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1. Imagine an analogue watch with the usual hour hand, minutd,lend second hand. At how
many times each day are two of the hands pointing in exacthpsite directions?

Solution.  To clarify the question, the tacit assumptions are that #redh all begin at the 12
o’clock position at midnight, and move continuously in ackwise direction at constant speeds
(not ticking in discrete units, as real hands might). If weasw&e the direction of a hand by the
clockwise angle from 12 o’clock (in radians), and time irctrans of a day after midnight, then
the direction of the hour hand at times 4t (two full revolutions every day), the direction of
the minute hand i48~t (24 full revolutions every day), and the direction of the secbadd is
28807t (60 x 24 = 1440 full revolutions each day). To consider a single day, werigst to
the semi-closed intervél, 1).

Now since the hour hand and minute hand start and finish theécdgether, and the minute
hand make&2 more revolutions, there must Be times each day at which the hour hand and
minute hand point in opposite directions. Similarly, themest bel 438 times each day at which
the second hand and minute hand point in opposite direci@mk 416 times each day at which
the second hand and hour hand point in opposite directions. W@ cannot simply conclude
that the answer 132 + 1438 + 1416, because that would overcount any times at which two of
the hands were pointing in the same direction and the othed Was opposite.

To find these special times, note that two hands are pointingposite directions if and only
if the difference between their directionszist+ 2k7 for some integek. So the hour hand and
minute hand are pointing in opposite directions exactlymhert = 7 + 2k7 for some integer
k, which means thatis in the following set of times:

A:{%ﬂf‘kezogkgz%.

Similarly, the hour hand and the second hand are pointingposite directions at the following
times:

20+ 1
B=<J{-——" 7Z.0<¢<14
{2876 teZ, 0<I< 37},

and the minute hand and second hand are pointing in oppasatgidns at the following times:

_{2m—i—1

< < .
R ‘mEZ, O_m_1415}

Now we need to determine the intersections of these sets.aWe h

ANB = {i, Z} (i.e. 6am and 6pm),
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becausett! = 2t simplifies to719(2k + 1) = 11(2¢ + 1), which forcesl 1 to divide2k + 1,

which only happens (in the stipulated range of values)afhenk = 5 or k = 16. By contrast,

ANC=BnNnC =1,

because®t! = 2l simplifies to708(2k + 1) = 11(2m + 1), which is impossible as the left-

hand side is even and the right-hand side is odd,zd= 22tL simplifies to708(2¢ + 1) =

719(2m + 1), which is impossible for the same reason. So the answer is

|JAUBUC| =|A|+|B|+|C] - |[ANBNC| =22+ 1438 + 1416 — 2 = 2874.

. A bee wants to fly on the real line from the pointo the pointl, visiting n flowers which
are positioned at the poin%s}ﬁ, n%l, -, (heren is some fixed positive integer). The bee
chooses at random, with equal probabilities, one ofithgossible orderings of the flowers. It
flies fromO to the first flower, from there to the second flower, and so oouidin all the flowers
in the chosen order, before flying ontoWhat is the expected total distance it will fly?

Solution. Let X, be the distance frort to the first flower visitedX; (: = 1,--- ,n — 1) the
distance from théth flower to the(i + 1)th flower, andX,, the distance from the last flower
visited tol. We need to evaluate the expectationX, + X; + - - - + X,,), and the simple key
observation is that it equals(X,) + E(X;) + - - - + E(X,,). Each of the: flowers is equally
likely to be the first one visited, sB(X)) is the average distance of the flowers fronwhich

is . Similarly, E(X,,) is the average distance of the flowers fropwhich is also?.

Foranyi € {1,2,---,n — 1}, each of the(;‘) (unordered) pairs of flowers is equally likely
to be the pair consisting of thigh and (i + 1)th, soE(X;) is the average distance between a
pair of distinct flowers. Here is a way of finding this averaggtahce without computation.
The choice of a pair of distinct flowers and F”, with F* < F”, divides the intervalo, 1] into
the three interval®), F], [F, F'] and[F”, 1], the sum of whose lengths 1Is If we imagine the
interval |0, 1] closed up into a circle (identify with 0), these are three arcs whose endpoints are
drawn from an evenly distributed set @f+ 1 points on the circumference. By symmetry, the
expected length of all three arcs is the same, héf(C§;) = 1.

