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1. The sisters Alice, Bess, and Cath have become proficient@trizing numbers, so their father
David invents a puzzle for them. He chooses three secrejarde, b, ¢, all greater thani, and
then puts a sticker on Alice’s forehead showing the nunbbéthe product ob andc), one on
Bess’ forehead showinge, and one on Cath’s forehead showiilg Each of the girls can see
her sisters’ stickers but not her own, and must try to worktbatnumber on her own sticker,
knowing how the numbers were derived. After a few secondsugint, Alice says smugly “I
know my number”. Bess then says “l wasn’t sure about my nurabérst, but knowing that
Alice knows hers, | know mine”. Even after hearing her ssteomments, Cath can’t work out
the number on her sticker; but when David gives her the hattiths even, she can. Whatd®

Solution. Note that for Alice, knowing the numbetis andac, the knowledge of her numbér

is equivalent to the knowledge of sincea = 1/ “2%) The fact that she was able to determine

a knowing onlyab andac means that is the unique common proper divisor@f andac which
is greater than. Hence eitheged(ab, ac) is prime and different fromab andac, or ged(ab, ac)

is the square of a prime and equal to eitheor ac. Sinceged(ab, ac) = a ged(b, ¢), there are
three cases:

(i) a is prime andzcd(b, ¢) = 1;

(i) ais prime,b = a, anda | ¢; or

(iii) ais prime,c = a, anda | b.

But if case (ii) held, them would be the unique common proper divisoradfandbc which is
greater thari, so Bess would have been able to work out her number right frenbeginning,
without needing to hear Alice’s comment. Similarly, if cgg8g held, Cath would have been
able to work out her number right from the beginning. So cgsast hold. Moreover, after
Alice and Bess make their comments, Cath knows every factave hsed so far, so she can
deduce that case (i) must hold.

Cath also knows the numbets= ac andv = be. If u { v, thenged(u, v) must bec, sincea
is prime; in this case Cath would be able to work out her numBerit must be that | v, i.e.

a | b; sinceged(b, ¢) = 1, this implies that: 1 ¢. This fully explains Bess’ ability to work out
her number, knowing (as she did by that poiritandbc and the fact thai is prime. Note that it

is not possible that = b, because then Bess would have seen the same two numberditieat A
saw, and would have been able to work out her number right trenbeginning. Conversely,
the fact that: # b explains Bess’ inability to work out her number when she koely ab and

bc, whose greatest common divisor is composite and different &6 andbc (being equal t@,
although Bess didn’t know that originally).

So Cath is faced with two composite numberandv, whereu | v andu # v; equivalently,
one composite numberand one number greater than (setx = v/u). She needs to find a
prime divisorp of u such thatp 1 u/p (i.e. p occurs only once in the prime factorizationof
andged(u/p, ) = 1; the secret numbers are ther= p, b = px, andc = u/p, and Cath’s own
number isp?z. Since she cannot work out her number based on this infoomatiere must be
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more than one primg satisfying these requirements. However, the informatiatyt>x is even
is enough to specify it completely; socannot itself be even, and we must have 2. So the
answer to the question is that= 2. (There is not enough information to determinandc, but
it could be, for example, that= 10 andc = 3; the sticker numbers would then Be for Alice,

6 for Bess, an@0 for Cath, and events could transpire as stated in the quekstio

. In this problem, avord is a finite string of capital letters (not necessarily meghihin English)

in which no letter occurs in two consecutive positions. TAEARSFA andBEGEB are words,
butABBA s not. A word ispalindromicif, like BEGEB, it reads the same backwards as forwards
(a single letter counts as a palindromic word, but the empiydwdoes not). We say that a word
W is contained in another word/?” if the letters ofi’ occur in the right order among the letters
of W', not necessarily consecutively. For instanBERFA, S andFASF are all contained in
AFARSFA (as isAFARSFA itself), but SRA is not. Prove that if a wordl is n letters long,
there are at least palindromic words which are containediv.

