximal such thatpℓ ≤ n. The size of this subset isπ(
√
n)+π(n)+1.

We now aim to show thatS0 is as large as possible subject to the constraint in part (a).We
in fact show something a bit stronger: any subsetS of {1, 2, · · · , n} with the property that no
three elements ofS have a common prime factor has at mostπ(

√
n) + π(n) + 1 elements. For

everys ∈ S with s 6= 1, let f(s) denote the smallest prime factor ofs. This clearly defines
a functionf : S \ {1} → {p1, · · · , pℓ}. By the property satisfied byS, |f−1(pi)| ≤ 2 for all
i = 1, · · · , k. But also|f−1(pi)| ≤ 1 for i = k + 1, · · · , ℓ, since ifp2i > n thenpi is the only
element of{2, 3, · · · , n} whose smallest prime factor ispi. Hence|S| ≤ 1 + 2k + (ℓ − k) =
π(
√
n) + π(n) + 1, as claimed.

In part (b), the following subset obviously satisfies the required property:

T0 = {1 ≤ m ≤ n |m is divisible by either2 or 3}.

The size of this subset is⌊n
2
⌋ + ⌊n

3
⌋ − ⌊n

6
⌋.

We now aim to show thatT0 is as large as possible subject to the constraint in part (b):in
other words, that in any subsetU ⊆ {1, 2, · · · , n} which has at least⌊n

2
⌋ + ⌊n

3
⌋ − ⌊n

6
⌋ + 1

elements, there exist three elements which are pairwise coprime. It is easy to check that this is
true for3 ≤ n ≤ 8. We can then prove it in general by induction, assuming that the statement
is known whenn is replaced byn− 6. Notice that

⌊n− 6

2
⌋+ ⌊n− 6

3
⌋ − ⌊n− 6

6
⌋+ 1 = ⌊n

2
⌋+ ⌊n

3
⌋ − ⌊n

6
⌋ − 3,

so if U ∩ {1, 2, · · · , n − 6} has at least this many elements, we are done. Otherwise,U must
contain at least five elements of{n − 5, n − 4, n − 3, n − 2, n − 1, n}. If U contains three
consecutive numbers in the pattern odd–even–odd, then we are done, so the only remaining
cases to consider are where

U∩{n−5, n−4, n−3, n−2, n−1, n} =

{

{n− 5, n− 4, n− 3, n− 1, n}, wheren is odd, or

{n− 5, n− 4, n− 2, n− 1, n}, wheren is even.

If n is odd, thenn andn−4 are coprime (because their difference is4 which is coprime to both
of them). Ifn 6≡ 1 (modulo3), thenn− 1 is coprime to bothn andn− 4; if n ≡ 1 (modulo3),
thenn − 3 is coprime to bothn andn − 4. So the case of oddn is finished. Ifn is even, then
n − 1 andn − 5 are coprime. Ifn 6≡ 2 (modulo3), thenn − 2 is coprime to bothn − 1 and
n− 5; if n ≡ 2 (modulo3), thenn− 4 is coprime to bothn− 1 andn− 5. So the case of even
n is finished.
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6. The sisters Alice, Bess and Cath need to share a circular pizza which has been divided into2n
pieces (each a circular sector having an angle of1

n
× 180◦ at the centre of the pizza), wheren is

some integer greater than1. An allocation of the2n pieces to the three girls is acceptable if:

a) there is some diameterd of the pizza (that is, some line through the centre of the pizza)
such that Alice’s pieces all lie on the same side ofd;

b) there is no diametere of the pizza such that all the pieces on one side ofe go to Bess;

c) every sister gets at least one piece.

Show that there are just as many acceptable allocations in which Cath gets an even number of
pieces as there are in which she gets an odd number of pieces.