Thus the answer to the questiorlis- (n — 1)1 + 1 = 22,

. The sisters Alice and Bess want to practise their arithmsdti¢heir father invents the following
game. He begins by choosing a composite numbievhich is at least. Alice and Bess then
take turns saying numbersg, ny, ns, - - - (with Alice sayingn,, Bess saying.,, Alice saying
ns, and so on) in such a way that at each step the new numliethe sum of two integers 2

of whichn;_; is the product. The winner is the first player to say a prime lmeimFor example,

if ny = 16, then Alice can say eithe¥ or 10, becaus& = 4 + 4 and10 = 2 + 8. Saying10
would be a bad move, because Bess would then win by s&yibgcausg = 2 + 5). So Alice
should say8, which forces Bess to say allowing Alice to says and win. Prove that there are
infinitely many starting numberns, for which Bess is guaranteed to win if she plays correctly,
no matter what Alice does.

Solution. Note that there are three famous conjectures which, if woe)d imply this easily.
The Twin Prime Conjecture states that there are infinitelyynarimesp such thatp + 2 is
prime: for suchy, if ny = p? then Alice is forced to sagp and Bess can then win by saying
p+ 2. The Sophie Germain Prime Conjecture states that therafamgely many prime% such
that2p + 1 is prime: for suchp, if ny = p? then Alice is forced to say + p*> = p(p + 1) and
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Bess can then win by sayirty + 1 = p+ (p + 1). Finally, the Goldbach Conjecture states that
every even integer 4 is the sum of two primes. If this is true, there must be an itdinumber
of triples of primegp, ¢, ) such thay + r = 2p — 4. For such a triple, ihy = ¢r then Alice is
forced to say; + r = 2(p — 2), and Bess can then win by sayipg

In the absence of such results, one can argue as follows cleas that, givem, > 6, the
sequenceu, ny,na, - - - IS strictly decreasing and bounded belowhyn particular, the game
must end in finite time. By a basic principle of game theorfpliows that for everyn,, either
Alice has a guaranteed winning strategy or Bess has one. ol pinis fact for this particular
game, we can use induction ag, as follows. Ifny = 6, it is obvious that,; = 5 and Alice
wins. Suppose that, > 6 and the claim is known for smaller valuesigf. The possible values
of n; which Alice has to consider aré+ ny/d, whered ranges over divisors of, such that
1 < d < ng. If any of these numbers is prime, Alice can win straight awbthese numbers are
all composite, then they can be thought of as starting nusalyeor different runs of the game,
with the roles of the players reversed so that Bess now magesBy the induction hypothesis,
each choice comes with a guaranteed winning strategy foereftlice or Bess. If any of the
choices results in Alice being guaranteed to win, she carbyichoosing that; if none of them
does, then Bess is guaranteed to win.

Now suppose, for a contradiction, that there are only fipitaRny numbers:, for which
Bess has a guaranteed winning strategy. Then there mustbgest such number, s&y. But
then consider the casg = p?, wherep is a prime greater thaiv/2: we must havey, = 2p.
Since2p is a composite number greater than our assumption means thatjp were chosen
asng, Alice would have a guaranteed winning strategy. So wheoeAB forced to choose it as
n1, Bess must have a guaranteed winning strategy.,Se p? gives Bess a guaranteed winning
strategy, contradicting our assumption thatvas the largest such composite number.