Solution.  Let W be the stringuyas - - - a,. If n = 0 (i.e. W is the empty word), then the
statement is vacuously true;:nif = 1 (i.e. W is a single letter), theml” itself is palindromic.
Whenn > 2, we may assume by induction that there are at least1 palindromic words
contained inu;as - - - a,,_1, SO it suffices to find a palindromic word which is containedilirbut
notina,as - - - a,_1. Suppose that, is the letterX anda,,_, is the lettery: by assumptiony is
different fromX. Let V' be the longest word contained ii which has the fornKYXYX. - - YX
(possibly the length is just, andV consists of the single lettef). If 1V were contained in
ajay - --a,_1, then it would have to be contained ina, - - - a,,_» Since it does not end with
a'Y; so we could attach,,_;a,, to V' to create a longer word of the same form, contradicting
maximality. SoV is the desired palindromic word containediinbut not inaqas - - - a,,_1.

We can go a bit further and describe which wordof lengthn contain exactly: palindromic
words. Suppose thdl’ = ajas;---a, has this property. Then there must be exactly one
palindromic word contained in,a, - - - a;, which is not contained i a5 - - - a;_1, for all k& =
3,4,---,n. This would certainly be the case if the letigr does not occur i as - - - ag_1.

If a; is the letterX and does occur im;a, - - -a;_;, then the wordl” constructed as above
usinga,_; asY is one palindromic word contained inas, - - - a; Which is not contained in
aias - - -a,_1, andV has length> 3. If a;_5 is a letterZ different from X, then we would
get another such wortd’ of the formXzZXzZX: - - ZX, contrary to assumption. Sq_, must be
the same letteK asa,. Hence the occurrences of each letteMinmust be in a sequence of
positionsag, as 2, as1 4, -+ , asio,m WhiCh are consecutive among the positions of that parity. It
is not hard to see that this condition is also sufficientliorto contain exactly: palindromic
words.
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. A repeating number is a positive integer whose decimal expression consistsvofdr more
occurrences of the same block of digits: examplestaré75757, and616616. Show that there
is no repeating number whose square is also a repeating mumbe

Solution.  Suppose for a contradiction that is a repeating number such that is also a
repeating number. By definition, we hawve= (10°~D* 4 10=2% 1... 1 10* + 1)n, wheren

is ak-digit number which is the repeating block, and 2 is the number of occurrences of the
block. Note thatn haspk digits, som? must have eithe2pk — 1 or 2pk digits. Sincem? is a
repeating number, it is divisible by some number of the fafi—¢ + 102 ... 410 +1,
whereg/ is the number of digits of.? andg > 2. That is, we have

100k —1\*
. 1
<10k—1)” @

We now distinguish two cases and find a contradiction in each.
Case 1. ¢/ = 2pk — 1 (which rules outy = 2). In this case, since

107 — 1
106 —1

107 — 1 = 10P*1(10P* — 1) + (10"*~' — 1) and
107" — 1 =10(10°%71 — 1) 4-9,

the Euclidean algorithm says thatd (10 — 1, 10"* — 1) = 9. Hence

106 —17 10k -1

ol 1026 — 1 10°F — 1
& 9 ' 9

T 107 —1 10°% —1
) =1, which Imp|IeSgcd< 0 0 ) = 1.

. - 10 -1
Combining this with (1), we conclude thaft(é)gf1 dividesn?. But

107 — 1
106 -1

2

> 100D > 105C@rE=1) > 10%F > p2?

so we have a contradiction.

Case2: qf = 2pk. In this case, we have)? — 1 = (10P* + 1)(10°* — 1). Note thatl0P* + 1 is
coprime tol0P* — 1, since they differ by2 and are odd. So from (1) we conclude that
10-1

27’L

10°F 41 |—
oo

But sincen < 10* — 1,

=l gt <10% — 1= 107 — 1 < 107+ 1
mn_o— _02——0— <0‘|’,

so we have a contradiction.