Solution. Let X denote the set of pieces. Specifying an allocation of the pieces to the three
sisters is equivalent to specifying two subsetsA,B of X such thatA ⊆ B: namely, we can
let A denote the set of pieces allocated to Alice, andB the set of pieces allocated to Alice and
Cath together. In this framework,X \B denotes the set of pieces allocated to Bess, andB \ A
denotes the set of pieces allocated to Cath. LetD be the set of subsets ofX for which there
exists a diameter of the pizza such that all the pieces in the subset lie on the same side of that
diameter (we allow the empty set to be a member ofD). Then the acceptability conditions can
be rewritten:

a) A ∈ D;

b) B /∈ D;

c) A 6= ∅, B 6= X (andB 6= A, which is automatic from (1) and (2)).

Now the fact we are asked to prove is equivalent to the equation

∑

A,B⊆X
A⊆B

A∈D,A 6=∅
B/∈D,B 6=X

(−1)|B\A| = 0,

since the left-hand side equals the number of acceptable allocations in which Cath gets an even
number of pieces, minus the number of acceptable allocations in which she gets an odd number
of pieces. Notice that for a fixed subsetA ⊆ X, not equal toX, we have

∑

A⊆B⊆X

(−1)|B\A| =
∑

E⊆X\A

(−1)|E| =

|X\A|
∑

k=0

(|X \ A|
k

)

(−1)k = 0,

by the Binomial Theorem, and hence

∑

A⊆B 6=X

(−1)|B\A| = −(−1)|X\A|.

Similarly, for a fixedB ⊆ X, not equal to∅, we have

∑

∅6=A⊆B

(−1)|B\A| = −(−1)|B|.
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Another obvious fact is thatX /∈ D, and that ifA ⊆ B, it is impossible to have bothA /∈ D
andB ∈ D. Hence

∑

A,B⊆X
A⊆B

A∈D,A 6=∅
B/∈D,B 6=X

(−1)|B\A| =
∑

A,B⊆X
A⊆B
A 6=∅
B 6=X

(−1)|B\A| −
∑

A,B⊆X
A⊆B
A 6=∅
B∈D

(−1)|B\A| −
∑

A,B⊆X
A⊆B
A/∈D
B 6=X

(−1)|B\A|

= −
∑

∅6=A 6=X

(−1)|X\A| +
∑

B∈D,B 6=∅

(−1)|B| +
∑

A/∈D,A 6=X

(−1)|X\A|

= −
∑

∅6=A 6=X

(−1)|A| +
∑

A∈D,A 6=∅

(−1)|A| +
∑

A/∈D,A 6=X

(−1)|A|

= 0,

where in the second-last line we used the fact that|X| is even. Notice that we did not need to
use the specific definition ofD.

7. Find all real numbersx, y, z, t such that

x+ y + z + t = x2 + y2 + z2 + t2 = x3 + y3 + z3 + t3 = x4 + y4 + z4 + t4.

Solution. There are16 obvious solutions where each ofx, y, z, t is either0 or 1. These are in
fact the only solutions, even if we neglect the constraint onx+ y+ z+ t. The reason is that the
other two equalities imply

x2(x− 1)2 + y2(y − 1)2 + z2(z − 1)2 + t2(t− 1)2 = x4 − 2x3 + x2 + · · ·+ t4 − 2t3 + t2

= (x4 + y4 + z4 + t4)− 2(x3 + y3 + z3 + t3) + (x2 + y2 + z2 + t2)

= 0,

from which it is clear thatx, y, z, t ∈ {0, 1}.
This provides a simpler proof of then = 4 case of Problem 10 in the 2006 SUMS Competition

(the same argument would also work forn > 4). The connection is as follows. Ifc denotes the
common value of the power sumsx+ y+ z+ t, x2 + y2+ z2 + t2, etc., then Newton’s Formula
implies that the elementary symmetric polynomials inx, y, z, t are as follows:

x+ y + z + t = c,

xy + xz + xt + yz + yt+ zt =
c(c− 1)

2
,

xyz + xyt+ xzt + yzt =
c(c− 1)(c− 2)

6
,

xyzt =
c(c− 1)(c− 2)(c− 3)

24
.