. Letn be an odd integer 3, and letry, z, - - - , x,, be any real numbers, not necessarily positive.
Prove that
(n—Dmax{z? 22, --- 22} + (x1+ 2o+ 4+ 3,)% > 22 + 25+ +22.
Solution. If all z; = 0, we clearly have equality. Moreover, if we multiply al} by a
positive real numbeA, both sides of the inequality are multiplied By. So we may assume
thatmax{z},23,--- , 22} = 1, in which case we must prove thal,_, z;z; > 5. We will in

fact show that this inequality holds for dltq, o, - - - , z,,) in the n-dimensional cube defined
by the inequalities-1 < z; < 1. Let f(xy, -+, z,) denoteEKj z;x;. Since the cube is
compact (a closed and bounded regiorRif) and f is continuous, there is definitely a point
(a1, a9, -+ ,a,) in the cube where the minimum value ffis attained, and it suffices to show
that f(ay, - ,a,) > 1‘7" This question falls under the scope of various standaridhigtion
techniques, but we will give an elementary explanation.

We first observe thatay, as, - - - , a,) is either a vertex of the cube (i.e. all its coordinates
equal+1) or lies on an edge of the cube (i.e. all but one of its cootémaquak-1). For
otherwise, we could permute the coordinates (which cldadyesf unchanged) to ensure that
—1 < a; <ay < 1,andthenitis easy to see that

f(alva'Qva'?n'” 7a'n) >f(a'1_€7a2+€7a37"' 7a'n)

for all e > 0, contradicting the supposed minimality (because for gefiity smalle, the point
(aqy — €,a2 + €, a3, -+ ,a,) still lies in the cube).
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Suppose thatay, as, - - - , a,) is a vertex of the cube. K of its co-ordinates aré andn — k
are—1, then clearly

as required. (Here we have used the fact thatodd.)

The only remaining possibility is thdt;, as, - - - ,a,) lies on an edge but is not a vertex.
Permuting coordinates, we can assume that (—1,1), as = a3 = -+ = ax41 = 1, and
(pyo = Qg3 = -+ = a, = —1 forsomel) < k < n — 1. We have

f(:c,az,-.-,an):x<k—<n—1—k))+<§)+(”_;_k)—k(n—l—@

2k+1-n)* +1—-n

7 ;
and our assumption means that the minimum value of this anhet linear function of on the
interval[—1, 1] is attained at the interior point . Clearly this can only happen if the function is
constant, so we must hake= 21, which means thaf(z, as, - - - , a,) = 152. Again we have
the required inequality.

=2k+1—n)z+

5. Letuy, us, - - -, u, be unit vectors irR3: ;| = 1for all 7, where|w| denotes the length
of the vectow. Assume thaltu; +uy+- - -+u,| > n—2, and that\;u; + Aous+- - -+ A\,u, =0
for some nonnegative real numbets Prove that\; = 0 for all i.

Solution. (Actually R? could be replaced here [®/ for anyd.) Suppose for a contradiction
that some); is nonzero. By renumbering the vectors if necessary, we saunae that,, =
max{);} > 0. Then using the assumption thdt_"_, u;| > n — 2 and the triangle inequality,
we deduce

(n—2)An < A | iuﬂ = | i)\nui|
=1 j
= | Z D (sincei A, = 0)
=1

n—1

<Z| UZ|_Z()‘n_)\i)a

i=1
which can be rearranged to gi@?j A < A,. But the triangle inequality also implies

)\n = |)‘nun|
n—1 n
=) —xu|  (sinced A\u; =0)
nl_zll n—1 -
<=l =Y
=1 i=1

so we have the required contradiction.

6. Fix a positive integen > 3. Let P, I%, - - - , P, be points which lie on a circlé’ of radius1,
and letD; denote the disc with centrg2 and radiusl. A possible picture when = 3 is:
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Find the maximum possible area of the unionu D, U - - - U D,,.