. Letay, as, as, - - - be positive real numbers such t@ a, = 1. Show thatZ(a1a2 A

converges to a value strictly less than
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. nH" o
Solution. Setb,, = % for all positive integers, so that);b, - - - b, = (n+1)". Thenwe

n
have the following chain of equalities and inequalities ¢néhthe convergence of each infinite
series follows from that of the next):

[e.e]

Z(a1a2 ceean)m

n=1

(alblagbg e anbn)l/"
(byby - -+ by,) L/

WK

1
i L(arby + agby + -+ + anby)
n+1

3
Il

IN

(AM—GM inequality)

8 1l

n=1
- 1
B Zlambm;n(n—i- 1)

m=

[
()¢
S
s
S
S
| —

m=1
= m+1\"
-2 (%)
<e f:am>:e,
m=1

becaus¢”t!)™ is an increasing function of: which tends ta: asm — oo.

. Let A,, be then x n matrix whose(i, j)-entry is1 if n < i+ j < n + 1 and zero otherwise.
Find the eigenvalues of,,.

Solution. Let P,(x) = det(x1, — A,) denote the characteristic polynomial 4f,; we
need to find the roots of this polynomial. Considering smalles ofn, we haveFP,(z) = 1

(the only reasonable definition of determinant of an emptyrimjaand P, (x) = = — 1, with

root 1. Now suppose that > 2. Expanding the determinant along the last row, we have
P.(x) = 2P,_1(x)—(=1)""Q,_1(x), whereQ,_;(z) is the determinant of the matrix obtained
from x1,, — A,, by deleting itsnth row andlst column. Expanding the latter determinant along
its last column, we find thap,,_;(z) = —(—1)*™=Y P, _,(x), so

P,(x) = 2P, 1(z) — Py_o(z), foralln > 2.

Now we claim that
(2n+1)8
COS ————
P,(2cos0) = 73,

COS )

foralln > 0and0 < 6 < 7. Then = 0 andn = 1 cases are easy, so assume that 2 and
that the claim is known fon — 1 andn — 2. Then

m—1)8 In—3)8 n+1)0
2(:059(:08(”2 ) —cos(n2 ) cos(";)
P,(2cosf) = 7 = —
cos 5 cos §

proving the claim by induction. It follows tha®,(z) = 0 whenz = 2cos ((22’“;;11); for k =

0,1,2,---,n — 1. Sincecos is strictly decreasing of, ), thesen values ofz are all distinct,
and hence they are all the rootsof(z).
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. Peg solitaire is sometimes played with an array of pegs wfodm an equilateral triangle,
except that initially there is one position left empty. A neasonsists of jumping a peg over an
adjacent peg into an empty position on the other side, winerkrte of motion is parallel to one
of the sides of the triangle; the peg which was jumped ovdraa temoved. The aim is to have
only one peg remaining at the end. (Videos of such a ‘Peg Buzah be found online.)

By contrast, the four-dimensional beings in the neighbaytiniverse play solitaire with an
array of pegs forming a regular tetrahedron, initially wotie peg missing. A move now affects
four consecutive positions rather than three: it consisjgsrmaping a peg over an adjacent peg
and over a third peg on the other side of that, into an empty pwsitin the other side of the
third peg, where the line of motion is parallel to one of thgeslof the tetrahedroipth pegs
which were jumped over are then removed. The aim is to hawe aré peg or two adjacent
pegs remaining at the end. Show that if the initial empty foasis in the exact centre of the
tetrahedron, this aim cannot be achieved.

Solution. The positions in the tetrahedral array can be labelled by-tiuples(ay, as, as, as)
of nonnegative integers such that + a; + a3 + a4 = n — 1, wheren is the number of
positions along each edge (we can obviously assumenthat 2). The number of such-
tuples is("?) = w Two positions are adjacent if their difference(is —1, 0, 0) or
(1,0,—1,0) or any other rearrangement of those coordinates.