The conclusion is that the polynomial(X + x)(X + y)(X + z)(X + t) equals

X4 + cX3 +
c(c− 1)

2
X2 +

c(c− 1)(c− 2)

6
X +

c(c− 1)(c− 2)(c− 3)

24
,

and we have shown that the only values ofc for which this polynomial factorizes completely
into linear factors over the real numbers arec = 0, 1, 2, 3, 4.



SUMS Problem Competition 2010 Page 7

8. Considern×n matrices with entries in the fieldZp of integers modulop, wherep is some prime
number. IfM is such a matrix, itscharacteristic polynomial is defined to bedet(xI−M) where
I denotes the identity matrix, and we say thatM is unipotent if its characteristic polynomial
equals(x − 1)n (that is,M has a single eigenvalue1 with multiplicity n). Find, in terms ofn
andp, the smallest positive integera such thatMa = I for all unipotent matricesM .

Solution. First, note why the question makes sense: ifM is unipotent then it must be
invertible, so it belongs to the finite groupGLn(Zp) of invertiblen × n matrices with entries
in Zp. Therefore it has a finite ordere(M), which is defined to be the smallest exponent such
thatMe(M) = I (and is bounded above by the size of the group); for generale, Me = I if and
only if e is a multiple ofe(M). So the minimal exponenta in the question is well defined, and
equals the least common multiple of the orderse(M) of unipotent matricesM .

The key result is the Jordan canonical form theorem, which says that any unipotent matrixM
is similar to one which is block-diagonal, where every diagonal block is of the form

Jm =























1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 1























(anm×m matrix).

If two matricesA andB are similar, sayB = XAX−1, thenAk = I if and only if Bk = I,
becauseBk = XAkX−1; so e(A) = e(B). Moreover, ifB is block-diagonal with diagonal
blocksB1, B2, · · · , Bs, thenBk is block-diagonal with diagonal blocksBk

1 , B
k
2 , · · · , Bk

s , so
Bk = I if and only if Bk

i = I for all i, which means thate(B) = lcm{e(Bi)}. Therefore the
quantity we seek is

a = lcm{e(Jm) | 1 ≤ m ≤ n}.
Note thate(J1) = 1, so we can assume henceforth thatm ≥ 2.

It is easy to prove by induction that thekth powerJk
m is an upper-triangular matrix where

the entries on each diagonal strip are the same: the entries on the diagonal passing through the
(1, j + 1) entry are all equal to the binomial coefficient

(

k
j

)

, interpreted modulop. So

e(Jm) = min

{

k ≥ 1

∣

∣

∣

∣

(

k

j

)

≡ 0 (modp) for all 1 ≤ j ≤ m− 1

}

.

It is well known that
(

k
j

)

is divisible byp if and only if there is at least one carry when the
numbersj andk − j are added in basep. In particular, ifk has a nonzerops digit in its basep
expression, there is obviously no carry whenps andk− ps are added, so

(

k
ps

)

is not divisible by

p. So to have the property that
(

k
j

)

is divisible byp for all 1 ≤ j ≤ m − 1, we must have that

k has zero digits in the positionsp0, p1, p2, · · · , p⌊logp(m−1)⌋, sok ≥ p⌊logp(m−1)⌋+1 = p⌈logp(m)⌉

(the smallest power ofp which is greater than or equal tom). Conversely, ifk = p⌈logp(m)⌉,
there is a carry whenj andk − j are added for all1 ≤ j ≤ m− 1. So

e(Jm) = p⌈logp(m)⌉, implying thata = p⌈logp(n)⌉.

Note that these formulas give the correct answer whenm = 1 andn = 1 also.
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9. A ring is a setR with two binary operations(r, s) 7→ r + s and (r, s) 7→ rs, an operation
r 7→ −r, and an element0 ∈ R, satisfying the following axioms:

r + (s+ t) = (r + s) + t, r + s = s+ r, r + 0 = r, r + (−r) = 0,

r(st) = (rs)t, r(s+ t) = rs+ rt, (r + s)t = rt+ st,

for all r, s, t ∈ R. Show that ifR is a ring with the property thatr4 = r for all r ∈ R, thenR is
commutative in the sense thatrs = sr for all r, s ∈ R.