Solution. Note that the maximum possible area must exist, becauser¢heisaclearly a
continuous function of?;, P, - - - , P,, each of which ranges over a closed and bounded set.
To find the maximum, we can assume tlkat P, - - - , P, are distinct and numbered in con-
secutive anti-clockwise order. For ease of notationf/3et = P, D,,.1 = D;. Let O denote
the centre of”; note thatO is on the boundary of all the disdg;. For any pointS, S € D; if
and only if P; lies in the intersection af’ with the disc of radiug and centre5, which is some
arc of the circleC'. So eitherS € D, N ---N D,, or there is a uniquéS) such thatS € D;g),
S ¢ Di(s)41-
Now D; N ---N D, contains points other than if and only if P, - - - , P, all lie on one side
of some line througl®; this can be seen from the fact that apart fromall other points oD,
lie on the same side d3 of the line throughO perpendicular t@ P;. So we have two cases.
Casel: P, ---, P,donotall lie on one side of (or on) any line throughThenD;N---ND,, =
{0}, and the uniorD; U - - - U D,, can be written as the disjoint union

(D1 \ (D1 N Dy)) LT (Do \ (D2 N D3)) IL--- 1L (Dy, \ (D, N Dy)) IL{O}-

Case 2. P,,---, P, all lie on one side of (or on) some line through We renumber so that
P, and P, are the outermost points; thén, N D, is the same a®; N ---N D,,, so the union
D, U---U D, can be written as the disjoint union

(D1 \ (D1 O Do) 11 (Dy \ (Ds N D)) 11+ T1 (D1 \ (Dp_1 O D)) 1L D,,.

We must now calculate the area bf \ (D; N D;,1). Let#; be the angleP,OP; ;. Let
Q; denote the other point which is at distancérom both P, and P,.;, and letR; be the
midpoint of the line segmenk, P, , which is also the midpoint o©();. Clearly the angle
/Q; P,O = 7 — 0;, so the area of the sector 6f bounded byQ, P, andOP; is “591'. Also the
distanceO R; is 2 cos % and the distanc®; P, is sin %, so the area of the triangi@; O is 22%.
Hence the area of the segment/afbounded by the chor@(); is % This is half of the
overlapD; N D, 1, whose area is therefore— 6, — sin 6;, and the area ab; \ (D; N D;y1) is
0; + sin 6;.

In Case 1, we have < ¢; < wfori =1,2,--- ,n,and> ! 0, = 2r. By the above disjoint
union, the areaob, U---U D,, is:

n

Z(Qi +sin6;) = 27 + zn:sin 0;.

i=1 i=1

By basic methods in constrained optimization (e.g. Lageamgltipliers), the maximum value
of >_" | sin#; subject to the constraints ahis n sin 27“ occurring when alb; = 27” So the
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maximum area in this case occurs when the paoifitare equally spaced around the cir¢le
and it is27 + nsin %’T

In Case 2, we have < 6, < wfori =1,2,--- ,n—1, andZ?:_l1 f; < m. By the above
disjoint union, the areadb, U---U D, is:

n—1

=1
For any fixed value ob_""]' 4, sayk, the maximum value 0f "~/ sin 6, is (n — 1) sin £,
occurring whert; = £ foralli = 1,2,--- ,n — 1. Moreover, sincein is increasing or0, 2],

we have

T+ k+ (n—1)sin 1§7T+7r+(n—1)sin

n— n—1

So the maximum area in this case occurs whkeand P, are antipodal and the other poirits
are equally spaced around one of the semicircles betwean trel it is27 + (n —1) sin 5. It

is easy to see that this is less than the maximum in Case:1:=i8 the values can be computed
exactly, and for, > 4 we havesin %’r > sin —"= > 0. So the overall maximum &r +n sin %’r
. For real numbers, b, c, d with a # 0, consider the equation= az® + bz? + cz + d, where the
unknownz is a complex number amddenotes the conjugate of What are the minimum and
maximum number of solutions this equation can have, foedsffit choices of, b, ¢, d?

Solution.  We will show that the equatioh = az?® + b2% + cz + d always has between three
and seven solutions. We can see that these extremes aneaisi follows:

e The equatiore = 2% + » has solution$), +-v/2i. These are the only solutions on the
imaginary axis, because when= iy, the equation becomeg — 2y = 0. If 2 were
a solution not on the imaginary axis, theh = z — » would be purely imaginary, so
the principal argument of would have to be eithet-7 or i%’f, But for each of these
arguments, it is easy to see thaties on the opposite half of the imaginary axiszte- .
So there are exactly three solutions.

e The equatiort = —z* + 22 has seven solutions, namely

1 V13 31 V13— V3t
O7 :|:_’ ii’ andii\/_ll_

2 4 4
The verification that these are solutions is routine; thatghare no more solutions is a

special case of Case 2 below.