The four vertex positions are. — 1,0,0,0), (0,n — 1,0,0), (0,0,n — 1,0),(0,0,0,n — 1).
For the centre of the tetrahedron to be an integral positnmust have, = 4k + 1 for
some positive integek; the centre is thenk, k, k, k). The initial number of pegs is then
32k3 + 48k% + 22k

, Which is even. Since two pegs are removed in every move, tiheoer

of pegs must remain even, so it is impossible to finish with peg. We need to rule out the
possibility of finishing with two adjacent pegs.
We define quantitiesq, mo, ms, my (Which change as the game progresses) by

m; = number of pegs in a position with odth coordinate
— number of pegs in a position with evétihh coordinate

Since the total number of pegs is always even, eacls always even. Consider the effect on
thesem;’s of a move in the direction of the vectot, —1,0,0). If the initial position of the
moving peg has an evelst coordinate, then its final position has an ddt coordinate, and
of the two pegs which are removed, one has an dwtrcoordinate and one has an okt
coordinate. San; would increase by in this case; if on the other hand the initial position of
the moving peg had an oddét coordinate, them,; would decrease b®. Similarly, the effect
of the move onm,, is either to increase it b§ or to decrease it bg. Since all the positions
involved have the sam@&d coordinate, the effect of the move o is either to increase it by
2 or to decrease it bg, depending on whether that coordinate is even or odd; siwmiiar m,.
The upshot is that if we consider theuple (m;, my, m3, m,) modulo4, then every move adds
(2,2,2,2) toit.

Now the initial configuration of pegs is symmetric under petations of the coordinates, so
the initial value of(my, my, ms, m,4) modulo4 is either(0,0,0,0) or (2, 2,2,2) (which of the
two it is depends on the parity @f). Hence it must always be eithér, 0,0,0) or (2,2, 2,2).
But for a configuration of just two adjacent pe¢s,;, mo, ms, m,) modulo4 obviously consists
of two 0’s (corresponding to the coordinates which are the samé&two pegs) and twd's
(corresponding to the coordinates which are differenttierttvo pegs). So we have our desired
contradiction.
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. Define a sequence of integers a1, as, - - - by the initial conditionag = 1 and the recurrence

. ~ (n—1 : .

relationa,, = Z (Z 1) k!a,_x for n > 1. Prove that,, — 1 is always a multiple of..
k=1

Solution.  We claim thata,, equals the number of ways to splitobjects into ordered lists:

in other words, the number of ways to partitioh, 2, - - - , n} into disjoint nonempty subsets

and then order each of these subsets (without putting amingden the set of subsets). For

exampleg; = 13, and there are thirteen ways to sglit 2, 3} into ordered lists:

123, 132, 213, 231, 312, 321, 12|3, 21|3, 13|2, 31|2, 231, 32|1, 1|2/3,

where the vertical lines mark off a new list. We can prove thisnduction onn (then = 0
base case is clear). In a partition{df, 2, - - - , n} as above, the size of the subset containing
the numbern can be anything from to n. For fixedk, the number of ways to choose the other
k — 1 elements of the subset (%j) the number of ways to order the subsetisand the
number of ways to partition the remaining— k& elements into disjoint ordered subsets,js;.

by the induction hypothesis. Hence the number of ways tatart{1, 2, - - - , n} into disjoint

ordered subsets 1% (Z 1) k!a,_, = a,, and the claim is proved.

We can now finkd 1a (non-closed) formula fey by considering the sizes of the subsets in a
partition of {1,2,-- -  n},; these sizes form a partition of the numberFor any fixed partition
n=ki+ ks +---+ k, (Where thek;’s are positive integers, in no specific order), we can count
the partitions of 1,2, - - - | n} into ordered subsets of these sizes: choosing the elemfethis o
subset of sizé;, then the elements of the subset of sizeand so forth would result in!, but
this overcounts by a factor ¢f ., m.(k.)!, wherem,(k,) is the number of times the number
a occurs among thg,’s, because we do not want to have a specified order on the sebséts.
Hence o

a, = -
partitigg. of n H“21 ma(k')!

where every fraction in the sum is in fact an integer. Now tleaininatof [ ., m,(k.)! always
divides (", ma(k.))! (the quotient of the latter by the former is a multinomial ficéent).
So it always dividegn — 1)!, except in the sole case for whigh .., m.(k.) > n, namely the
case of the partition =1+ 1+ ---+ 1. So aside from this terrfﬁ, every term is a multiple of
n, and thusz,, — 1 is a multiple ofn. '