Solution. We will take for granted the elementary consequences of the ring axioms which can
be found in any algebra textbook. Here we are concerned with the consequences of the extra
assumption thatx4 = x for all x ∈ R. We will prove a number of properties ofR in succession,
leading up to the desired commutativity.

First note that for anyx ∈ R we havex = x4 = (−x)4 = −x, soR has characteristic2,
meaning that subtraction is the same as addition.

We use the notation[x, y] for the commutatorxy − yx = xy + yx; notice that[x, y] = 0 if
and only ifx andy commute, and that[y, x] = [x, y] always. We have the identities

(x+ y)2 = x2 + y2 + [x, y] and [x, [x, y]] = [x2, y],

valid for all x, y ∈ R.
Let S denote the subset{x ∈ R | x2 = x} (which obviously contains0). We can generate

elements ofS as follows: for anyx ∈ R, we have

(x+ x2)2 = x2 + x4 + [x, x2] = x2 + x, sox+ x2 ∈ S.

We will not need it, but it is also easy to see thatx3 ∈ S.
We claim that ifx ∈ R andy ∈ S, then[x, y] = 0. To see this, note that

(xy + yxy)2 = xyxy + yxy2xy + [xy, yxy] = xyxy + yxyxy + [xy, yxy] = 0.

Hencexy + yxy = (xy + yxy)4 = 0, soxy = yxy. By an almost identical argument one can
show thatyx = yxy, soxy = yx as required.

It now follows thatS is a subring ofR. For if x, y ∈ S, then

(x+ y)2 = x+ y + [x, y] = x+ y, (xy)2 = xyxy = x(xy)y = xy,

sox+ y, xy ∈ S.
We now prove that anyx, y ∈ R commute. Sincex+ x2, y + y2, (x+ y) + (x+ y)2 ∈ S and

S is a subring,
[x, y] = x+ x2 + y + y2 + (x+ y) + (x+ y)2 ∈ S.

This implies that[x2, y] = [x, [x, y]] = 0. But also[x + x2, y] = 0 sincex + x2 ∈ S, so
[x, y] = [x+ x2, y] + [x2, y] = 0 as required.

This result is a very special case of a more general theorem due to Jacobson, which states that
if R is a ring in which every elementx equals one of its powersxn for n > 1 (wheren is allowed
to depend onx), thenR is commutative. See T. Y. Lam,A First Course in Noncommutative
Rings, Theorem 12.10.

10. For any2× 2 integer matrixA =

(

a b
c d

)

, define theintegral column space C(A) of A to be

{(

u
v

)

∈ Z
2

∣

∣

∣

∣

(

u
v

)

= s

(

a
c

)

+ t

(

b
d

)

for somes, t ∈ Z

}

.
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a) Suppose thatA1, A2, · · · , Am are2 × 2 integer matrices such thatdet(Ak) 6= 0 for every
k, and the unionC(A1) ∪ C(A2) ∪ · · · ∪ C(Am) is all ofZ2. Show that

1

| det(A1)|
+

1

| det(A2)|
+ · · ·+ 1

| det(Am)|
≥ 1.

b) Show that for anyǫ > 0, there is a sequenceA1, A2, A3, · · · of 2× 2 integer matrices such
thatdet(Ak) 6= 0 for everyk, the unionC(A1) ∪ C(A2) ∪ C(A3) ∪ · · · is all ofZ2, and

1

| det(A1)|
+

1

| det(A2)|
+

1

| det(A3)|
+ · · · ≤ ǫ.

Solution. Note thatC(A) is exactly{A( s
t ) | ( s

t ) ∈ Z
2}, or in other words the image of

theZ-linear mapZ2 → Z
2 represented byA. This is a subgroup of the additive groupZ2.