We must now show that the number of solutions is always betweee and seven. We will
use the known fact (easily derived from basic calculus)fimaény real numbers, ¢, the cubic
% + px + ¢ has one real root ilp® + 27¢®> > 0, two real roots if4p® + 27¢> = 0 (unless
p = q = 0, in which casé) is the unique root), and three real rootd;if 4 27¢> < 0.

By replacing the variable with = — 3% we can remove the? term, i.e. we may assume that
b = 0. Moreover, by replacing the variablewith ——, we can scale the coefficient of to

eitherl or —1, i.e. we may assume that= +1. Vi

Case 1: a = 1, so the equation is = 2® + cz + d. The real solutions of this equation are
the roots of the cubi¢(z) = z* + (¢ — 1)z + d. To find non-real roots, we write = x + iy
and equate real and imaginary parts, cancelling a commaorfaty from the imaginary-parts
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equation ¢ # 0 because is to be non-real). This results in two equationsfa@andy:

2* = 3zy®* + (c— Nz +d =0,
322 —y* + (c+1) =0.

From the second equation we haye = 3z + (¢ + 1), sox is a root of the cubig)(z) =
o3 + <2z — ¢ and must satisfy> > —<t1. For any such: we have two possible values gf
(reflecting the fact that is a solution if and only iz is). To sum up, the number of solutions
of z = 2% + cz + d equalsA + 2B, whereA is the number of real roots ¢f(z), andB is the
number of real roots of(z) which satisfyz? > —<t!. We must show that < A + 2B < 7.

The only way we could havd + 2B < 3isif A <2 andB = 0. To say thatB = 0 is to say

thatc < —1 and all the real roots of(z) lie in the closed interval—,/—<, \/—<1]. This
implies thatg(—/—<1) < 0 andg(,/—<*) > 0, which boil down to the inequalities:

c+1 c_l 2—c¢ _c+1
\/ 8 12V 3

From this we deduce thatd? < —4(c — 2)*(c + 1), so

4(c —1)% +27d* < 12¢ — 20 < —32,

which would imply thatA = 3, contradicting our assumption. Sb+ 2B > 3 is proved.

The only way we could havd + 2B > 7isif A > 2andB = 3. The fact thay(z) has three
real roots implies thatc + 2)® + 27d < 0, soin particulae < —2; we are moreover assuming
that all of these roots satisfy” > —ﬂ so there are no roots gfx) in the closed interval

[—1/—%2,1/—<]. But on the other hand, there must be a rooy0f) between the two

critical points+, /— Cf;, which lie in this interval. This contradiction shows that- 2B < 7,
concluding our analysis of Case 1.

Case2: a = —1, so the equation is = —z3 +cz+d. Proceeding as in Case 1, we see that the
number of solutions isl + 2B whereA is the number of real roots gf(x) = 2® — (c— 1)z —d,
andB is the number of real roots gfz) = z* — 2z + ¢ which satisfyz? > <L,

Asin Case 1A + 2B < 3 would imply B = 0, soc > —1 and all the real roots af(z

) lie
in the closed interval—,/<t!, | /<tl]. This implies thaty(—/<*) < 0 andg(y/<*) > 0,

which boil down to the inequalities:

c—2 c+ c—2 c+1
V 8 12 3

Hence we have > 2 and27d* < 4(c — 2)*(c + 1), S

—4(c— 1) +27d* < —12¢ + 20 < —4,

which implies thatd = 3, contradicting our assumption.
Finally, A + 2B > 7 would imply A > 2 and B = 3. The fact thatf(x) has more than one
real rootimplies that-4(c — 1) +27d? < 0, so in particulae: > 1. The fact that all the roots of

g(z) satisfyz? > <t implies that there are no roots in the closed inte[qu%, \/ <. But
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there must be a root af(z) between the two critical points, /<t2, which lie in this interval.