. A regular polygon may be defined as a convex polygon whoséesrall lie on a circle and
whose edges all have the same lengttsedi-regular polygon is a convex polygon which has
an even number of vertices all lying on a circle, such thatehgths of its edges, in clockwise
order, area,b,a,b,--- ;a,b for somea # b. (For instance, a non-square rectangle is semi-
regular.) Prove that, given any regular polygBnit is possible to construct with straightedge
and compass a semi-regular polyggnvhich has the same perimeter-lengthraand encloses
the same area 3.
perimete(X )?
reqd.X)
unchanged after scaling. It suffices to construct a semi-regul@rsuch thaio(Q) = o(P),
because there are then well-known methods (using simiargies) of re-scaling) so that it
has the same perimeter & and hence also the same area. We may as well stipulate éhat th

Solution. For any polygonX, let o(X) denote the quantit , Which is clearly
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vertices of() lie on a circle of radiud. Here we can take any constructible length (such as the
edge-length of?, for example) as the unit of measurement.

Now if P hasn vertices (wherex > 3) and circumradius, its perimeter i2nr sin(Z) and its
area isinr?sin(%r), so
(2nr sin(’r))2

1
2

This is a strictly decreasing function efwhich tends totr (i.e. theo-value of a circle) as
tends to infinity, becaus@@ is an increasing function o), 5) which tends td asz — 0.

Suppose thap is semi-regular witl2k vertices (for somé > 2) and circumradiu$, and lets
andb denote its two edge-lengths, as in the question; assume that Thena = 2sin(Z —0)
andb = 2sin(g;; + ¢) for a unique anglé satisfyingd < ¢ < 7. We have

m
= 4ntan(—).
snr?sin(38) " an(n)

o(P) =

2k

k*(2sin(£: — 0) + 2sin(Z- + 6))?
k(3 sin(f — 260) + L sin(T + 26))
k;2(4sm( 7-) cos 6)?

ksin(%) cos 26

T ) cos? 0
2k’ cos 26

I
= 4ktan(%) (1 + sec20).

o(Q) =

=210

= 8k tan(=—

Thuso(Q) is a strictly increasing continuous function @fwhich tends t®k tan(g;) (the o-
value of a regulazk-gon) as) — 0 and tends tak tan(7) (theo-value of a regulak gon) as
0 — Z-. We conclude that it < n < 2k, there is a unique value éffor whicho(Q) = o(P).

We are now free to choodein a convenient way. If is not a power o, there is a unique
power of2, namelyk = 2U°e:("] such that: < n < 2k; if n is a power of2, thenk = 2 has
the property that: < n < 2k. In either case, the anglg is constructible by straightedge and
compass, because squares and equilateral triangles ateumtible, and angles can be bisected.
Since there are standard ways of adding, multiplying, amilitig lengths, and constructing a
length equal to the area of a given triangle, it is possibtttstruct the length(P), and hence
the angled = 3 sec 1(4k;’§()l) — 1) necessary to make(()) equal too(P). Thus one can
construct) as requwed. ”

. LetFF ={0,1,---,p— 1} be the field of integers modulo a prime# 2. Let X be a nonempty

subset ofF? = {(x1, 29, -+ ,74) | z; € F} for some positive integet. Prove that there exist
ai,as, - -+ ,aq,b € F such that the equationz; + asxs + - - - + agzy = b has an odd number
of solutions(zy, xs, - - -, x4) in X.

Solution.  If we let V denote the vector spadé®, the dual vector spacg* consists ofF-
linear functionsf : V' — F, which are precisely those functions of the fofm, xs, - - - , z4) —
a1x1 + asws + - - - + agry for a; € F. So we have to prove that there exfse V* andb € F
suchthat{v € X | f(v) = b}| is odd. Suppose for a contradiction that this quantity is\doe
all f andb.

Let ¢ be a primitive complexth root of 1. Then fora € F, it makes sense to speak ¢f.
Recall that the minimal polynomial gfoverQ is z?=! + 2?2 4 ...+ x +1,s01,(,--- , (P72
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are linearly independent ov&, and) _ . ¢* = 0. The latter fact implies that for anyc V,

W= {'V*I, if v=0,
= 0, otherwise.