If det(A) 6= 0 (i.e. the linear mapZ2 → Z
2 represented byA is injective), then the index of

the subgroupC(A) is | det(A)|, in the sense that the quotient groupZ2/C(A) has | det(A)|
elements. To prove this, one can use the standard fact that there are some matricesX andY
with determinant±1 such thatXAY = ( a1 0

0 a2
) is diagonal; then it is easy to see thatZ

2/C(A)
is isomorphic to

Z
2/C(XAY ) = Z

2/(Za1 ⊕ Za2) ∼= Z/Za1 ⊕ Z/Za2, which has|a1a2| = | det(A)| elements.

Thus, in a loose sense, if you choose an element ofZ
2 at random, the probability that it lies in

C(A) is 1
|det(A)|

. This is why the result of (a) is to be expected, and the resultof (b) is somewhat
surprising: every element lies in one of the subsetsC(Ak), and yet the sum of the probabilities
of its lying in the variousC(Ak)’s is arbitrarily small.

The subtlety comes from the infiniteness (or more accurately, the non-compactness) ofZ2,
which means it is impossible to make strict sense of these probabilities as stated. The best one
can do is to make statements about associated finite sets. Forexample, in the intersection ofZ2

with the square[−N,N ] × [−N,N ] for some positiveN , the probability that an element lies
in C(A) is indeed approximately 1

|det(A)|
(“approximately” because of boundary effects, which

would become more negligible asN gets larger). Alternatively, in a finite quotient groupZ2/H
whereH is a subgroup contained inC(A), the probability that an element lies inC(A)/H is
exactly 1

|det(A)|
, because of the isomorphism(Z2/H)/(C(A)/H) ∼= Z

2/C(A).
To prove part (a), we could use either of these two ideas; the latter is easier. LetH be

the intersectionC(A1) ∩ C(A2) ∩ · · · ∩ C(Am), which is another subgroup ofZ2. By in-
duction onm, one can easily prove thatH has finite index, or more precisely that|Z2/H| ≤
| det(A1)|| det(A2)| · · · | det(Am)|. The assumption thatZ2 = C(A1) ∪ C(A2) ∪ · · · ∪ C(Am)
implies thatZ2/H = C(A1)/H ∪ C(A2)/H ∪ · · · ∪ C(Am)/H, so

|C(A1)/H|+ |C(A2)/H|+ · · ·+ |C(Am)/H| ≥ |Z2/H|.

Dividing both sides by|Z2/H| and using the isomorphism(Z2/H)/(C(Ak)/H) ∼= Z
2/C(Ak)

mentioned above, we obtain the result. Note that the same argument would work for an infinite
sequence of matricesA1, A2, · · · if it happened that the intersectionC(A1) ∩ C(A2) · · · had
finite index.

The key to part (b) is the observation that for every( u
v ) ∈ Z

2, there are matricesA such that
( u
v ) ∈ C(A) for which | det(A)| is arbitrarily large. Ifu = v = 0 this is obvious. Otherwise,

let x, y ∈ Z be any integers such thatuy − vx 6= 0, and setA = ( u Nx
v Ny ) for a positive integer
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N ; one has| det(A)| = N |uy − vx| which can be made arbitrarily large by choosingN large
enough.

SinceZ2 is countable, we can list its elements asp1, p2, p3, · · · , and chooseAk to be a matrix
such thatpk ∈ C(Ak) and| det(Ak)| ≥ 2kM whereM is some overall positive constant. Then
it is obvious thatZ2 = C(A1) ∪ C(A2) ∪ C(A3) ∪ · · · , and yet

1

| det(A1)|
+

1

| det(A2)|
+

1

| det(A3)|
+ · · · ≤ 1

2M
+

1

4M
+

1

8M
+ · · · = 1

M
,

where 1
M

can be made arbitrarily small by choosingM large enough.