12
This gives the required contradiction.

If instead of cubic polynomials we had considered polyndsroddegree:, wheren > 1, the
minimum number of solutions would have beemand the maximum would have begn — 2
(see L. Geyer, ‘Sharp bounds for the valence of certain haier@olynomials’, Proc. Amer.
Math. Soc. 136 (2008), no. 2, 549-555). Allowing the coedfits of the polynomial to be
complex would not have made any difference.

. A famous theorem in algebra says that any n integer matrixA can be written as a matrix
productX DY, whereX andY are integer matrices with determinaht, andD is a diagonal
matrix with nonnegative integer diagonal entrigsds, - - - , d,, such thatl; , is a multiple ofd;
forall1 <i <n—1. The numberd,,ds,,--- ,d, are uniquely determined and are called the
invariant factors of A. Find the invariant factors of the matrik = (a;;);_,, wherea,;; = i/,

Solution. We have the identity

23—2()k‘53, ,

k<i,j

whereS(j, k) denotes the Stirling number of the second kind, i.e. the raarnbways of par-
titioning a set Withj elements intd: blocks. The proof is that the left-hand side counts all
functionsf : {1,---,j} — {1,---,i}, and the number of functions whose image is a fixed
subsetk’ is |K|'S( |K).

HenceA = X DY whereX is the lower-triangular matrix whosg, k)-entry is (;) Dis
the diagonal matrix whosg, k)-entry isk!, andY” is the upper-triangular matrix whosg, j)-
entry isS(j, k). SinceX andY have all diagonal entriels det(.X) = det(Y’) = 1. Moreover,
itis clear that(z + 1)! is a multiple ofi! for all 1 < i < n — 1, so the invariant factors of are
2030 nl

. In the complex vector spad&’ we define an inner product by
(21, 22) * (w1, we) = 21W7 + 29wWs, forall zy, z3, wy, we € C.

An element(z, z,) € C?is aunit vector if (21, z3) - (21, 20) = 1. Show that it is impossible to

have five unit vector(5z§a), z§ )) a=1,2,3,4,5, no two of which are scalar multiples of each

other, such that( 2\, z{”) - (2", 2{”)| is the same for all pairgs, b) with a # b.

Solution. Assume for a contradiction that we have five non-proporfiamat vectors

(29 2, @ = 1,2,3,4,5, satisfying the condition in the question; letdenote the com-

mon value of| (2, 2y - (=" 2")| for all a # b. Clearlyc is a nonnegative real number,
andc < 1 by the Cauchy-Schwarz Inequality. Since the inner produet sesquilinear form,
we can multiply each unit vector by a scalar (complex numbenmodulusl without affecting
anything.

Let SU, denote the group afx 2 complex matrices of the forr(n ) where|a?+|3% = 1.

For any such matrix, we have

(21, 22)(_0%2) : (w17w2)(_€%§) = (az1 — B2, B21 +Tz) - (wr — Pws, fuwi +aws)

= (|a]*21 07 — 0Bz W3 — afz® + |8 210) + (182107 + afzWs + afzwi + |af*2w0)
= 21W1 + 22W2

= (21, 72) - (Y1,Y2)-
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So multiplication by an element 6fU, preserves the property of being a unit vector, and would
preserve the supposed property of the 5 unit vectors we aestigating. MoreoversU, acts
transitively on the set of unit vectors, because the orbitlof) consists of all the top rows
of matrices inSUs,, i.e. all unit vectorsa, 5). So we may assume that the last of our five
unit vectors is(1,0). Hence we havéz\”| = ¢ for = 1,2,3,4. As noted above, we can
multiply each unit vector by a complex number of modulyso we can assume thﬁ&fl) =c
fora =1,2,3,4. Hence|z§“)| =+V1-—c2fora = 1,2,3,4. Since the vectors are distinct, we
cannot have = 1, so we must have < 1.