We deduce that for any € X,

3 ¢ () - 3y e

fevr veX veX feV*
= V.

However, our assumption means that

YU =Y HoeX|fv)=b}¢

veX beF

is a linear combination of, ¢, - - - , (?~2 with coefficients which are even integers. Hence the
same is true fof\/*|, contradicting the fact that’*| is a power ofp and hence odd.

For any positive integet, prove that

zn: <Z> A" (n — a)* < %n”

a=0

Solution. We can interpret both sides of the inequality combinathyrim terms of trees
(connected graphs with no loops, multiple edges or cyclest)l” = {v;, vq, - - - , v,,} be fixed,
and let7y be the set of trees with vertex sét By a famous result of Cayley, the number
of elements of7fy, is n" 2, son™ equals the number of triplg®, w, T") wherev,w € V and

T € 7y. Let7; denote the set of such triples.

For anya, (") is the number of subsefsC V such thai/| = a. For any such subsét the
number of tree§” € 7y, such thaf U(V'\ 1) is a bipartite decomposition of the verticesiofi.e.
every edge of” joins an element of with one of V' \ ) is a"~*~!(n — a)*~*. (This calculation
is equivalent to finding the number of spanning trees of thaplete bipartite grapli, ,,_,
which can be done using Prifer sequences or Kirchhoff'siialree Theorem.) So the left-
hand side of our inequality equals the number of quadruples, 7', I) where(v, w, T') € T},
ICV,vel,weV\I andl U(V \ I)is abipartite decomposition far.

Now for any tre€l” € 7y, andv € V, there isa uniqué C V suchthabt € I and/U(V'\I)is
a bipartite decomposition faf: namely,/ consists of all vertices’ € V' such thatir (v, v’) is
even, wherel; (v, v') denotes the distance fronto v in the tre€l” (i.e. the number of edges in
the unique minimal path between these vertices). So thééeftl side of our inequality equals
the number of triple$v, w, T') € 7, such thatlr(v, w) is odd, and we need to prove that this
is less than or equal to half the total number of triples.

Hence it suffices to prove that for &ll € 7y,

H{(v,w) € VxV |dr(v,w)isodd| < [{(v,w) € V x V |dr(v,w) is ever}|. 2

We will do this by showing that the right-hand side of (2) nsrihe left-hand side equals a
square:

> () = (Z(—l)dT“’%)) . (3)

v,weV veV
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To prove (3), we use induction an (then = 1 case is trivial). Assume that > 2 and that
the result is known for trees with fewer vertices. e i; < iy < --- < iy, < n — 1 be such
thatv;,, v;,, - - -, v;, are the vertices of’ adjacent ta,,, and letT’, 75, - - - , T with vertex sets
V1, Vo, - -+, Vi be the connected componentsiof {v, } containing these vertices respectively;
these are all trees to which the induction hypothesis applidote that ifv,w € V,, then
dr(v,w) = dr, (v, w), because the minimal path betweeandw in 7, is also minimal in7". If

v € V, andw € V, wherep # ¢, then the minimal path betweenandw in 7" passes through
Vi, Un, andv; , sodr (v, w) = dr, (v, v;,) + dr, (w,v;,) + 2. Thus

Z( 1)dT(vw — 142 Z dT vvn)_'_ Z (_1)dT(v,w)

v,weV veV\{vn} v weV\{vn}
SPES S EILCANS o Sy
veV\{vn} p=1 v,weVp

+ E E dTp V,0ip ) F+dry (W,vig)

1<p#q<s veV),
weVy

I DI AUCES 3 by e

veV\{vn} p=1 \veV,

+ Z Z (—].)dTP (0,03, ) +dr, (w,v34)

1<p#q<s veV)

weVy
2
S1ez 3 e (St
veV\{vn} p=1 veV,
2
=142 Z dT V,Un) + | = Z (_l)dT(v,vn)
veV\{vn} veV\{vn}
2
S+ 3D (e
veV\{vn}
2
.
veV

completing the induction step.