At this stage the remaining equations are that

|c? + Zéa)zéb)| =c foralll <a#0b<4.

If we setz2“) =1 —c2e fora = 1,2, 3,4, where without loss of generality< 6, < 6, <
03 < 6, < 2m, then these equations become

(4 (1= )B4 (1 — 2)e!®0)) =2 forall1 <a+#b<4,

which simplifies to
1
cos(@a—ﬁb)zl—@, foralll1 <a+#0b<4.

The case: = 0 gets ruled out along the way in this simplification, and we rse® that in fact
¢ > 4. Letz = cos™'(1 — 55),s07m/3 < o < 7. Thenforalll <b < a < 4, we know
thatf, — 6, is eitherz or 2r — x. Thus the equatiof¥, — 6;) + (63 — 6,) = 63 — 6; must be
eitherz + 2 = 2r —x or (27 — z) + (27 — x) = z, and the second leads to= 47 which is
impossible, sa: = 27 /3 andf, — 0; = 03 — 6, = 27/3. Similarly we find that, — 03 = 27/3,
but thend, — 0, = 27 is neitherz nor27w — z, which gives the desired contradiction. The proof
is finished.

Incidentally, this argument has produced four unit vectaingch do have the required prop-
erty, namely

1 v§> <1 1 N 1 ) 1 1 1
=y = \T ey T T =S =), \— =, = — — =1
V33T VB Ve V2T VB Ve V2
These form the vertices of a regular tetrahedron. The maximumber of such “equiangular”
unit vectors inC? for generald is unknown.

(1,0), ( ).

Imagine placing infinitely many identical coins at integeirgs on the real line (at most one
coin at each integer). Call such a placemalhbwable if, for all sufficiently large positive
integersV, there is a coin at vV but not atV. Thus every allowable placement has a contiguous
block of coins on the left, and there is some integéthe “first gap”) which is minimal among
those where there is no coin. Call an allowable placemetitspaced if there are no two coins
at positions, b + 1 whereb > « (i.e. no adjacent coins to the right of the first gap). Byave
from one allowable placement to another, we mean a move afghescoin two places to the
right, i.e. removing a coin atand replacing it at the previously empty positich 2 for somei.

For any integersn andn, define an allowable placemeat, ,, in which the coins are placed
at the odd integers 2m — 1 and the even integers 2n. Here is a picture of’, _:

—€0 000060 — 0 +—0@
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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Let f(m, n,w) be the number of well-spaced placements which can be obt&iom P, ,, by
a sequence of exactly moves (the intermediate placements do not have to be wadles}).
Prove thatf (m, n, w) is independent ofz andn.

Solution. In fact, f(m,n,w) is equal to the number of partitions of, i.e. ways to writew
as a sum of positive integers (with repetition allowed, aittiout considering order). This is a
special case of a major combinatorial result, known as Cuonjecture before it was proved
in 1952 (see G. D. James, ‘Some combinatorial results imwglYoung diagrams’, Math. Proc.
Camb. Phil. Soc. 83 (1978), 1-10).

It is clear that replacingr andn with m + ¢ andn + ¢ for any integer would not change
the problem, since it would merely shift all cois places. Sof (m,n,w) = g(m — n,w)
for some functiory of two integer variables (the second of which is nonnegatigmilarly,
shifting all coins one place to the right corresponds toaeiplg (m,n) with (n 4+ 1, m), so
f(m,n,w) = f(n+1,m,w), showing thay(d,w) = ¢g(1 — d,w). To complete the proof that
g isindependent of its first variable, it suffices to show i@t w) = g(—d, w), or equivalently
f(m,n,w) = f(n,m,w). (Having proved the independence, it is easy to see thattimenon
value of f(m, n, w) for all m, n is the number of partitions af, because in the case that—n
Is much larger tham, the placement resulting from the moves is well-spaced if and only if
all the moves involved coins at odd positions.)

To prove thatf (m, n,w) = f(n, m,w), itis enough to construct a bijection between the well-
spaced placements obtained frdey ,, by w moves and the well-spaced placements obtained
from P, ,, by w moves. It is convenient to rephrase the definition of these s&ing some
further notation.

To any allowable placemerft we attach a triple of integer@(P), b(P), c(P)) as follows.
Definea(P) by the rule that for all sufficiently large integeh§

a(P) = #{coins at odd positions> —2N} — #{coins at even positions- —2N}.

(It is clear that for largéV this quantity is independent d¥.) Defineb(P) by the requirement
that if we were to move all coins iR as far left as they would go (irrespective of parity), they
would occupy exactly the positions- ,b(P) — 2,b(P) — 1,b(P). Finally, letc(P) be the
number of pairgi,i’) € Z*? wherei < ¢/ and P has a coin at’ but not ati.

Suppose that”’ is obtained fromP by a move of a single coin two places to the right as in
the question. Then it is easy to see th@P’) = a(P), b(P’) = b(P), andc(P’) = ¢(P) + 2.
Moreover, a short calculation gives

a(Ppyn) =m—mn, b(Py,) =m+n, andc(P,,) = (m 2_ n)

Here(3) means@, whetherz is positive or negative.
It is clear that every allowable placemeftis obtained from some initial placeme#f, ,,
by moves as in the question. Since thandb values are left unchanged by the moves, this
1

initial placement is in fact uniquely determined: we mustéhar = 5(a(P) + b(P)) and

n = 3(b(P) — a(P)). Moreover, the number of moves mustye(P) — (“1)) (in particular,
¢(P) must be greater than or equal(t’éf)) and of the same parity). So the allowable placements
P obtained frompP,, ,, by w moves are exactly those for whieliP) = m — n, b(P) = m + n,
andc(P) = (™,") + 2w, and those obtained frorf, ,, by w moves are those for which
a(P)=n—m,b(P)=m+n,andc(P) = (";") + 2w =m —n+ (") + 2w.

It will therefore suffice if we can construct an involutione(i a self-inverse permutation)
P — P of the set of well-spaced placements which has the followiaperties:
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a) a(f) = —a(P),

b) b(P) = b(P),
c) ¢(P) = c(P)+ a(P).

The following definition of such an involution is adaptedrfr@ne given in the paper by A. Las-
coux, B. Leclerc, and J.-Y. Thibon, ‘Hecke algebras at robtsnity and crystal bases of quan-
tum affine algebras’, Commun. Math. Phys. 181 (1996), 208-26

Let (i; < --- < i) be the sequence of positions of all coingimot in the contiguous block,
except that we include the rightmost coin in the contigudoshif its position is odd. Since
P is well-spacedi; + 1 < i;;; forall1 < j < s — 1. Now defineey, - - - , ¢, by the rule that
¢; = 1if 4; isodd ande; = —1if i; is even. Note that; + - - - + €, = a(P). If a(P) = 0 (i.e.
there are equal numbers t§ and(—1)s), defineP = P; otherwise, proceed as follows. From
the sequence < - - - < s, eliminate any consecutive pgir< ;' with the property that; = —1
andi;; = 1; then eliminate such consecutive pairs from the remainaegience, and continue

in this way until what remains is a sequenge< --- < j, such that; = --- =i, = 1,
Gjpsy = - = 1;, = —1forsome0 < k <t. We havek — (t —k) = a(P) #0. If k >t -k, we
defineP to be the placement obtained frafhby moving the coin onj, ., toi;, .., + 1, the

coinoni;, ., 4+1t04; .. 41+ 1,and soon, up to the coin af) toi; + 1. (Note that these are
not moves of the type considered in the questionk) 4f ¢t — k, we defineP to be the placement
obtained fromP by moving the coin onj;,  , to;_ , — 1, the coin oni;, , toi; ., — 1, and
so on, up to the coin ofy, , to7;, , — 1. Itis straightforward to check thdt is well-spaced.
Moreover, the two cases are inverse to each other, so we silwaseP = P. ThusP — P

gives an involution of the set of well-spaced placementss #asy to see from the definition
that the three properties are satisfied.



